Content Relevant Subspace Watermarking Methods

Wen-Liang Hwang
Institute of Information Science
Academia Sinica, Taiwan

Jengan Tzeng and I Liang Chern Mathematics Department National Taiwan University, Taiwan

Introduction

- Embed digital signatures, called "Watermarks" in contents are imhiding in multimedia applications portant for copyright protection, copyright control, and information
- In the sense of copyright protection, watermarking is a detection problem :
- Given a test image T we are testing whether it comes from a random source:

$$T \sim X + M + distortion noise$$

= $X^M + distortion noise,$

where X is host image and X^M is watermarked image, and M is watermark image.

- at embedding stage. the media content is known completely to the watermark embedder I. Cox et. al: In watermark detection, X is not purely a noise, since
- One should embed watermark according to the information of the content. But, How?

Motivation

- In a batter field, soldiers tend to hide in places that are least likely to be attacked.
- Where are the save places in X to hide watermark against attacks

If we can guess the attacks $\{A\}$ of a pirate on X, can we

- 1. Find the places in the image X that are least likely to be modified by the attacks? and
- 2. Hide watermark information in the places.
- We call the places the Watermark Space of the image with respect to the attacks $\{A\}$.
- The Wavelet Space is content-dependent.

Problem Model

 \underline{X}^{M} : A variation of the watermarked image X^{M} . May be a version after attacks.

$$\begin{split} \underline{\mathbf{X}}^{\mathbf{M}} &= \sum_{i,j} < \underline{\mathbf{X}}^{\mathbf{M}}, \Phi_{i,j} > \tilde{\Phi}_{i,j} \\ &= \sum_{i,j} < \mathbf{X}, \Phi_{i,j} > \tilde{\Phi}_{i,j} + \sum_{i,j} < \mathbf{X}^{\mathbf{M}} - \mathbf{X}, \Phi_{i,j} > \tilde{\Phi}_{i,j} + \sum_{i,j} < \underline{\mathbf{X}}^{\mathbf{M}} - \mathbf{X}^{\mathbf{M}}, \Phi_{i,j} > \tilde{\Phi}_{i,j}. \end{split}$$

Host feature vector:

$$[<\mathbf{X},\Phi_{i,j}>]$$

Watermark feature vector:

$$\mathbf{m} = [<\mathbf{X}^{\mathbf{M}} - \mathbf{X}, \Phi_{i,j}>]$$

• Variations from Watermark feature :

$$\underline{\mathbf{e}}^{M} = [\langle \underline{\mathbf{X}}^{\mathbf{M}} - \mathbf{X}^{\mathbf{M}}, \Phi_{i,j} \rangle]$$

Problem Model (Continue)

- Given $\underline{\mathbf{e}}^M$.
- Can we select
- the watermark feature m of X and
- a sub-feature space W

such that for the feature t of a test image:

- High Detection Prob. $sim(\mathbf{m}, P_W(\mathbf{t}))$ will as large as possible, and If t is from our random source, then the correlation measurement
- Low False Alarm Prob. small as possible, where If t is not from our random source, then $sim(\mathbf{m}, P_W(\mathbf{t}))$ will as

 P_W is the projection to W, our watermark space.

Watermark Subspace Selection

- Suppose our feature space is $\mathbb{R}^{\mathbb{N}}$, and that our watermark feature is $\mathbf{m} \in W \subseteq R^N$
- \bullet $\underline{\mathbf{e}}^{M}$ can be rewritten as

$$\underline{\mathbf{e}}^M = \underline{\alpha}\mathbf{m} + \underline{\mathbf{v}},$$

where

- 1. \underline{lpha} is a scalar random variable, obtained by projecting $\underline{\mathbf{e}}^M$ onto m, and
- 2. m $\perp \underline{\mathbf{v}}$.
- If W is chosen such that most of the realizations of $\underline{\mathbf{e}}^{M}$:

$$\begin{cases} ||P_W(\underline{\mathbf{v}})|| << ||\mathbf{m}|| \\ |\underline{\alpha}| \text{ is close to } 0, \end{cases}$$
 (1)

then for most of $\underline{\mathbf{e}}^{M}$, we will have high detection probability and lowfalse alarm probability.

If W is perpendicular to most of the realizations of $\underline{\mathbf{e}}^{M}$, then the conditions in (1) will be satisfied

Watermark Space Selection (Continue)

• Detection Prob.:

$$sim(\mathbf{m}, P_W(\mathbf{m} + \underline{\mathbf{e}}^M)) = sim(\mathbf{m}, P_W(\mathbf{m}) + P_W(\underline{\alpha}\mathbf{m} + \underline{\mathbf{v}}))$$

= $sim(\mathbf{m}, (1 + \underline{\alpha})\mathbf{m} + P_W(\underline{\mathbf{v}}))$
 $\approx sim(\mathbf{m}, (1 + \underline{\alpha})\mathbf{m}) = 1.$

• False Alarm Prob.:

$$sim(\mathbf{m}, P_W(\underline{\mathbf{t}})) \approx sim(\mathbf{m}, P_W(\underline{\mathbf{e}}^M))$$

= $\underline{\alpha} + P_W(\underline{\mathbf{v}})$
= $\underline{\alpha} \approx 0$.

Selection by means of Second Order Statistics

We can find W such that the inner product of any vector $\mathbf{m} \in W$ to $\underline{\mathbf{e}}^{M}$ is small by means of statistics

$$min_{\mathbf{m}\in\mathbf{W}} E\{(\mathbf{m}'\mathbf{e}^M)(\mathbf{m}'\mathbf{e}^M)'\},\$$

where m' is the transpose of m.

 $E\{(\mathbf{m}'\underline{\mathbf{e}}^{M})(\mathbf{m}'\underline{\mathbf{e}}^{M})'\} = \mathbf{m}'E\{(\underline{\mathbf{e}}^{M})(\underline{\mathbf{e}}^{M})'\}\mathbf{m}$ $= \mathbf{m}'\mathbf{U}\Sigma\mathbf{U}'\mathbf{m}$ $= \sum_{i=1}^{N} \sigma_{i}^{2}(\mathbf{m}'\mathbf{u}_{i})^{2},$

where

- 1. $\Sigma = diag(\sigma_1^2, \sigma_2^2 \cdot \cdot \cdot, \sigma_N^2)$.
- 2. $U = [\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_N]$ is the matrix of eigenvectors.
- Optimal solution is assigning our watermark feature m to the subspace spanned by eigenvectors whose corresponding eigenvalues are

Fixed-Dimension Watermark Subspace

- In practice, it is convenient to fix the dimension of W, say D, and to to the D smallest eigenvalues. choose W such that it is spanned by the eigenvectors corresponding
- This corresponds to finding a linear transformation of $\underline{\mathbf{e}}_{\mathbf{c}}^{M}$ with a matrix A as

$$\mathbf{A'}\mathbf{\underline{e_c}}^M,$$

where each column of A has only one non-zero element with a value where A is an N by D matrix, whose rank is D with $D \leq N$ and

such that the following objective function is minimized:

$$\min_{\mathbf{A}} trace(\mathbf{A}'\mathbf{U}\Sigma\mathbf{U'A}),$$

where trace is the trace operation on a matrix.

Watermark Encoding/Decoding: W is released

Blind Watermark Subspace

- We can embed our watermark feature such that the extraction of the feature uses no host image.
- Let W' be our watermark subspace.
- We find a subspace of W' such that the subspace W is perpendicular to the feature vector of the host image (Gram-Schmidt):

$$P_W([<\mathbf{X}, \Phi_{i,j}>]) = 0.$$

Blind Watermark Subspace is the subspace of W' perpendicular to $[<\mathbf{X},\Phi_{i,j}>].$

Blind Watermark Encoding/Decoding: W is released

Experimental Results

- Apply full frame DCT to a set of 22 images.
- Feature: Select the combinations of 32 horizontal low frequency bands and 32 vertical low frequency bands.
- Operations on each image :
- $^-$ blurring,
- compression with JPEG,
- small rotations (by $\pm 0.1^{\circ}, \pm 0.2^{\circ}$),
- small translations (by shifting 1 pixel either up, down, left or right),
- geometrical deformation,
- adding random noise,
- other image operations in Matlab and Microsoft Photo Editor.
- In total, we obtained 183 forged images for each image
- The dimension of watermark space for each image is 900 (released to attackers).
- Each image has a watermark space and a blind watermark space (released to attackers).

(Continued)

- Comparisons of the mean and standard derivation of various attacks reference) and on Cox's method (dash lines) with 22 test images. on our methods (solid line with reference, dash-dot lines without
- Each image was subjected to 15 attacks.
- The first 5 were operations that were intended to obtain our wacombinations of attacks with one of them from 1 to 5 except for termark space W, while the middle 5 were not, and the last 5 were
- and then rotate 10° back + blur(quadratic); 14. Stirmark(with the 9. Translation 2 pixels in either direction; 10. Blur(cubic): Smooth 53%, 7. Stirmark(with larger values than Attack 2); 8. Rotation 1°; pixel in either direction); 5. Small random noise. Attacks 6 to 10 Attacks 1 to 5 were respectively: 1. Jpeg(60%): Jpeg Compression same parameters used in Attack 2) + Translation (2 pixels); 15. its parameters); 3. Small rotation 0.02°; 4. Small translation (1 with a quality setting of 60%, 2. Stirmark(with small values for Random noise (more noise than in Attack 5) + Jpeg53%. Rotation 1°; 12. Translation 1 pixel + Blur(cubic); 13. Rotate 10° by cubic spline. The last 5 were, respectively: 11. Jpeg 60% +were: 6. Jpeg(53%): Jpeg Compression with a quality setting of

detection probability. Attacks 1 to 5 are excluded. The horizontal axes of these figures are thresholds. The false alarm probabilities are approximately the same ability (bottom) of our method for both methods. Given a threshold, our method has a higher mean Cox's method (dash lines). Left: The mean detection probability (solid lines) compared with those of Attacks 1 to 5 are included. Right: (top) and the mean false alarm prob-

Other Attacks (Continued)

- Blind Attack: attack image
- 5 subjectives, knowing image processing, attacked our watermarked Lena image.
- They attacked hard but kept the attacked images visually acceptable.
- Obtain a total of 120 images. Among them, 85% has sim > 0.5, and 80% has sim > 0.7.
- Malicious Attacks attack watermark space
- Jamming our watermark space by means of spreadacceptable ing random noise. As much as noise but still visually
- Copy Attack assuming that the attackers know our and their parameters. watermarking modulation and demodulation processes

Conclusion

- In our approach of watermark detection, the media content is not viewed purely as noise.
- space for an image. The watermark space is robust to We derive from second order statistics the watermark attacks and any where in the space can hide our watermark feature
- Our watermarking methods are applicable to watermark detection whether a reference image is given or not.