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Abstract 

 

We present in this paper a real-time system for shape 

recognition. The proposed system is a video and multi-

sensor platform that is able to classify the mobile objects 

evolving in the scene into several expected categories. 

The key of the recognition method is to compute mobile 

object properties thanks to the camera and sensors and 

then to use Bayesian classifiers. A learning phase based 

on ground truth data is used to train the Bayesian 

classifiers. 

Our recognition method has been integrated into an 

existing access control device used in public 

transportation (subway) at RATP to improve safety and 

comfort, to prevent fraud and to count people for 

statistical matters. The expected categories in this case 

are mainly “adult”, “child”, “suitcase” and “two adults 

close to each other”. 

 

Keywords: shape recognition, Bayesian classifiers, 

supervised learning. 

 

1. Introduction 
 

We propose in this paper a new system for shape 

recognition based on a video and multi-sensor system. 

Our goal is to design a system with very high recognition 

rate complying with real-time constraint. To achieve this 

goal, we have conceived a device combining a static 

camera and a set of lateral sensors. Cameras are often 

static in visual surveillance network to get a robust low-

level detection of mobile objects. The lateral sensors are 

very useful to separate people entering the access control 

site. The real-time constraint is very challenging as it 

implies that the solutions should be kept with a maximal 

computing time. 

After an overview of the system in section 3, we give 

a detailed description for the main tasks of the 

interpretation process in section 4. The performance of 

the system is illustrated by the experimental results 

described in section 5. The paper concludes with the 

current limitations and the future work for enhancing the 

robustness of such video understanding system. 

 

2. Related Work 
 

In recent years, many video interpretation systems have 

been developed in the computer vision community. These 

systems are usually composed of algorithms for (a) 

detecting and tracking mobile objects and (b) recognizing 

mobile object behaviors and related scenarios. In [3], N. 

Moenne-Locoz and al. use a Recurrent Bayesian Network 

to model the temporal evolution of the visual features 

characterizing human behaviors and to infer the 

occurrences whatever the time-scale. In [6], Haritaoglu 

and al. have developed techniques for shape analysis and 

tracking to locate people and their parts (head, feet, etc). 

In [2], Zhao and Nevatia have used just one camera in 

realistic situations and an articulated dynamic human 

model to recognize postures of a walking and running 

person. However, few systems have been successfully 

applied to real word applications due to a large variety of 

video interpretation issues (e.g. motion detection and 

tracking are often uncertain and incomplete) and due to 

strong requirements to obtain a real-time, efficient and 

robust system. Moreover, most of existing systems focus 

only on mono camera processing therefore they cannot 

take advantages of other information sources. 

 

Thus, we propose a system that is able to detect and 

classify people and objects with very high recognition 

rate and with real-time constraint. Our approach consists 

in applying Bayesian classifiers for shape recognition to 

handle the uncertainty accurately.   

 

3. System Overview 
 

Our goal is to have as much information as possible on 

the scene to understand precisely who is entering the site. 

To reach this goal, a fixed camera is placed above, at the 

height of about 2.5m, while a set of lateral sensors is 

placed on the side as shown in figure 1. The camera 

observes the mobile objects from the top to detect and 

locate them. The lateral sensors observe the side of 

mobile objects, help to separate the detected mobile 

objects and provide information on their lateral shape. 

 



 
 

Figure 1. The access control site contains (1) a top 

camera, (2) a set of lateral sensors and (3) an access 

door.  

 

The interpretation process is composed of four main tasks 

as shown in figure 2. First a motion detector detects 

mobile objects evolving in the scene thanks to the top 

camera. Second, the mobile objects detected as one 

moving region can be separated thanks to the computation 

of the vertical projections of pixels or thanks to the lateral 

sensors. Third, the mobile objects are classified into 

several mobile object categories (e.g. adult, child, 

suitcase, two adults close to each other) using Bayesian 

classifiers. Finally, the mobile objects are tracked to 

improve the reliability of the recognition process.  

Moreover, we use a 3D model of the empty scene as a 

priori contextual knowledge of the observed environment. 

We define in the 3D scene model the 3D positions and 

dimensions of the equipment (e.g. the access door), the 

zones of interest (e.g. the entrance/exit zone) and the 

expected objects in the scene (adult, child, suitcase, two 

adults close to each other). Using context is essential for 

object recognition and for establishing the confidence in 

the whole interpretation system. 
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Figure 2. The interpretation process takes as input a 

video stream and sensor information and outputs the 

recognized shape of mobile objects. 

 

4. Motion Detector 
 

The goal of the Motion Detector is to detect for each 

frame the moving regions in the scene. In our approach, 

motion is detected mainly by thresholding the difference 

of the current image Ic with respect to a reference image 

Ir. Then for each pixel we compute the absolute difference 

between its intensity (grey or color) and the intensity of 

the corresponding pixel in the reference image. If this 

difference is greater than a certain threshold δ, the pixel is 
marked as moving and otherwise it is marked as 

stationary (cf. equation 1). 

 

Pixel(x,y)moving =(Abs(Difference(Ir(x, y), Ic(x, y)))) > δ 
Equation 1. Test for a moving pixel 

 

We then update the reference image with information 

from the current image. For each pixel marked as 

stationary, we integrate a significant portion of the current 

image to the reference image according to the following 

equation: 

Ir = (1-α)Ir + αIc 
Equation 2. Update the reference image for stationary 

pixels. 

 

Moreover, to correct detection errors (e.g. to integrate 

noise to the reference image), for each pixel marked as 

moving, we also integrate a small portion of the current 

image according to the following equation: 

 

Ir = (1-β)Ir + βIc 
Equation 3. Update the reference image for moving 

pixels. 

 

A typical challenge of motion detection is to handle 

shadows. To remove the shadows, we have installed a 

light on the floor of the site.  

The motion detection takes the majority of the whole 

interpretation process time. To have faster motion 

detection (complying with the real-time constraint), 

instead of testing all the pixels of image, we only test the 

pixels at a regular step (every η pixels, with η a 

parameter of motion detector). If the pixels between two 

consecutive steps have the same label (e.g. “moving” or 

“non moving”) then we consider that all the intermediate 

pixels (between the two pixels tested previously) have 

also this label. If it is not the case, we have to go back and 

test recursively the intermediate pixels. As statistically 

fewer pixels are "moving" in each frame, only a small 

number of pixels need to be tested. So, the motion 

detector can save time. We call such motion detector a 

“RLE (Run Length Encoding) Motion Detector”. In our 

experimentation, with η = 4, the motion detector takes 



only 30% of the whole interpretation process time instead 

of 75% with η = 1. 

 

5. Mobile Object Separation  
 

A common error of motion detection is to detect several 

mobile objects (people walking closely to each other or 

person carrying a suitcase) as only one moving region (cf. 

figure 3). The mobile object separation task consists in 

separating the moving regions that could correspond to 

several individuals into distinct moving regions. To 

accomplish this task, two techniques are combined 

together: computation of pixel projections and utilisation 

of lateral sensors. 

 

5.1. Using Vertical Projections of Pixels  
 

For each moving region, we calculate the potential points 

of separation (called separators) corresponding to 

potential borders between two persons. For that, we 

calculate the vertical projections of the moving region 

pixels as shown in figure 3. When a “valley” is detected 

between two “peaks”, we regard this valley as a potential 

separator between two distinct persons and the peaks as 

the gravity centers of these persons. If the size (the 3D 

length and the 3D width) of both distinct persons matches 

the dimension of a real person then this separator is valid. 

 

 
(a) 

 
(b) 

 
(c) (d) 

Figure 3. Separation using the vertical projections of 

pixels: images (a), (b) illustrated three persons detected 

as one moving region; image (c) illustrated the vertical 

projections of pixels and image (d) shows that the moving 

region has been separated into three distinct moving 

regions. 

 

5.2. Using the Lateral Sensors 
 

The separation method using the vertical projections of 

pixels depends on the position of the persons relatively to 

the camera. This method cannot separate two adults 

walking closely to each other or far from the camera (cf. 

figure 4). In this case, we use lateral sensors to detect the 

point of separation. For example, we can detect the non-

occluded sensors announcing a space between two adults. 

More exactly, a separator is a non-occluded sensor found 

between two bands of occluded sensors (cf. figure 4). 

 

 
(a) 

 
(b) 

Figure 4. Separation using lateral sensors. Image (a) 

shows two adults walking closely to each other and 

detected as one region mobile; drawing (b) shows three 

non-occluded sensors detected between two adults. These 

three sensors form a separator.  

 

In addition to help to separate two adults walking closely 

to each other, lateral sensors provide also clues to 

separate the objects associated to the persons such as 

bags, suitcases and in certain cases children. To separate 

objects, we define a separator as a column of sensors 

having a large majority of non-occluded sensors. These 

separators enable to separate two consecutive suitcases 

and a suitcase or a child from the adult if the distance 

between them is big enough (cf. figure 5). 

 
Figure 5. The top camera does not see the suitcase but 

lateral sensors help to separate it from the person. The 

separator (column of sensors having a large majority of 

non-occluded sensors) is indicated by an arrow. 

 

6. Mobile Object Classification 
6.1. Mobile Object Models 
 

Initially, we have to build a model (class) for different 

mobile objects such as “adult”, “child”, “suitcase” and 

“two adults close to each other”. We are supposed to have 

the model for two adults close to each other because in 

cases where two adults are walking very closely to each 

other, neither the vertical projections of pixels nor the 

lateral sensors can separate them. The model for a mobile 



object is built from its characteristics obtained by the top 

camera and the lateral sensors. The top camera provides 

information on its 3D length Lt and its 3D width Wt. For 

lateral sensors, we divide the zone of sensors at the 

mobile object position into n sub-zones (cf. figure 6). 

Then, for each sub-zone i, we calculate the density Si of 

the occluded sensors and we use this density as a 

characteristic of the mobile object. 

The number of sub-zones, their dimension and their 

position should be chosen intelligently according to the 

properties and the people body parts (e.g. the legs is one 

of the sensitive body part for a person). In our 

experimental test, to simplify the calculation, we divide 

the zone of sensors into 9 sub-zones. The dimension of 

each sub-zone is defined proportionally with the 

dimension of the zone as shown in figure 6.  

h
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Figure 6. The zone of sensors is divided into 9 sub-zones 

and the density of occluded sensors in each sub-zone is 

used as characteristic of mobile object shape. 

 

To reinforce the mobile object model, we also consider 

the lateral 3D width Wl and the lateral 3D height Hl of the 

zone as characteristics of the mobile object.  

In conclusion, in our implementation, a mobile object 

model is a set of 13 characteristics: Lt, Wt, Wl, Hl and Si, 

i=1..9. However, we can add other characteristics of 

mobile object to enrich the model.   

 

6.2. Training Bayesian Classifiers 
 

For each class of mobile object, we use about 250 

instances representative of the class to train a dedicated 

classifier. For each frame, we compute and record the 

values of mobile object characteristics (i.e. Lt, Wt, Wl, Hl, 

Si, i=1..9). We count the number of mobile objects having 

the same value c for the characteristic C. So we obtain the 

frequency for a given mobile object class to have the 

value c for the characteristic C. In other words, we obtain 

the conditional probability P(c|F) that a mobile object has 

the value c for the characteristic C knowing that this 

mobile object belongs to class F.  

By counting the number of mobile objects of other 

classes (i.e. all classes excluding F) having the same 

value c for the characteristic C, we also obtain the 

conditional probability P(c|¬F) that a mobile object has 

the value c for the characteristic C knowing that this 

mobile object belong to another class (¬F corresponds to 

all classes excluding class F). 

 We have developed a tool permitting a user to 

annotate a frame with information for the learning task. 

Once the user has chosen a video sequence, the tool 

visualizes each frame of the sequence and asks the user to 

delimit the mobile object seen in the frame and to give its 

class (e.g. adult, child, suitcase, two adults). The tool 

then, for each mobile object, calculates automatically the 

values (lt, wt, wl, hl, si, i=1..9) of its characteristics 

(corresponding to ground truth) and records them into 13 

files. These files are used latter as the training data. They 

are useful also for evaluating the recognition method. For 

example, we compare the output of the recognition 

module with the ground truth data in these files.  

 

6.3. Mobile Object Classification 
 

To classify mobile objects into the expected classes, we 

compare, in each frame, the characteristics of the mobile 

object with the characteristics of the mobile object classes 

using the Bayes rule.  

For each frame and for each mobile object o, we build 

a vector containing its degrees of membership D(o∈F) 

for all classes F. The degree of membership is the ratio of 

the probability P(o∈F) that the mobile object o belongs to 

the class F divided by the probability P(o∈(¬F)) that the 

mobile object o belongs to another class (¬F corresponds 

to any class excluding class F) as shown by equation 4.  
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Equation 4. The degree of membership is defined as the 

ratio of the probability that the mobile object o belongs to 

the class F. 

 

By using Bayes rule and by replacing the mobile object 

by its characteristic set, we obtain: 
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Equation 5. The degree of membership is computed as 

the ratio of the conditional probability that the mobile 

object characteristic corresponds to the class F. 

 

Where P(F |lt, wt, hl, wl, s1,…, s9) is the conditional 

probability that the mobile object characteristic 

correspond to class F knowing the value set (lt, wt, hl, wl, 

s1,…,s9).  

After checking that all characteristics are independent 

we simplify equation 5: 
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Equation 6. the degree of membership is computed as the 

ratio of the conditional probability of each characteristic 

corresponding to the class F. 

 

Where P(c|F) (respectively P(c|¬F)) is the conditional 

probability that a mobile object characteristic C has the 

value c knowing that this mobile object belongs to class F 

(respectively to another class). These conditional 

probabilities are obtained from the ground truth data as 

discussed in the precedent section. 

The mobile object o is then classified into the class 

with the biggest degree of membership. 

 

7. Mobile Object Tracking 
 

The Bayesian classifiers sometimes miss recognize or do 

not recognize the class for a mobile object due to the 

large variety of lateral shapes (i.e. due to lack of training 

data). To increase the recognition reliability, we track 

mobile object when they evolve through the scene. This 

tracking stage enables, on one hand, to correct potential 

frame to frame classification errors and on the other hand, 

can help latter to recognize human behaviors and 

scenarios. 

 

7.1. Mobile Object Matching 
 

The mobile object matching stage consists of matching 

the mobile objects previously detected at time t-1 with 

new ones detected at time t. To calculate these 

correspondences, we currently use three different criteria: 

their compatibility of lateral shape, their 3D distance and 

the overlap between their bounding boxes. The decision 

to match or not two mobile objects is made based on a 

thresholding of the weighted sum of these criteria.  

For each criterion k, we construct a binary matrix 

no×nn Mk (no and nn are the number of mobile objects 

detected at t-1 and the number of new mobile objects 

detected at t) containing the correspondences for the 

criteria k. The final decision matrix M is computed as the 

weighted sum of the matrices Mk as shown by equation 7. 
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Equation 7. The matrix M combines the three matrices of 

correspondences between mobile objects. 

 
 

If M(i, j), (i=1..no; j=1..nn) is greater than a certain 

threshold ∂ then the mobile objects oi at t-1 and oj at t are 

matched. If an old mobile object at t-1 matches with 

several new mobile objects at t, the mobile object having 

the best correspondence (i.e. the greatest correspondence) 

is chosen. 

 

7.2. Recognition Refinement 
 

To increase the reliability of the shape recognition 

algorithm (i.e. to correct potential classification errors), 

we maintain the temporal coherency of the membership 

degree vector D composed of the membership degrees for 

all classes. For each previously detected mobile object at 

t-1, we update this vector D with the temporary 

membership degree Dt detected at time t as shown by 

equation 8. 

ttDDD ω+=  

Equation 8. Update of the membership degree vector D. 

 

Where ωt, 0 ≤ ωt ≤ 1 is the confidence weight at t of 
the Bayesian classifiers. This confidence weight is chosen 

according to the lateral sensor density where the mobile 

object is the detected. For example, a high confidence 

weight is chosen if the mobile object at time t is found in 

a zone where there are many lateral sensors (i.e. where we 

obtain a more precise shape of mobile object). 

The final class of mobile object is chosen according to 

the biggest value in the new vector of membership 

degrees. 

 

8. Results 
 

The recognition module has been tested in two stages: a 

stand-alone experimentation on recorded image 

sequences (i.e. test offline) and an experimentation in live 

in interaction with the kernel of an existing access control 

device used in subways at RATP. 

To train the Bayesian classifiers, for each class 

“adult”, “child”, “suitcase”, we used about 300 frames as 

training data and about 1000 frames for testing. For the 

class “two adults close to each other”, at the present time, 

we have only 32 frames in total to represent this class. For 

this class, we used 15 frames as training data and 17 

frames for testing.  

  In the stand-alone stage, the results are very 

promising. A large majority of mobile objects have been 

correctly recognized with a high degree of membership 

(cf. figure 7 and table 1). More than 94% of adults, 

children and suitcases are correctly recognized. More 

precisely, for the adult class, the true positive is 98%, the 

false positive is 1% and the false negative is 2%. The true 



positive for “two adults close to each other” is about 73% 

due to the lack of training data in the learning phase.  

 

Mobile 

Object 

True 

Positive 

False 

Positive 

False 

Negative 

Frames 

used for 

testing 

Frames 

used as 

training 

data 

Adult 98% 1% 2% 1102 327 

Child 94% 3% 6% 1050 295 

Suitcase 95% 2% 5% 1008 305 
Two adults 

close to 

each other 

73% 0% 27% 17 15 

Table 1. More than 94% of adults, children and suitcases 

are correctly recognized. 

 

  
(a) An adult with a suitcase 

  

(b) An adult with a child 

 
(b) Two adults walking closely to each other 

Figure 7. The images on the right show the recognition 

result in a 3D animation from the processing of images 

on the left.  

 

The recognition module sometimes miss classifies a 

child with a small suitcase and vice versa due to the 

similarity of appearance. Almost all the potential errors in 

the frame to frame classification have been corrected by 

the frame to frame tracking. 

The recognition result depends on training videos used 

in the learning phase. To obtain better results, we should 

enrich the training data for each class. For example, for 

the class “adult”, the training data should include large 

variety of persons (fat, thin, tall, short, adult in 

summer/winter clothes, etc).  

 In the live experimentation, the recognition module 

runs on a PC (Pentium IV 2.8 GHz, 1GB memory, Linux) 

and receives a video stream at 25 images per second. The 

maximal time for processing one image is inferior to 

35ms. The real-time constraint is then satisfied.  

 

9. Conclusion and Future Work 
 

We have described in this paper a video and multi-sensor 

interpretation process for shape recognition. The key of 

recognition method is to compute mobile object 

properties thanks to a camera and a set of lateral sensors 

and then to use Bayesian classifiers. The system has been 

tested offline and in live and gives very promising results.  

The recognition, as previously said, depends on 

training videos and sensor data. Since realistic training 

data cannot include all varieties of mobile object classes 

and shapes, the first next step will consist in studying 

supervised and non-supervised machine learning 

techniques in order to learn dynamically new classes of 

mobile objects. Moreover, with the objective of helping 

the system to control the access safely and comfortably 

while preventing from fraud, the second next step should 

consist in human behavior and scenario recognition in 

order to understand and anticipate the evolutions of 

mobile objects. For this, we can adapt methods proposed 

in [3] and [5]. Finally, for the system to be more robust, 

the third next step will consist in studying the system 

autonomy. For example, the system should be able to 

detect failures (sensors or camera breakdown, change of 

light) and set up a degraded operation mode according to 

the resource available. The objective will be to have a 

system that can reconfigure itself dynamically and 

autonomously.  

 

References 
 
[1] S. Hongeng, F. Brémond, and R. Nevatia. Bayesian 

framework for video surveillance application. 15th International 

Conference on Pattern Recognition, 2000. 

[2] T. Zhao, R. Nevatia, 2004, “Tracking Multiple Humans in 

Complex Situations,” PAMI, pp. 1208-1221. 

[3] N. Moenne-Locoz, F. Brémond and M. Thonnat. Recurrent 

Bayesian Network for the Recognition of Human Behaviors 

from Video. Third International Conference on Computer Vision 

Systems (ICVS 2003), 2003. Proceedings, pp. 68 – 77. 

[4] P. Viola and M. Jones. Robust Real-time Object Detection. 

Second International Workshop on Statistical and 

Computational Theories of Vision-Modeling, Learning, 

Computing and Sampling, Canada, July 13, 2001. 

[5] V.T. Vu, F Brémond and M. Thonnat. Automatic Video 

Interpretation: A novel algorithm for temporal scenario 

recognition. Eighteenth International Joint Conference on 

Artificial Intelligence - IJCAI 2003. Acapulco Mexico.  

[6]  Haritaoglu I, Harwood D and Davis L, 2000, “W4: real-time 

surveillance of people and their activities”, IEEE Transactions 

on Pattern Analysis and Machine Intelligence, 22, 809-830. 


