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ABSTRACT
Defining the similarity of objects is crucial in any data analy-
sis and decision-making process. For those which effectively
deal with moving objects, the main issue becomes the com-
parison of trajectories, also referred to as time-series. More-
over, complex applications may require an object to be a mul-
tidimensional vector of heterogeneous parameters. In that
paper, we propose a similarity measure for heterogeneous
multivariate time-series using a non-metric distance based
on theLongest Common Subsequence (LCSS). The proposed
definition allows for imprecise matches, outliers, stretching
and global translating of the sequences in time. We demon-
strate the relevance of our approach in the context of identi-
fying similar behaviors of a person at home.

1. INTRODUCTION

Measuring the similarity and dissimilarity between objects
is crucial in any data analysis and decision-making process.
Furthermore, many data analysis processes effectively deal
with moving objects and need to compute the similarity be-
tween trajectories, also referred to as time-series.

In this work, we investigate the problem of defining a
similarity measure of heterogeneous multivariate time-series.
When dealing with complex issues involving the analysis of
data recorded from several types of sensors or information
sources, like most monitoring purposes, an object may be a
multidimensional vector of heterogeneous parameters. One
application is the monitoring of the health status of a person
at home. The aim is to support the caregivers by providing in-
formation about unusual trends in the person’s behavior. The
decision-making process must then be able to recognize sim-
ilar behaviors through the variation of quantitative or qualita-
tive parameters monitored at home. Therefore, the similarity
model should allow for heterogeneous components defining
an object, as well as for imprecise matches, outliers, stretch-
ing and global translating of the sequences in time.

The rest of the paper is organized as follows. In sec-
tion 2 we present related works. In section 3 we formalize
the similarity measure. Section 4 provides the experimental
validation of the proposed approach in the context of home
health telecare. Finally, section 5 conludes the paper.

2. RELATED WORKS

The simplest approach typically used to define a similarity
function is based on the Euclidian distance, or some exten-
sions to support various transformations such as scaling or
shifting. Chuiet al. [3] have used it successfully for ex-
tracting one-dimensional time-series motifs in some specific

cases. However, this model cannot deal with outliers and is
very sensitive to small distorsions in the time axis.

Another approach is to use theDynamic Time Warping
(DTW)distance which allows stretching in time and compar-
ing time-series of different lengths [7, 8]. However, a great
amount of outliers still results in very large distances, even
though the difference may be found in only a few points.

Non-metric techniques have then been introduced and ef-
ficiently used to better deal with noisy data [1, 4, 9]. The idea
is to capture the intuitive notion that “two sequences should
be considered similar if they have enough non-overlapping
time-ordered pairs of subsequences that are similar” [1]. This
refers to finding theLongest Common Subsequence (LCSS)
between two time-series. This approach allows for outliers,
different scaling factors, and baselines.

However, the above works mainly deal with low dimen-
sional (from one to three dimensional) time-series and do not
address the issue of heterogeneous components (quantitative
or qualitative) describing a moving object. Our objective is
then to extend theLCSSapproach to heterogeneous multi-
variate time-series. For the purpose of evaluation, we com-
pare the performance ofLCSSto the use ofDTW distances.

3. SIMILARITY MODEL

3.1 Guidelines

Comparing heterogeneous multivariate time-series, and es-
pecially time-series representative of human behaviors, we
need a similarity model that can address the following issues:
• Multivariate time-series. Relevance for comparing

moving objects described by several parameters.
• Heterogeneous components.Coherence of the similar-

ity model for qualitative and quantitative parameters.
• Imprecise matches.Strong presence of noise, especially

when considering human behaviors.
• Outliers. Might be introduced due to anomaly in the sen-

sor or attributed to human failure or disruption.
• Translation in time. Similar behaviors may occur at any

time.
• Streching in time. Different lengths allowed: dealing

with human behaviors, a same activity does not always
last the same duration.

• Efficiency. Efficient computation of the similarity.
The similarity model relevant to cope with these chal-

lenges is based on theLCSS. Indeed, dealing with noisy data
have proven to be better handled using non-metric, based on
theLCSS, than metric distances. Part of the variability in the
values might however be removed by filtering the raw data,



allowing to compute more accurate similarity measures from
the pre-processed sequences. However, some other noise like
large sequences of outliers cannot be handleda priori by any
pre-processing. Because previous works about comparing
time-series only concern quantitative data, another crucial
point is to define a coherent model for expressing distances
including both qualitative and quantitative parameters.

Computing distances between trajectories includes evalu-
ating the distance between points. This distance is either in-
tegrated in the whole distance formula between trajectories
in the case of a metric distance, or used to decide whether
two points are similar using a threshold in the case of a non-
metric distance. The next sections describe first the distance
between points according to the type of parameter, and then
its integration in computing the distance between trajectories.

3.2 Distance between points

We would like to allow the description of an object using
several parameters of the following possible types:
• Quantitative
• Ordered qualitative
• Unordered qualitative

The simplest way of insuring the coherence of the simi-
larity measure is to make the distances between two values
range from 0 to 1 for each type of parameters. Leta andb
be two values of a given parameter, andd(a,b) the distance
between these two values. In case of a qualitative parameter,
let v be the number of variates, the possible values being then
the integers from 1 tov. According to the parameter’s type,
d(a,b) is defined as follows:

d(a,b) = |a−b| , (1)

d(a,b) =
|a−b|
v−1

, (2)

d(a,b) = min(|a−b| ,1). (3)

The equations (2) and (3) are used respectively for or-
dered and unordered qualitative parameters. In the case (1)
of quantitative parameters, getting a distance between 0 and
1 requires a step of normalization so that the possible values
range from 0 to 1. We use a min-max normalization, where
the minimum and maximum bounds are defined from experts
or using statistical analysis of training sets. All values are
then restricted to these bounds, lower and upper values be-
ing interpreted as noisy or eroneous. LetXmin andXmax be
respectively the minimum and maximum bounds for the val-
uesx of a given parameterX. We define the normalized value
norm(x) of x as follows:

norm(x) =
max(0,min(x,Xmax)−Xmin)

Xmax−Xmin

3.3 Distance between trajectories

The similarity function between trajectories is based on the
LCSS, already used by Vlachoset al. [9] in the context of
multidimensional (generally two or three dimensional) time-
series of quantitative data. The overall idea is to count the
number of couple of points from two sequencesA and B
that matches according to a pre-defined matching threshold
ε, and when going through the temporal sequences (see Fig.
1). One point can never be associated twice to a point of the

Figure 1: The notion of theLCSSmatching within a region
of ε. Comparing the trajectories point to point along the time
axis, the pairs both within the gray region can be matched.

Figure 2: The notion of theLCSSmatching within a region
of δ . The points of two trajectories can be matched if the
time interval is under the maximum authorized value forδ .

other sequence, so that the maximum number of associations
is the minimum length of the two sequences. Another con-
stantδ controls how far in time we can go in order to match
points from one trajectory to the other one (see Fig. 2).

We assume objects are points moving in
a p-dimensional space (x1, . . . ,xp). Let A =
((ax1,1, . . . ,axp,1), . . . ,(ax1,n, . . . ,axp,n)) and B =
((bx1,1, . . . ,bxp,1), . . . ,(bx1,m, . . . ,bxp,m)) be the two tra-
jectories of moving objects with sizen and m respec-
tively. For a trajectoryA, let Head(A) be the sequence:
Head(A) = ((ax1,1, . . . ,axp,1), . . . ,(ax1,n−1, . . . ,axp,n−1)).
Given an integerδ and a real number 0< ε < 1, the
similarity functionLCSSδ ,ε(A,B) is defined as follows [9]:

0 if A or B is empty,

1+LCSSδ ,ε(Head(A),Head(B)),
if

∣∣axk,n−bxk,m
∣∣ < ε, ∀1≤ k≤ p, and|n−m| ≤ δ ,

max
(
LCSSδ ,ε(Head(A),B),LCSSδ ,ε(A,Head(B))

)
otherwise.

(4)
The number of matching is normalized by the minimum
length of the two trajectories, so that the similarity measure
range from 0 to 1. Therefore the functionDδ ,ε(A,B) between
the two trajectoriesA andB is defined as follows [9]:

Dδ ,ε(A,B) = 1−
LCSSδ ,ε(A,B)

min(n,m)
.

Dδ ,ε(A,B) verifies the properties of a distance.



An additional time constraint is however required to bet-
ter deal with the case where every point of the shortest se-
quence match a point of the longest one, with no overlap-
ping, and in time-ordered. A typical sample is the short-
est sequence corresponding exactly to the beginning of the
longest one. According to the previous definition, the sim-
ilarity is then equal to 1, whatever the length of the longest
sequence. LetN andM be the size of the sequencesA andB
respectively at the first step of the recurrent algorithm (4). To
prevent from that kind of improper high similarity, we define
an additional time constraint for the similarity of two points
(ax1,n, . . . ,axp,n) and(bx1,m, . . . ,bxp,m), as follows:

|n−m| ≤ δ and |N−n−M +m| ≤ δ . (5)

Furthermore, we need to extend the similarity constraints
to the case of qualitative parameters. The idea is to consider
that two values of a qualitative parameter are similar only if
they are equal. Therefore, we have defined a relevantε value
according to the parameter’s type, as follows:

• Quantitative 0< ε < 1,
• Ordered qualitative ε = 1

v−1,
• Unordered qualitative ε = 1.

The constraint on values for the similarity is then de-
scribed usingd

(
axk,n,bxk,m

)
(cf. 3.2) as follows:

d
(
axk,n,bxk,m

)
< ε, ∀1≤ k≤ p.

3.4 Similarity computation

To compute the distance between trajectories, we have to run
a LCSScomputation. Most algorithms for finding theLCSS
have their natural predecessors in either Hunt and Szymanski
[6], or Hirschberg [5]. We use a variant of [5] proposed by
Apostolico [2]. The running time is also improved by exam-
ining only the pairs of points verifying the time constraints
described in (5). Then, ifδ is small, the algorithm is very
efficient. Another way of speeding-up the computation is to
reduce the sampling rate. We show in the next section the
influence of pre-processing the data.

4. EXPERIMENTAL RESULTS

4.1 Experimental process

The approach defined for computing the distance between
trajectories is validated in the context of home health tele-
care, and especially under the strong presence of noise. A
moving object corresponds to the evolution of various pa-
rameters representative of the a person’s health status. We
consider the following heterogeneous parameters that can be
defined from a provision of sensors installed in the home:
• Moves(room occupied). Qualitative, unordered.
• Postures. Qualitative, ordered according to the effort re-

quired by the posture (lying down, sitting, and standing);
• Activity levels. Quantitative, in an arbitrary unit (repre-

sentative of the body acceleration);
• Mean heart rate. Quantitative, in beat per minute.

Our objective is to identify a sort of profile of a person
— their usual behaviors — from the global trends of these
parameters, and then to detect any deviation from this pro-
file. The distance between time-series is then expected to
generate low values between sequences corresponding to the
realisation of a same activity in same conditions, and higher
values otherwise. Two experimental sets consist of:

Figure 3: Sequences close to sequence 0 (class 0).

Figure 4: Sequences far from sequence 0 (class 1).

(1) Sequences 0 to 8 representative of a given activity—
getting ready in the morning (see Fig. 3), generated from
a reference sequence (sequence 0) by adding noise of
three types: streching in time, variability in values, in-
terruptions (consecutive outliers).

(2) Sequences 9 to 16 representative of other activities
like sleeping, having a meal, having a quiet activity (see
Fig. 4), including one sequence (sequence 16) corre-
sponding to the reference activity (same moves) but car-
ried out in bad conditions (slowness). This abnormal be-
havior may be detected if sequence 16 is not considered
as representative of sequence 0.

The experimental process aims at classifying these sequences
using a threshold on the distance to sequence 0. An appro-
priate distance may be able to properly discriminate the se-
quences: 1 to 8 associated to class 0, and 9 to 16 to class 1.
We use bothDTW andLCSSdistances for comparison (see
[7] for a clear review ofDTW principle), and in each case
the distances are computed from both raw and pre-processed
data — that is sampling rate reduction to speed-up the com-
putation, and filtering to remove some noise. Preliminary
experimentations were required to define relevant values for
theLCSSparameters (ε,δ ) in the context of our application.

4.2 Discussion about the results

The classification results are presented on Fig. 5. As a gen-
eral comment, we notice thatDTWdistances are really lower
thanLCSSones, due (1) to different orders of computation —
1 for LCSSand 2 forDTW, and (2) to possible multiple as-
sociations of any point usingDTW, so that the distance may



Figure 5: Distances between sequence 0 and the other experi-
mental sequences, from either raw or pre-processed data, and
usingDTW andLCSSdistances. Classes 0 and 1 correspond
to the expected classification.

remain quite low.
The superiority ofLCSSoverDTW is pointed out by the

results matching the expected classification only in the case
of usingLCSS. Using DTW distance fails in properly clas-
sifying sequence 16. The behavior of bothLCSS— δ set
with no restriction in time for associating points, as it is us-
ing DTW — andDTW when comparing sequences 0 and 16
is illustrated on Fig. 6.DTW allows for multiple associa-
tions, and all points must be matched, based on a minimum
distance criterion. Then, because the sequences of moves
and postures are very close, the poor number of points cor-
responding to low activity levels and mean heart rate in se-
quence 0 are associated to the large number of such points in
sequence 16, and reciprocally for high values of activity lev-
els and mean heart rate. That results in a low number of pairs
corresponding to large distances, so that the distance between
the two sequences remains low. The strength ofLCSSis to
base the similarity of points on a threshold criterion, allow-
ing outliers, and excluding overlapping pairs. A higherLCSS
distance is even obtained for sequence 16 by restricting the
value ofδ .

We also notice that the two classes are better separated
when computing the distances from the pre-processed data.
Filtering the sequences indeed results in removing at least
part of the variability in the values.

5. CONCLUSION

In that paper, we have proposed a similarity measure for het-
erogeneous multivariate time-series using a non-metric dis-
tance based onLCSS. We have demonstrated the efficiency
of our approach from an experimental set of sequences in the
context of home health telecare. At a larger scale, its use to
extract similar behaviors of a person at home along the days
confirms the relevance of that measure. The generality of the
method should make it suitable for other applications, with
possibly assigning different weights to the parameters.

Figure 6: Pairs of points considered as similar when comput-
ing LCSSandDTW distances.
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