On Integrating Omni-Directional Cameras with

Pan-Tilt-Zoom Cameras

for Visual Surveillance and Moritoring

$$
\begin{aligned}
& \text { PTZ Yi-Ping Hung, Chu-Song Chen, } \\
& \text { Shih-Liang Yeh, Wen-Yan Chang }
\end{aligned}
$$

Institute of Information Science
Academia Sinica
Taipei,Taiwan

Outlines

- Introduction
- Calibration of the OD+PTZ Camera System
- Moving Target Detection
- Visual Tracking and Servoing
- Experimental Results
- Summary and Discussions

Introduction

- Integrate OD cameras with PTZ cameras for visual monitoring

My presentation in the $2^{\text {nd }}$ Sino-Franco Workshop

- Integrate a panorama with object movies for virtual exhibition

Object-centered

representation

> Both are "image-besed" !! How to combine in a 3D way?

Extracting 3D structure from a 2D Panoramic Image

-- based on a half-cuboid selected manually

Demo Clips

- Authoring phase
- Browsing phase

"Multi-Shot" vs "One-Shot" Panoramas

- In this work, use "one-shot" panoramic imaging sensors
- PanoDome: a Omni-Directional (OD) camera
manufactured by EeRise Co., Taiwan

[^0]Institute of Information Science, Academia Sinica

A Simple Scenario

Calibration of the OD+PTZ system -- Calibration of PTZ Cameras

- Our previous work on PTZ calibration
- Calibration of Pan-Tilt Cameras
- Using the Complete and Parametrically Continuous (CPC) model
- Each axis composes of a shape matrix and a rotation matrix
- Shih, Hung, and Lin, IEEE T-SMC, 1998
- Calaibration of Zoom Lens
- Table Look-up and interpolation
- Chen, Shih, Hung, and Fuh, IVC, 2001

Some video clips of the calibration procedure

- IIS-Head

Institute of Information Science, Academia Sinica

Here show several images grabbed at different pan/tilt settings during the kinematic calibration procedure

After PTZ calibration, any desired 3D point can be moved to the image center by controlling the PTZ.

desired 3D position: $(0,0,0) \mathrm{mm}$

desired 3D position: $(150,150,0) \mathrm{mm}$

Calibration of the OD+PTZ system -- Calibration of OD Cameras

- GID (Generalized Imaging Device) ICRA'02

A method based on interpolation and extrapolation

For each image point, compute the optical ray in the 3D space by
Step 1. Estimating the 3D coordinates of P" using the "smaller box" image Step 2. Estimating the 3D coordinates of P" using the "bigger box" image Step 3. Computing the line connecting P^{\prime} and $P^{\prime \prime}$

Two 3D points that are projected to the same image point

Improved Calibration Method

- Use a larger dot-pattern on a single calibration plate mounted on a translation table.
- Error caused by extrapolation can be greatly reduced.

Calibration of the OD+PTZ system -- Calibration of Relationship between OD Cameras and PTZ Cameras

1. Calibration with static PTZ -- First, assume

OD camera is

perspective

Accuracy Evaluation

Given a 2D point in the OD image

Its epipolar line in the PTZ image can be computed

Accuracy Evaluation

Given a 2D point in the PTZ image

Its epipolar line in the OD image can also be computed

But not as good if move PTZ around!

Stage 2. Calibration with dynamic PTZ

Moving Object Detection

-- via Modeling the Background Statistically

- Adopt non-parametric model to learn the background
- proposed by Larry Davis [ECCV 2000]
- pixel-by-pixel operation
- applied to images acquired by OD cameras
- Three issues are considered:

1. Background modeling
2. Suppression of false detection

- by considering the neighborhood

3. Background update

- long-term model: selective update
- short term model: blind update

1. Background Modeling

- Pixel-by-pixel non-parametric modeling with Gaussian kernel:

A pixel is considered foreground if
2. Suppression of false detection

3. Background Update

- Short-term model
- selective-update
- add the new sample to the model only if it is classified as a background sample.
- Update model with the most recent N background sample values.
- Long-term model
- blind-update
- just add the new sample to the model
- This model captures a more stable representation of the scene background, and can used to adapt the lighting change.
- Final result: intersection of long-term and short-term results.

An Example on Moving Object Detection

Visual Tracking and Servoing

- Visual Tracking
- Use color histogram to represent a target
- Bhattacharyya coefficient \& mean-shift
- Comaniciu, Ramesh, and Meer, CVPR'00
- Kullback-Leibler distance \& trust-region
- Chen and Liu, ICCV01
- Visual Servoing
- Image Jocobian
- Fuzzy control

Representation of Target

- RGB color distribution
- based on weighted color histogram

$\hat{q}_{u}=C \sum_{i=1}^{n} k\left(\left\|\mathbf{x}_{i}\right\|^{2}\right) \delta\left[b\left(\mathbf{x}_{i}\right)-u\right], \mathbf{x}_{i} \in$ window
where $C=\frac{1}{\sum_{i=1}^{n} k\left(\left\|\mathbf{x}_{i}\right\|^{2}\right)}, \quad k(x)=\frac{1}{2 \pi} e^{-\left(\frac{1}{2} x\right)}$

$$
\delta\left[b\left(\mathrm{x}_{i}\right)-u\right]=\left\{\begin{array}{ll}
1, & \text { when } b\left(\mathrm{x}_{i}\right)=u \\
0, & \text { o.w. }
\end{array}, b\left(\mathrm{x}_{i}\right) \in \mathbf{z}(\text { eg. }(R, G, B))\right.
$$

Target canclidatie

Bhattacharyya Coefficient

- Distance between these two distributions can be defined as

Bhattacharyya Coefficient

$$
\rho(\mathbf{y}) \equiv \rho[\hat{p}(\mathbf{y}), \hat{q}]=\sum_{u=1}^{m} \sqrt{\hat{p}_{u}(\mathbf{y}) \hat{q}_{u}}
$$

- Finding the best match of y is formulated as minimizing the above distance or maximizing the Bhattacharyya coefficient
\Rightarrow Use either mean-shift or trust-region

Visual Servoing

Some Experimental Results

* Target tracking using a fixed camera
* Target tracking using a PTZ camera

* Target tracking after integrating OD with PTZ

Summary and Discussions

- Calibration of OD+PTZ camera system:
- OD calibration - used GID model
- PTZ calibration - first PT calibration by CPC model,
then \mathbb{Z} calibration by table look-up
- Calib of relationship - first with static PTZ, then with dynamic PTZ
- Moving object detection:
- Adopted non-parametric background modeling
- Visual tracking:
- Used either "Bhattacharyya coefficient \& mean-shift"" or "Kullback-Leibler distance \& trust region""
- Visual servoing:
- Used either image Jocobian or fuzzy control rule

[^0]: 2002/3/26

