
 

 

 
Abstract — This paper deals with monitoring the health status 

of a patient at home so as to detect critical evolutions over a scale 
of several days or weeks. A multivariate simulation is used as a 
way to overcome the lack of experimental data required for 
studying this decision-making issue. The simulation process needs 
to be driven in a rigorous and robust way. Due to that, and to deal 
with heterogeneity and complexity, we make use of an hybrid and 
refinement methodology. It involves the fusion of several types of 
models and knowledge, as well as the implementation of a cascade 
structure for the simulation process. 

I. INTRODUCTION 
ome health telecare concentrates on helping elderly 
people to remain living independently, and on enhancing 

their feeling of safety and security, in addition to the family 
and the nursing cares. Such systems may be particularly suited 
to elderly people living on their own, and more generally to 
people exposed to risks of motor (fall, etc.) or cognitive 
(depression, confusion, senile dementia, etc.) disorders, or 
needing specific medical care (diabetics, asthmatics, etc.). A 
remote health care system is built upon a global medical 
information system made up of (1) a provision of automatic 
devices and various sensors of different types (physiology, 
environment, and activity) installed and networked in the 
person’s home, (2) a local intelligence unit (LIU) located at 
home and devoted to sensor-data processing and management, 
and responsible for broadcasting messages and alarms; and (3) 
a remote control center which ensures the response in case of 
emergency. 

Experiments in remote health care systems carried out in the 
world are scattered and vary in their purposes and concepts. 
They focus either on implementing a generic architecture for 
the integrated medical information system, on improving the 
daily life of patients using various automatic devices, specific 
equipment, and basic alarms, or on providing health care 
services to patients suffering from specific diseases like 
asthma, diabetes, cardiac, pulmonary, or Alzheimer’s. Rialle et 
al. have presented in [1] an overview of projects related to 
home health telecare.  

Most of the current works dealing with home health telecare 

are focused on the architecture issue, dedicated to specific 
pathologies, or concern basic alarms related to the person’s 
situation at home. Basic alarms are raised by “smart” sensors 
or low layers of the LIU when a problem occurs at a short 
temporal scale: either one parameter overpasses a critical value 
(nocturia, pollakisuria, fall, hypertensive crisis, etc.), or a 
critical scenario involving the value of possibly more than one 
parameter is recognized (asthma crisis, etc.). Our focus is on 
the broadcasting of high level alarms about the person’s health 
status, which concern a larger temporal scale. They correspond 
to slow changes in the person’s behavior – along several days 
or weeks – that are not easily spotted by a daily visit from 
caregivers. These changes are observed through global trends 
in the variation of several complementary parameters 
representative of the person’s health status (change in sleeping 
time, weight, appearance of high blood pressure, decrease of 
activity, aging, fatigue, etc.). 

Dealing with this decision-making issue and considering the 
lack of experimental data, we propose to set up a simulation 
process. The aim is to generate multivariate time-series 
relevant for the study of the person’s behavior. The simulation 
process is designed to preserve the problem’s complexity and 
requires as input commonsense and academic knowledge, as 
well as knowledge extracted from a set of experimental data. 
The methodology is based on cycles of refinement according to 
the outcomes of the validation stages.  

These and related issues will be described in the remainder 
of the paper. Section II explains the reasons for a simulation 
process, section III the methodology used. Section IV 
describes the context of simulation considering home health 
telecare, while section V details the steps of model building 
and validation. Section VI presents the results of the 
experimentation of this model, followed by a discussion of 
these results, and  some conclusions and perspectives. 

II. WHY A SIMULATION PROCESS? 

A. Motivations to set up a simulation process 
The study of any decision-making process requires realistic 

and accurate data collection. Research projects about home 
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health telecare are as yet only at their first stages of 
development, and collection of data in realistic environments 
has just started. Moreover, a full study entails consideration of 
several profiles of people facing many types of situations. 
Then, collecting complete and representative sets of data may 
be a quite hard task, especially to hold data corresponding to 
rare events. For these reasons, many researchers have turned to 
simulation as a way to overcome the difficulty of collecting 
large sets of experimental data. 

In relation to experimentation, setting up a simulation 
process enables researchers to have a full and tightly controlled 
universe of data sets. The advantages are at least five fold: (1) 
producing large sets of data to experiment with decision-
making algorithms, (2) generating data representative of many 
situations and many peoples’ profiles, (3) building a process 
that is credible and  easily understandable by any actor of the 
system, in contrast with an analytic modeling approach, (4) 
providing a better a posteriori knowledge of the parameters 
observed at home and the trends of their joint variations, and 
(5) testing the efficiency and the robustness of detection 
algorithms by varying the simulation parameters. 

B. Related works 
Simulation can be defined as “the process of designing a 

model of a real system and conducting experiments with this 
model for the purpose of understanding the behavior of the 
system and / or evaluating various strategies for the operation 
of the system.” [2] This entails that simulation includes both 
the construction of the model and their experimental use.  

Simulation is already broadly used in the medical area, but 
especially for more efficient teaching and training of students 
and practitioners, without putting patients at risk. 

Regarding any research area, Kelton [3] underlines the 
success experienced by simulation research and practice over 
the past 25 years. In the context of decision-making, Shannon 
[2] considers simulation to be one of the most powerful tools 
available for the design and operation of complex processes 
and systems. Advantages of simulation over analytical or 
mathematical models for analyzing systems include: (1) the 
concept of simulation is easy to comprehend, (2) a simulation 
model is more credible because its behavior is compared to the 
real system or it requires fewer assumptions, and (3) it lets us 
experiment with new and unfamiliar situations. 

Even though simulation has many strengths, it is not without 
drawbacks. According to Shannon [2], the usefulness of a 
simulation process depends on (1) the quality of the model, (2) 
the appropriateness and quality of the data, and (3) the accurate 
specification of the simulation conditions to generate data 
consistent with the purpose of the study. This includes the need 
to take particular care in the system definition and conceptual 
model formulation of the levels of abstraction and 
simplification in order to neither oversimplify the system, nor 
carries too much details. In terms of simulation model 
complexity, Chwif [4] advises to keep a model simple and to 

add complexity later if it is strictly necessary. The aim is then 
to determine the best complex level of a given model that still 
maintains its validity. However, Chwif also highlights a lack of 
methodologies to lead a modeler to obtain a simpler model. 

More generally, Kelton [3] underlines that simulation faces 
general methodological problems concerning how to model, 
how to plan a course of simulation experimentation, and how 
to interpret the results. Simulation methodologies are scattered 
and vary widely according to the context of their application. 
According to Kelton, it even seems that simulation research 
may have wandered off in directions that are not particularly 
tied to demand derived from realistic applications. In [5], Ören 
also highlights the diversity of simulation methodologies. He 
presents a simulation taxonomy and points out many types of 
simulation whose relevance depends on varying features like 
the time or the functional relation of descriptive variables. This 
leads to the definition of almost up to 100 types of simulation. 
Then, extracting general guidelines to set up a simulation 
process becomes almost impossible. 

However, there is a critical step required in any simulation 
process: the validation and the verification of the model and 
their behavior. This issue is tackled in several papers like [2,6]. 
Verification and validation aim at checking respectively 
whether (1) the simulation process operates the way the analyst 
intended and (2) it behaves the way the real system does or 
will. In [6], Sargent exclusively discusses validation and 
verification of simulation models. He particularly discusses 
how model validation and verification relate to the model 
development process, and presents the main steps of the 
process and techniques used to complete these tasks. 

In our context of research, the simulation process includes 
several original features related to the use of an incremental 
and hybrid approach. The methodology is incremental to allow 
the process refinement at two levels: (1) within the scope of the 
problem solving scheme and (2) at the stage of the simulation 
model building and validation considering a given purpose and 
context. An hybrid approach is required (1) to deal with 
heterogeneous data, (2) to support the generation of 
multidimensional and correlated data sets, and (3) to integrate 
different kinds of knowledge in the process: commonsense and 
academic knowledge, as well as new knowledge extracted from 
experimental data sets.  

III. METHODOLOGY FOR SIMULATION 

A. Simulation as part of a problem solving scheme 
Setting up a simulation process makes sense only in its 

context and purpose of use. A simulation process should be 
considered as part of a problem solving scheme (figure 1). The 
generation of relevant time-series for the issue studied, as well 
as the data collection if required, is led by contextual 
information related to the general purpose and context of the 
decision issue. This aims at narrowing and specifying the space 
of information and knowledge to consider by answering 



 

 

questions like: what are the relevant observations to set up ? or 
which level of detail to consider? Data collected from 
experiments or generated by a simulation process are then used 
to test appropriate methods of decision making to solve the 
problem. The sensitivity and specificity related to these 
algorithms must match the problem requirements. 

 
Figure 1. A simulation process as part of a problem solving scheme 

 
The decision issue about the health status of a person at 

home involves some complex phenomena (such as the 
observation of more or less correlated parameters that may be 
sensitive to a deterioration in health) that needs to be saved in a 
simulation process. However, a difficulty lies in the lack of a 
priori knowledge about the joint variations of these 
parameters, and that requires a reliance on the diversity of 
informational sources, which are a priori knowledge – that is 
commonsense and academic knowledge – and experimental 
data sets. Some new useful knowledge – so called “extracted 
knowledge” – may be extracted from the experimental data. 

The next critical issue related to simulation concerns the 
level of detail required. The relevance and the level of detail of 
the knowledge involved in the simulation process must be 
suited to the decision’s purpose, so that the generated time-
series are also appropriate to the decision making. The study of 
slow changes in a person’s behaviour at home rests on the 
observation of mean- or long-term trends, which is a “high 
level” issue. Moreover, the aim is not to interpret precisely the 
problem that occurred, but to set up the context of occurrence 
of the changes. Then, while remaining realistic, the sequences 
of data used for the decision making may not require a high 
degree of detail and accuracy. It is the joint variation of these 
parameters that is more crucial. This highlights a compromise 
to be found between the necessity to save the complexity of 
phenomena and the restriction to a level of detail that meets the 
decision’s purpose, as will be discussed at the end of this 
paper. 

Once a simulation process has been implemented and 
experimented, the results of matching between the outputs of 
the decision making process and the problem requirements may 
entail a refinement of the general purpose and context of the 
experimentation and simulation in order to get better sensitivity 
and specificity. In addition to the refinement of the decision 
making system, the set of the parameters or the level of detail 

in their observation might be changed. For instance, more 
precision in the values of these parameters may be required in 
case of low sensitivity, or the contrary, in case of low 
specificity. 

B. The simulation process : a cycle of refinement 
On its own side, the simulation process is also a cycle of 

refinement to better match the requirements of the problem 
entity [6]. The simulation process includes sequentially: (1) the 
conceptual model building according to the analysis of the 
general purpose and context of the problem; (2) the 
implementation of this model in a computerized model; and  
(3) experimentation to generate large sets of data. 

The critical points of verification and validation are relevant 
at all these steps of simulation, so that they are conducted as 
part of the simulation development process (figure 2). Their 
aim is: (1) to validate the theories and assumptions underlying 
the conceptual model and to check the model’s structure and 
logic according to the intended purpose; (2) to ensure their 
right implementation, that is the computer programming is 
correct; and (3) to determine whether the model’s output 
behavior has the accuracy required for their intended purpose 
in reference to experimental sequences of data (operational 
validation). 
 

Figure 2. Simulation process 

C. An hybrid simulation scheme 
Fusion is commonly used to deal with complexity and 

heterogeneity. In setting up the simulation process, we 
considered it essential to integrate several kinds of knowledge 
at each stage of its conception and validation (figure 3), that is: 
(1) commonsense knowledge, (2) academic knowledge, and (3) 
knowledge extracted from experimental data sets. 
Commonsense knowledge is exclusively qualitative, whereas 
academic and extracted knowledge may be either qualitative or 
quantitative. Qualitative knowledge is interesting at two levels: 
(1) it gives an idea of fundamental concepts underlying the 
simulation model, and (2) commonsense knowledge from 
experts may be used for the validation of both the conceptual 
model and the data produced by the simulation when facing a 
lack of quantitative knowledge and / or experimental data. 
Quantitative knowledge allows validation and / or 
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quantification of the concepts in order to get a model ready for 
implementation. It may be extracted from one part of the 
experimental data set (modeling data set). The other part is 
used for the operational validation (validation data set). 

Figure 3. Integration of knowledge in the simulation process 
1. Definition of the underlying conceptual model 

2. Validation of some concepts using knowledge from experimental data 
3. Integration of extracted knowledge in the model 

4. Validation of other concepts of modeling by experts 
5. Validation of data sets produced using the model implementation 

 
The kinds of knowledge involved at the different stages of 

the simulation process determine the techniques of modeling 
and validation [6]: (1) rationalism and logic deductions 
integrate commonsense knowledge and assume that everyone 
knows whether the underlying assumptions are true; (2) 
empiricism involves academic knowledge and then requires 
every assumptions to be empirically validated; (3) 
mathematical analysis and statistical methods are used to test 
theories and assumptions underlying the conceptual model 
using experimental data set, and produce new so called 
extracted knowledge; and (4) face validity involves asking 
people knowledgeable about the system whether the model 
looks reasonable, calling on their commonsense knowledge. 
Concerning the operational validation, the major attribute 
affecting the selection of a relevant technique is whether the 
system is observable. If data about the real system are 
available, appropriate techniques consist of comparing the 
model and system input-output behaviors, for instance by the 
means of graphical displays or using statistical tests and 
procedures. Otherwise, the data sets produced by the model are 
validated subjectively by experts, or by comparisons to the 
results of other models. 

IV. THE CONTEXT OF HOME HEALTH TELECARE 

A. Purpose and requirements 
In the context of detecting bad trends in health status, we 

aim to learn the person’s lifestyle to build a sort of profile, 
which is sensitive to any critical deviation, and then to detect 

any unusual behavior in comparison with this profile. This 
approach towards the decision-making issue is required 
because it is inconceivable to describe all possible critical 
situations of any nature and level, just as we do not yet have 
any way of learning the occurrence of such situations 
(monitoring of persons getting to critical situations and 
collecting the corresponding data). In that context, the purpose 
of the simulation is, first, to generate sequences of data 
representative of usual conditions of life. Later, the simulation 
of the disruption of these sequences of data, in a more or less 
realistic manner, will allow us to test the efficiency and 
robustness of decision algorithms, expected to detect any 
unusual situation. 

B. Observable parameters 
The decision-making system is based on a set of data, 

recorded at home and in real-time, that may be collected from 
different classes of sensors: (1) activity (location, position, 
motion, fall, etc.), (2) environment (temperature, use of doors, 
window, lighting, etc.), and (3) physiology (blood pressures, 
weight, etc.). In the definition of these observable parameters, 
a compromise needs to be found between (a) being easily 
observable and non invasive, by focusing on the observation of 
a small set of parameters, and (b) gaining a full appreciation of 
the person’s condition, sensitive to any change in the health 
status.  

A deterioration of a person’s health status usually entails 
behavioral disorders whose observable symptoms range from 
an increase in the risk of falls, slowness in executing simple 
actions, forgetfulness in daily activities, to a global decrease in 
the person’s ability to perform activities of daily living (ADL). 
Clinical practice has already widely exploited this correlation 
by estimating a patient’s health status in terms of their ability to 
perform ADL such as getting washed, dressing, or feeding 
themselves. The usefulness of monitoring some parameters 
related to the activity of a person is often underlined as being 
an essential part of any health evaluation [7,8], and several 
projects in home health telecare [9-11] have already integrated 
in their concept the assessment of the ADL. Representative of 
both the activity and the health status, the heart rate is another 
important and easily observable physiological measure [12]. 

Thus, we decided to consider in a first step of simulation 
four parameters that can be defined from a provision of sensors 
and that are representative of both the heart rate and activity of 
a person at home: (1) the person’s moves, (2) their postures, 
(3) the activity level, and (4) the mean heart rate.  

C. Simulation inputs: data and knowledge 

1) Experimental data 
Experimental data are required to set up a simulation 

process. In our context, records of data from sensors installed 
in a person’s home are not available. However, we have got 
data corresponding to the monitoring during two non-



 

 

consecutive periods of 24 hours of twelve young, 
normotensive, and healthy subjects in their everyday life, male 
or female, between 20 and 30 years old. Data recorded include: 
(1) the date and time; (2) the annotation of activity types (every 
15 minutes), ranked in 14 increasing levels: sleeping, lying 
down, sitting still, sitting and speaking, sitting and working, 
eating, standing, standing and working, ridding bicycle, 
walking slowly, walking quickly, running, climbing stairs, and 
going down stairs; (3) a kind of activity level, measured on an 
arbitrary scale, and corresponding to the norm of the 
acceleration along the anterior-posterior axis averaged every 
minute; and (4) the mean heart rate (every minute), 
corresponding to the average of data recorded by an ECG 
portable device. 

This experimental set of data is restricted so that it is 
relevant in the context of home health telecare: (1) the activity 
types correspond to activity levels from low to moderate, and 
(2) the person is supposed to live in a ground floor house. Then 
we take account of data corresponding to the following activity 
types: sleeping, lying down, sitting still, sitting and speaking, 
sitting and working, eating, standing, standing and working, 
walking slowly. Moreover, we remove data for the four 
minutes following high level activities, to be free from the 
effect on heart rate of the time needed to recover after intense 
activities. 

2) A priori knowledge 
A priori knowledge corresponds to well-recognized and / or 

validated knowledge, that is either commonsense or academic 
knowledge.  

In our context, useful commonsense knowledge concerns the 
activities of daily living (ADL) of a person at home: (1) the 
distribution of activities within a day, (2) the expected moves 
and postures during the different kinds of activities, and (3) the 
mean activity level according to the activity types. 

Academic knowledge of interest (taken from [12]) are 
related to some features of the mean heart rate and its 
variability in relation to activity types. The mean heart rate is 
generally computed from ECG records by an average every 30 
seconds to 1 minute. Monod and Pottier [12] note the influence 

of the posture on the mean heart rate: (a) when sitting, the 
mean heart rate is 10% higher than when lying down, and (b) 
when standing, it is from 20 to 30% higher than when lying 
down. The effect of a low activity on the mean heart rate is 
also described, as follows: (1) quasi-linear increase of the heart 
rate with the activity level (a saturation effect is observed for 
the values corresponding to high activity levels), (2) rapid 
stabilization of the values, and (3) need for 1 to 3 minutes to 
recover. Moreover, mean heart rate values are characterized by 
a large variability.  

V. CONCEPTUAL MODEL BUILDING AND VALIDATION 

A. Principle of model building 
The conceptual model building is guided by a priori 

knowledge about the dependence between parameters, which 
gives an indication of the factors and relative influences that 
are relevant to consider in the modeling. One requirement of 
the simulation process is indeed to preserve the problem’s 
complexity, that is especially the joint variations of  the 
parameters. Considering a person moving within the rooms of 
their home, one can intuitively think that: (1) their successive 
postures depend on the room occupied and the time of the day, 
(2) the activity level of the move and posture, and (3) the main 
variations of the mean heart rate are conditioned by the posture 
and activity level. Thus, the conceptual model is defined using 
a cascade structure, and run in four steps to successively 
generate time-series corresponding to: (1) the moves of the 
subject in a given period of time, (2) their successive postures, 
(3) the sequences of the activity levels, and (4) the values of 
the mean heart rate. This cascade structure with four levels 
entails to define the same number of sub-models, one per 
simulation parameters, involving different modeling and 
validation techniques, as described on figure 4. 

B. Moves 

1) Principle of modeling 
The model defined for the generation of the moves of a 

person at home is based on commonsense knowledge about 
their activities of daily living. The corresponding modeling 
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Figure 4. A cascade structure for simulation. 
The figure shows in            the simulated parameters, and in            the submodels used for the simulation, detailing from top to bottom:

(1) the technique used for modeling, (2) the model built, and (3) the technique of validation. 



 

 

techniques are thus the rationalism and logic deductions. The 
validation is performed with experts using face validity 
because no experimental data are available for this parameter. 

2) Model building 
This model has been built and implemented by Virone [13]. 

It is made up of a set of Petri nets representing the expected 
moves for a person according to the moment of the day. One 
day is divided into seven periods: (1) night, (2) getting up, (3) 
morning, (4) lunch, (5) afternoon, (6) evening, (7) bedtime. 
The opportunity for the subject to go out off their house is not 
considered. The house is supposed to have six rooms on the 
same floor: (1) kitchen, (2) living room, (3) bedroom, (4) 
bathroom, (5) toilets, and (6) corridor. However, simulated 
data are pre-processed so that short stays (less than 10 seconds) 
in any room are not recorded, which requires the corridor to be 
never occupied considering the results of the simulation. 

C. Postures 

1) Principle of modeling 
The postures of a person represent “static” information 

about their activity at a given time. Just as in the previous case, 
the model defined for the generation of the postures is based on 
commonsense knowledge about the characteristics of a 
person’s postures in their activities of daily living (rationalism 
and logic deductions). The validation is also performed using 
face validity, with experts, because no experimental data are 
available for this parameter. 

2) Model building 
The model defined at this stage is based on finite state 

automata, using the outputs of the previous simulation process 
(the moves) as input. The same three states  are defined for 
each automaton, corresponding to the possible postures of a 
person, that is: (1) standing, (2) sitting, and (3) lying down. 
Considering the context of home health telecare, one 
assumption is that the “lying down” and “standing” postures 
are only reachable through a “sitting” posture. When entering 
or getting out of a room, the person is also supposed to be 
standing. Thus, the posture is forced to change from lying 
down to sitting and then standing, or from sitting to standing 
before a move from one room to another. 

A finite state automaton is characterized by transition 
probabilities between states. These probabilities are defined by 
taking account of the room occupied by the subject. An 
additional criteria in case the room is supposed to generate 
time-dependent behaviors (like when considering the bedroom, 
but not the toilets for instance) is the moment of the day (one 
of the seven moments defined for the model of moves). The 
time to transition depends on the room occupied, and also on 
the moment of the day in some cases, as for transition 
probabilities. It is randomly determined for each transition time 
according to a gaussian distribution. 

D. Activity levels 

1) Principle of modeling 
The activity level of a person represents “dynamic” 

information about their activity at a given short period of time 
(1 minute). In the context of home health telecare, we assume 
that the activity level accurately represent the efforts put in.  

Four types of movements, which can be identified using 
information about the moves and  postures, are considered 
because of the different features they intuitively induce on the 
activity level: (1) movements when lying down, (2) movements 
when sitting, (3) movements when standing, and (4) walking. 
The last one is a subset of movements when standing, and is 
identified as standing and moving from a room to another. We 
expect the activity level to be, on average, higher when the 
movements’ group number is higher. The model of simulation 
is based on a random generation of activity levels at any time 
according to the distribution characterizing the type of 
movement observed at the same time. The corresponding 
conceptual modeling techniques are thus the rationalism and 
logic deductions. 

The model validation is performed using statistical analysis 
on experimental values from the modeling data set: we must 
study the distributions of activity levels according to the type 
of movements to check the intuitive assumptions and determine 
their features. 

2) Model building 
The model building starts with four statistical analysis of 

activity levels, one per type of movements that can be 
observed. This study confirms the intuition with an average 
increase in activity levels with the movements’ group number: 
a mean level of 0.60 when lying down, 1.58 when sitting, 3.46 
when standing, and 4.82 when walking. The distributions 
appeared to match a mix of (1) a normal distribution at low 
levels, and (2) an exponential distribution at higher levels 
(figure 5). The interpretation of such results may be that the 
activity levels are usually concentrated about a mean value 
considering a given type of movements, but it is possible to 
occasionally get some higher values. The features of each 
distribution are calculated from the empirical mean and 
variance.  

 
 

Figure 5. A mix of normal and exponential distributions to model the 
distribution of activity levels considering a given type of movements  

(this sample is when lying down) 
 



 

 

Given that the information about the type of movement 
performed at a time is extracted from the sequences of moves 
and postures previously generated, a value of activity level is 
randomly generated according to the appropriate distribution at 
any time. 

E. Heart rate 

1) Principle of modeling 
The model defined for the generation of mean heart rate 

values is based on empiricism, relying on academic knowledge 
that especially shows: (a) an inter-subject variability in heart 
rate values, and (b) a dominant sensitivity of this parameter to 
the posture and activity level. At least part of the subject’s 
specificity in their heart rate variations lies in the features of 
their resting values, which we therefore consider in the 
simulation process: (1) the generation of a time-series for the 
resting heart rate, and (2) the introduction of some aleas on 
these values according to the posture and activity level at the 
same time. That also gives the opportunity to generate data 
sequences corresponding to different personal profiles. 

The model validation is performed using statistical analysis 
on experimental values from the modeling data set to check 
and quantify the academic knowledge integrated in the 
conceptual model building. Given that the modeling data set is 
made up of records from several people and that everyone has 
specific features in their heart rate variability, we propose the 
normalization of the mean heart rate values of each subject by 
considering the aleas from the specific variation of their resting 
heart rate. Thus, the model building includes study of: (1) the 
characteristics of variation of the resting heart rate for any 
subject, (2) the temporal correlation between activity level and 
heart rate, (3) the relation between the aleas from the resting 
heart rate and the activity level considering each possible 
posture, and (4) the distribution of mean heart rate values 
according to a given posture and activity level. 

2) Model building: normalization of heart rate values 
The normalization of heart rate values is performed 

according to the features of the resting variations. Considering 
a physiological parameter such as the mean heart rate, these 
variations very nearly follow a circadian rhythm (period of 24 
hours). We decided to analyze the circadian rhythm of every 
subject using the cosinor technique [14,15], in which collected 
over 24 hours are represented by the best cosine function using 
the “least squares” calculation. More powerful procedures have 
been perfected to overcome the main limitation of this 
technique resulting from the assumption that the studied 
rhythm fits a sine curve. But given that, in our context, few 
data are available for each subject when resting, the results of 
any circadian rhythmicity analysis may be inaccurate anyway. 
The resultant characteristics produced by such an analysis are 
as follows: (1) the MESOR, M (Midline Estimating Statistic Of 
Rhythm) (average level around which the oscillation occurs), 
(2) the amplitude, A (measure of the extent of rhythmic 

change), and (3) the Acrophase, Aφ (measure of the time at 
which the fitted cosine reaches its maximum value), φ being the 
phase, expressed in trigonometric units. The time-variations of 
the heart rate values, HR(t), are then following the equation 
(1), where t is the time expressed in hours. 

 
 HR(t) = M + A.sin((2π/24)t +φ ). (1) 

 

 
Figure 6. Circadian rhythmicity analysis for a typical subject 

 
This cosinor method is applied on experimental heart rate 

records for each subject, after selecting the values which 
correspond to a low activity level (i.e. lower than 0.6). Given 
that the heart rate varies with posture, even when the patient is 
really quiet, the values are adjusted considering the posture 
observed at the same time: values are divided by 1.1 when the 
person is sitting, and by 1.25 when standing. The analysis 
showed that, for a sinusoidal circadian rhythm, average values 
were approximately: (1) M ≈ 70 bpm, (2) A ≈ 6 bpm, and (3) 
Aφ ≈ 16h. Figure 6 shows one sinusoidal circadian rhythm 
estimation. 

3) Model building: aleas on the heart rate from the 
resting values 

In the study of the alea on heart rate from the resting values, 
a first step is the analysis of the temporal correlation between 
the activity level and heart rate. Indeed, considering the need 
for time to recover after any activity, commonsense knowledge 
lets us think that the heart rate at a given time may not depend 
only on the activity level at the same time. We therefore need 
to determine the time interval preceding a measure of heart rate 
during which the activity level has an influence on the 
measured heart rate. An analysis of intercorrelation between 
these two parameters shows a peak when the two time-series 
are in phase, indicating that the temporal relation can be 
described as (2), where HR(t) represents the value of heart rate 
at time t, and ACT(t) the one of the activity level at the same 
time:  

 
 HR(t) = f(ACT(t), ACT(t-1), ACT(t-2),…). (2) 



 

 

Moreover, considering the correlation between heart rate 
and mean values of activity levels, the best correlation is 
obtained when activity levels are averaged over the two 
minutes preceding heart rate determination, so that, at last, the 
equation describing the temporal relation is as (3). 

 
 HR(t) = f(mean(ACT(t), ACT(t-1))). (3) 

 
Thereafter, the relation (3) is detailed using a statistical and 

mathematical analysis on experimental data. Given that heart 
rate values depend on posture, whatever the level of activity, 
the modeling data set is cut, according to the observed posture, 
into three subsets, which are then analysed independently. To 
face the effect of saturation in the values of heart rate with high 
activity levels, we decided to study the relation between the 
aleas on heart rate and the logarithm of the mean activity level 
over the two minutes preceding any measure of heart rate. The 
results, presented on figure 7, show a quasi-linear relation 
between these two parameters. We must note that there are 
only few data available for moderate to high activity levels, 
that is over a value of 1.5 for the logarithm, and even less when 
the person is lying down. A linear regression over average 
value gives an estimate of the parameters linking activity level 
and heart rate. The slope and ordinate values of the linear fit 
increase with the effort required by the posture. The variability 
of heart rate values can also roughly be described as a linear 
function of the mean activity levels, whatever the posture. 
Considering now a given posture and activity level, aleas on 
heart rate are distributed along a normal curve, as shown on 
figure 8. 

 
Figure 7. Mean (at the top) and standard deviation (at the bottom) of aleas on 
the mean heart rate according to the mean values of activity level over the two 

minutes preceding any measure of the mean heart rate 
 

The simulation of heart rate values consists of: (1) the 
generation of mean resting values given sinusoidal features for 
the circadian rhythm (one value every minute); and (2) the 
introduction of aleas on these values according to the posture 
and the mean activity level over the two minutes preceding any 
heart rate value. These two pieces of information indicate those 
linear features that should be considered for the relation 

between heart rate and activity, so that we can get the 
appropriate values for the mean heart rate and its standard 
deviation. These characteristics (mean, standard deviation) are 
used to randomly generate a value of alea according to the 
corresponding normal distribution. Finally, the values of heart 
rate are calculated by adding circadian features of heart rate 
variations for the “simulated” subject. 

 
Figure 8. Distribution of aleas on heart rate values when the person is lying 

down and the activity level is between 0.4 and 0.5. 
 

A sample of the sequences of data produced by the model of 
simulation is shown on figure 9. 

 
Figure 9. Sequences extracted from the simulation data set 

VI. EXPERIMENTATION AND OPERATIONAL VALIDATION 
This paragraph is dedicated to the experimentation of the  

model of simulation described above, once implemented using 
Matlab. The context of experimentation and validation, the 
results of experimentation, and their validation are presented 
successively. 

A. Context of experimentation and validation 
The sequences of data produced by the implementation of 

the simulation model (moves, postures, activity levels, and 
heart rate) need to be validated by comparison with time-series 
observed on a real system, which were unfortunately not 



 

 

available in our context. Concerning moves and postures of a 
person at home, we do not have any experimental record, so 
that the validation of the corresponding times series is 
performed by face validity, with knowledgeable people. In the 
case of the two remaining parameters (activity levels and heart 
rate), we have put aside for operational validation a data set 
quite close to our experimental conditions, called validation 
data set (see IV.C.1). The idea is then to rearrange these data to 
get new sequences that are suited to the context of 
experimentation. Since the values of these parameters are 
closely related to moves and postures of the person, this 
manipulation of the validation data set is made according to the 
sequences of moves and postures produced by the simulation 
(real records of moves and postures are not available). Thus, it 
is relevant to compare simulated and so called pseudo-
validation data sets. 

 
Figure 10. Sequences extracted from the pseudo-validation data set 

 
The method used to rearrange the validation data set is based 

on the annotation of the pairs of the validation data set (activity 
level, heart rate) with the type of movement observed at the 
same time (lying down, sitting, standing, or walking). To get 
ride of the experimental subjects’ specificity, the values of 
heart rate are normalised according to the sinusoidal circadian 
rhythm defined for each subject, so that we now have real 
sequences of (activity level, heart rate alea) pairs. Then, an 
appropriate pair is selected from these sequences every minute 
throughout the duration of the simulated sequences of moves 
and postures setting down the experimental context. 
Considering all real pairs available (activity level, heart rate 
alea), the criteria involved in the selection of relevant pairs at a 
given time are: (1) the type of movement associated with the 
real pair of values matches the one observed according to the 
simulated values of moves and postures at the current time; (2) 
the time of the real record is quite close to the current time; (3) 
considering the values already selected for the pseudo-
validation data set and the real data, the activity levels over the 
two minutes preceding the current time or the time associated 
with the real pair considered (if existing) are close. A pair is 
then randomly chosen among all relevant pairs selected. 

However, once a pair is selected, the next pair in the real time-
series is preferably selected, if relevant, in order to get as many 
real sequences of data as possible. Finally, the values of heart 
rate are calculated by adding the circadian features of the 
“simulated” subject. A part of the pseudo-validation data set 
obtained in that way is shown in figure 10. 

B. Discussion about the quality of the simulation 
The assessment of the quality of the simulation results is 

based on the comparison between the simulation and pseudo-
validation data sets (figures 9 and 10). Before any objective 
approach using statistical tests and procedures, a first step is to 
make a subjective judgement on the overall aspect of the 
signals. As already noticed, the validation of the sequences of 
moves and postures is performed by face validity, with 
knowledgeable people. Considering activity levels and heart 
rate, one can immediately notice a higher variability in the 
simulated values than in the validation ones. However, the 
distributions of activity levels in both cases of simulation and 
validation look similar, due to the way in which these values 
were modeled. That means that features other than statistical 
characteristics of activity levels according to the movements of 
a person may have been integrated in the model to get a more 
realistic aspect for the simulated sequences. An intuitive idea is 
the need for information about the temporal arrangement of 
these sequences. As a matter of fact, the validation data set is 
preferably built by including real data that follow one another 
in time in the experimental sequences, rather than individual, 
randomly chosen, pairs of values. Figure 11 shows the aspect 
of a validation data set that could be obtained without this 
criterion for the rearrangement of the experimental data, that is 
without any temporal constraint. The aspect of these signals is 
much closer to that of the simulated data, especially when 
looking at the heart rate variability (directly related to the 
activity level). This confirms the need for a temporal 
constrainst in the modeling of activity levels to get more 
realistic sequences of data. In the next paragraph, we will 
discuss the really need for taking into account the temporal 
component. 

Figure 11. Sequences extracted from the pseudo-validation data set obtained 
with an individual and random selection of pairs (activity level, heart rate) 



 

 

VII. DISCUSSION, CONCLUSION AND PERSPECTIVES 
This paragraph is built around three major points: (1) the 

validity of the experimental data set, (2) the simulation model 
building, and (3) the results of its experimentation. 

The experimental data used for the simulation process may 
not be completely satisfactory since they have been recorded 
from a restricted class of people: young, normotensive, and 
healthy, male or female, between 20 and 30 years old. 
Furthermore, this class of individuals does not fit the one 
targeted by home health telecare projects, that is elderly people 
living on their own. Moreover, the information about the 
activities performed by the subjects at any time are given by 
subjective annotations written down by the subjects 
themselves. Then, for instance, activities like “walking 
quickly” and “walking slowly” may be difficult to discriminate 
in the same manner for every subject. Finally, data 
corresponding to activities of high intensity and for the four 
minutes following their end has been removed. That might not 
be enough in some case when the subject is particularly 
affected by a hard task. However, it was not desirable to cut 
down many experimental data. All these reasons may already 
bias the quality of the model of simulation for the intended 
purpose. 

Other remarks can be made on the model building itself, 
especially concerning the simulation of heart rate values. 
Activities and postures have been considered as the main factor 
influencing the heart rate values. That is probably true in 
general, but many other factors may have an influence as well, 
such as many external factors (outside temperature, use of 
medicines, stress, external events such as phone ringing or 
door banging, etc.) or the organism productivity (vegetative 
activity for instance). The methods for estimating the circadian 
rhythms and normalizing the heart rate values are also far from 
perfection given the underlying inaccuracies and assumptions 
(threshold on the activity level to define the resting heart rate 
values, adjustment of the heart rate values according to the 
posture, assumption of a sinusoidal circadian rhythm). 

In spite of the imprecision described above, the results 
produced by the model are not so inappropriate from the point 
of view of the simulation’s purpose. Indeed, the sequences of 
simulated data are expected to be used for the study of mean- 
to long-term critical trends in a person’s behaviour, that is a 
“high level” analysis of temporal data. For instance, preserving 
the statistical properties of time-series while respecting the 
shape of signals over a day might be enough to complete such 
a study. The aim is not to simulate precisely the outputs of 
sensors, as observed on the real system, but to provide large 
sets of data that are relevant for the decision-making purpose. 
As already mentioned in this paper, a major point is to well 
define the purpose and context of use of the simulation results. 
We then need to refine the purposes of the decision-making 
process in order to precise the type of temporal information 
that is really required within the time series. Then we will 

know whether or not we need another cycle to refine the 
simulation process so that it generates more appropriate data 
sequences. 
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