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Introduction

e Embed digital signatures, called “Watermarks” in contents are im-
portant for copyright protection, copyright control, and information
hiding in multimedia applications.

e In the sense of copyright protection, watermarking is a detection
problem :

e Given a test image T we are testing whether it comes from a random
source :

T ~ X+ M + distortion noise

— XM 1 distortion noise,

where X is host image and XM is watermarked image, and M is
watermark image.

o I. Cox et. al : In watermark detection, X is not purely a noise, since
the media content is known completely to the watermark embedder
at embedding stage.

e One should embed watermark according to the information of the
content. But, How ?



Motivation

e In a batter field, soldiers tend to hide in places that are least likely
to be attacked.

e Where are the save places in X to hide watermark against attacks
?

If we can guess the attacks {A} of a pirate on X, can we

1. Find the places in the image X that are least likely to be modified
by the attacks 7 and

2. Hide watermark information in the places.

e We call the places the Watermark Space of the image with respect to
the attacks {A}.

e The Wavelet Space is content-dependent.



Problem Model

e XM : A variation of the watermarked image X™. May be a version
after attacks.

XM = Y < XM D> Dy
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e Host feature vector:
(< X, D, >]
e Watermark feature vector :
m = [< XM - X, ®;; >]

e Variations from Watermark feature :

e’ = [< XM XM @, >]



Problem Model (Continue)

e Given e,

e Can we select

— the watermark feature m of X and

— a sub-feature space W
such that for the feature t of a test image:

— High Detection Prob. -
If t is from our random source, then the correlation measurement
sim(m, Py (t)) will as large as possible, and

— Low Fualse Alarm Prob. -
If t is not from our random source, then sim(m, Py (t)) will as
small as possible, where

Py is the projection to W, our watermark space.



Watermark Subspace Selection

¢ Suppose our feature space is R, and that our watermark feature is
me W C RN,

e eM can be rewritten as

e =am+v,

where

1. a is a scalar random variable, obtained by projecting e onto m,
and

2. m 1 v.

e If IV is chosen such that most of the realizations of e":

[1Pw (w)]] << [|ml]
la| is close to 0,

(1)
then for most of e/, we will have high detection probability and low

false alarm probability.

o If W is perpendicular to most of the realizations of eV, then the
conditions in (1) will be satisfied.



Watermark Space Selection (Continue)

e Detection Prob.:

sim(m, Pyy(m +e")) = sim(m, Py(m) + Py (am + v))
= sim(m, (1 + a)m + Py (v))

~ sim(m,(l+a)m) = 1.
e False Alarm Prob.:

sim(m, Py (t)) =~ sim(m, E\imivv
= a+ Py(v)

= a~0.



Our Watermarking Strategy



Selection by means of Second Order Statistics

e We can find IV such that the inner product of any vector m € W to

e is small by means of statistics

Minmew E{(m'e")(m’e")'},

where m’ is the transpose of m.

E{(m'e")(m'e")} = m'E{(e")(e")}m
= m'UXU'm

N
= MU o (m'y;)?,
i=1

where

1. X = diag(o?, 05 -, 0%).

2. U = [uy, uy, ..., uy] is the matrix of eigenvectors.
e Optimal solution is assigning our watermark feature m to the sub-

space spanned by eigenvectors whose corresponding eigenvalues are
Zeros.



Fixed-Dimension Watermark Subspace

e In practice, it is convenient to fix the dimension of W, say D, and to
choose W such that it is spanned by the eigenvectors corresponding
to the D smallest eigenvalues.

e This corresponds to finding a linear transformation of e, with a
matrix A as

>\WN§“
where A is an N by D matrix, whose rank is D with D < N and

where each column of A has only one non-zero element with a value
of 1

e such that the following objective function is minimized:
B%b trace(A'ULU'A),

where trace is the trace operation on a matrix.



feature extraction

‘ choose watermark sequencemin W ‘

‘insertq)readingspectrummuence ‘% 0

m*

X — | feature extraction %%%XN|

T —> | feaureextraction

extract sequence and
projectinto W

X — | fedureextraction

remove Spreading Spectrum sequence | —> o

correlation with m

Watermark Encoding/Decoding : W is released



Blind Watermark Subspace

e We can embed our watermark feature such that the extraction of
the feature uses no host image.

— Let W’ be our watermark subspace.

— We find a subspace of W' such that the subspace W is perpen-
dicular to the feature vector of the host image (Gram-Schmidt):

Py(< X, ®;; >]) =0.

e Blind Watermark Subspace is the subspace of W’ perpendicular to
[< X, D;; >].



feature extraction

space W orthogondl to fegture of X

‘choosewalermark sequencemin W ‘

‘in&rtspreajingq)ectrumsa}umce ‘% ]

:

X— feaIureextractlon M% XM

extract sequence and

T — |fetureexracion | — project into W

remove spreading Spectrum sequence | —> o

correlation with m

Blind Watermark Encoding/Decoding : W is released



Experimental Results

e Apply full frame DCT to a set of 22 images.

e Feature: Select the combinations of 32 horizontal low frequency
bands and 32 vertical low frequency bands.

e Operations on each image :

— blurring,
— compression with JPEG,
— small rotations (by 40.1°,£0.2°),

— small translations (by shifting 1 pixel either up, down, left or
right),
— geometrical deformation,

— adding random noise,

— other image operations in Matlab and Microsoft Photo Editor.
e In total, we obtained 183 forged images for each image.

e The dimension of watermark space for each image is 900 (released
to attackers).

e Each image has a watermark space and a blind watermark space
(released to attackers).
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(Continued)

e Comparisons of the mean and standard derivation of various attacks
on our methods (solid line with reference, dash-dot lines without
reference) and on Cox’s method (dash lines) with 22 test images.

e Each image was subjected to 15 attacks.

e The first 5 were operations that were intended to obtain our wa-
termark space W, while the middle 5 were not, and the last 5 were
combinations of attacks with one of them from 1 to 5 except for
Attack 13.

e Attacks 1 to 5 were respectively: 1. Jpeg(60%): Jpeg Compression
with a quality setting of 60%, 2. Stirmark(with small values for
its parameters); 3. Small rotation 0.02°; 4. Small translation (1
pixel in either direction); 5. Small random noise. Attacks 6 to 10
were: 6. Jpeg(53%): Jpeg Compression with a quality setting of
53%, 7. Stirmark(with larger values than Attack 2); 8. Rotation 1°;
9. Translation 2 pixels in either direction; 10. Blur(cubic): Smooth
by cubic spline. The last 5 were, respectively: 11. Jpeg 60% —+
Rotation 1°; 12. Translation 1 pixel 4+ Blur(cubic); 13. Rotate 10°
and then rotate 10° back 4+ blur(quadratic); 14. Stirmark(with the
same parameters used in Attack 2) + Translation (2 pixels); 15.
Random noise (more noise than in Attack 5) + Jpegh3%.
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The mean detection probability (top) and the mean false alarm prob-
ability (bottom) of our method (solid lines) compared with those of
Cox’s method (dash lines). Left: Attacks 1 to 5 are included. Right:

Attacks 1 to 5 are excluded. The horizontal axes of these figures are
thresholds. The false alarm probabilities are approximately the same

for both methods. Given a threshold, our method has a higher mean
detection probability.
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Other Attacks (Continued)

Blind Attack: attack image

— 5 subjectives, knowing image processing, attacked our
watermarked Lena image.

— They attacked hard but kept the attacked images vi-
sually acceptable.

— Obtain a total of 120 images. Among them, 85% has
sim > 0.5, and 80% has sim > 0.7.

e Malicious Attacks - attack watermark space

— Jamming our watermark space by means of spread-
ing random noise. As much as noise but still visually
acceptable.

— Copy Attack - assuming that the attackers know our
watermarking modulation and demodulation processes
and their parameters.



Conclusion

e In our approach of watermark detection, the media con-
tent is not viewed purely as noise.

e We derive from second order statistics the watermark
space for an image. The watermark space is robust to

attacks and any where in the space can hide our water-
mark feature.

e Our watermarking methods are applicable to watermark
detection whether a reference image is given or not.



