On Modular Transformation of
Structural Content

Tyng—Ruey Chuang Jan—Li Lin
Institute of Information Science
Academia Sinica
Nankang, Taipei 115

Taiwan

{trc, 1jl}@iis.sinica.edu.tw

Outline

XML: What and Why

Mapping XML DTDs to ML Type Definitions
Fold /Unfold and Natural Transformation
Modularity of Fold/Unfold

Dealing with Mis-matched Arities

Modeling XML Transformations in ML

Concluding Remark

XML: What and Why

e XML is an extensible markup language for tagging documents

for their structural content.

e XML is extensible because each XML document can include a
Document Type Definition (DTD) that specifies its own tagging

rules.

e XML is for exchange of complex documents/datasets.

Document Type Definition

e An XML document is a tree of elements. An element consists
of the start-tag <name>, the end-tag </name>, and a sequence

of child elements in between.

e A DTD is a set of (mutually recursive) regular expression
definitions of element type names. For an element type T, its
defining regular expression specifies what element sequences are
valid as children for elements of type 1. The regular expression
is called T"s content model.

o Well-formed: the start-tags and end-tags are properly matched.

e Valid: the child sequence is derivable from the content model.

A Tidy Bookmark Folder: An Example

e The following XML document has a folder DTD. The DTD
has two element types folder and record.

<?xml version="1.0"7>

<IDOCTYPE folder [

<!ELEMENT folder ((record, (folder|record)*) |
(folder, (folder|record)+))>

<!ELEMENT record EMPTY>

1>

<folder><record></record></folder>

e This “tidy” DTD specifies that a record must not contain any
element, and no folder is ever empty or contains just one folder.

e The above document is a valid XML document.

Map XML Element Types to ML Types (I)

Define ML type constructors for all the XML content model
operators. Define XML element types using only these ML type

constructors.

type (’a, ’b) alt =L of a | R of ’b (x "|" %)
type (’a, ’b) seq = ’a * ’b (x "," %)
type ’a star = ’a list (x "x" x)

type ’a plus = One of ’a | More of ’a * ’a plus (x "+" x)

Folder of ((record, (folder, record) alt star) seq,
(folder, (folder, record) alt plus) seq) alt

type folder

and record = Record

Map XML Element Types to ML Data Types (II)

Abstract the right-hand-sides of the type equations into type
constructors, and express the XML element types as simultaneous

fixed points of these type constructors.

type (’a, ’b) £f0 = ((’b, (’a, ’b) alt star) seq,
(’a, (Pa, ’b) alt plus) seq) alt
type (’a, ’b) f1 = unit

type folder = Folder of (folder, record) fO

and record = Record of (folder, record) f1

We call type constructors £0 and £1 parametric content models.

The Big Picture

Let s and ¢t be XML DTDs. Each also denotes the set of valid XML
documents w.r.t. the DTD. Let w be the set of all well-formed
XML documents.

e The functions in w — w are “untyped”, while those in s — ¢
are “typed”. Validation is a function in w — s. (ICFP 2001)

e How to model and compose functions from s to ¢? (This Talk)

Some Notations

Let s = (s1,82,...,8n) denote a DTD s consisting of a tuple of
element types s1, s2,...,S,, which are defined as the simultaneous
fixed point of parametric content models P = (P, Ps, ..., Py).
That is,

A%Hu%wu...“%g@v — AwHA%Hu%wu...umﬁvuwwA%H“%wu...umﬁvu...uwﬁﬁmﬁu%wu...u%ﬁvv

We use s = Ps to denote s as the fixed point of P.

Let up, : Ps — s and down, : s = Ps be the two mappings that
together defines the identities

up, odowns = 1idg

downs; oup, = 1idp;,

Paramertric Content Models are Functors

Define Pf : Ps — Pt for f = (f1, f2,.-., fn), where f; : s; — t;, as

Pf=(Pi(f fos- s) Po(f1, fose oo fu)s oo Pulf1s fos o5 f))

where P;(f1, f2,- .., fn) is the function that map value
P;(vy,v2,...,v,) to value P;(f1(v1), fa(v2), ..., fn(vn)).

Moreover,

Pid, = idp,,
(Pg)o(Pf) = P(gof)

forall f:s—tand g:t— u. P is a functor, categorical speaking.

10

Fold — An Example

type ’a pat = Nil | Node of ’a * ’a
let map f pat =
match pat with Nil -> Nil | Node (x, y) -> Node (f x, f y)

type tree = Rec of tree pat
let up pat = Rec pat
let down (Rec pat) = pat
let rec fold f tree = f (map (fold f) (down tree))

let sum pat = match pat with Nil -> 0 | Node (x, y) -=> x +y + 1

let count tree = fold sum tree

Rec (Node (Rec Nil, Rec (Node (Rec Nil, Rec Nil)))

let my_total = count my_tree

let my_tree

11

The Fold Diagram

map : (’a -=> ’b) -> ’a pat -> ’b pat
up: tree pat —-> tree

down: tree -> tree pat

fold: (’a pat -> ’a) -> tree -> ’a
sum: int pat -> int

count: tree -> int

down
tree » tree pat
fold sum map (fold sum)
Y Y
int « int pat
sum

12

Unfold — An Example

type ’a pat = Nil | Node of ’a * ’a
let map f pat =
match pat with Nil -> Nil | Node (x, y) -> Node (f x, f y)

type tree = Rec of tree pat
let up pat = Rec pat
let down (Rec pat) = pat
let rec unfold g seed = up (map (unfold g) (g seed))

let linear n = if n<= 0 then Nil else Node (0, n - 1)

let skew n = unfold linear n

let my_total = 2
let my_tree

skew my_total

13

The Unfold Diagram

map : (’a -> ’b) -> ’a pat -> ’b pat
up: tree pat —-> tree
down: tree -> tree pat

unfold: (’a -> ’a pat) -> ’a -> tree

linear: int -> int pat

skew: int -> tree
. linear .
1nt pat « int
map (unfold linear) unfold linear
Y Y
tree pat » tree
up

14

Fold or Unfold?

let rec fold f tree = f (map (fold f) (down tree))
let rec unfold g seed = up (map (unfold g) (g seed))

let swap pat = match pat with Nil->Nil | Node(x,y) -> Node(y,x)
let mirror_fold tree = fold (up o swap) tree

let mirror_unfold tree = unfold (swap o down) tree

(k - —————————— - —-.— . - ——————————————— *)
fold: (’a pat -> ’a) -> tree -> ’a

unfold: (’a -> ’a pat) -> ’a -> tree

swap: ’a pat -> ’a pat

up O swap: tree pat —-> tree

swap o down: tree -> tree pat

15

The Two Diagrams

down
tree » tree pat
fold (up o swap) map (fold (up o swap))
Y Y
tree « tree pat
up © swap
swap o down
tree pat « tree
map (unfold (swap o down)) unfold (swap o down)
Y Y
tree pat » tree

up

16

XML Document Transformation as Fold

Let DTDs s = Ps and t = (Qt each defines exactly n element types.
A function from s to t — 4.e., an XML document transformation
that maps documents of DTD s to documents of DTD ¢t — is a fold
function if it is characterized by a reduction function f : Pt — ¢

with the following commutative diagram:

Uupg

(/D P(f)

17

XML Document Transformation as Unfold

A function from s to ¢ is an unfold function if it is characterized by

a generating function g : s — ()s with the following commutative

diagram:

»
Va
A
Vo

O
<~
A
~

down,

18

Natural Transformation

Let P and @) be two functors. A natural transformation n: P — @)
is a collection of DTD-index functions that satisfies

My © Pf=Qf o na

for any DTD x and y, and for any function f : x — y. That is, the
following diagram commutes:

Px i

\/
O
K

Pf Qf

A
<
\

Qy
Ny

19

Function swap Is A Natural Transformation

’a pat

map f

’b pat

swap

Y

’a pat

map f

Y

b pat
swap

20

Fold /Unfold via Natural Transformation

A natural transformation n : P — () defines two s — t functions:

e (up; o), this is a fold function;

e (1 o down,), this is an unfold function.

Furthermore, (up, o 7)) = (ns o downy).

up o down
s - 5 Ps s > Qs <« s s
(up¢ o mt) P(upg o n¢) Q(ns o downg)
t < Pt > Qt <«
upg¢ O Mg Uk Qossﬁ

21

(ns o downg)

The Two Mirrors Concide

mirror_fold fold (up o swap)

= unfold (swap o down) = mirror_unfold

22

Modularity (I)

Let s = Ps,t = Qt, and u = Ru be DTDs, and let n: P — () and
(: Q — R be two natural transformations. Then

(upy © Cul) © (up, o) = (upy, © Cu © M)
That is, the composition of two folds is also a fold. Moreover,
¢x ' P— R=(_,0omn,

is a natural transformation. That is, the resulting fold is again

characterized by a natural transformation.

23

Modularity (II)

Similarly, for unfold, we have
(¢ o downy) o [ns o downg) = [(s o 15 0 downy)
That is, the composition of two unfolds is also an unfold. Again,
{2 P> R=(Cy0m,

is a natural transformation, and the resulting fold is characterized

by a natural transformation.

24

Modeling XML Transformations in ML

A ML codification of part of the category theory.

Layers of categorical constructions are systematically mapped
to layers of higher-order ML modules.

The modules are of fixed arities, but are parameterized by
DTD expressions.

Issues of scalability and programming supports: An XML DTD
may define 100-plus element types.

25

Concluding Remark

ML is very usetul in modeling XML processing in a modular

way.
Standard results from category theory are very helpful.

Further generalization is possible: Just extend the index-set

mapping o : M — N trom a function to a relation.

Natural transformations can be too restrictive: They suflice to
fuse two folds into one, but not necessarily all fusable folds

must derived from natural transformations.

26

