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Abstract

This paper presents a visual surveillance system for the au-
tomatic scene interpretation of airport aprons. The sys-
tem comprises two modules — Scene Tracking and Scene
Understanding. The Scene Tracking module, comprising a
bottom-up methodology, and the Scene Understanding mod-
ule, comprising a video event representation and recogni-
tion scheme, have been demonstated to be a valid approach
for apron monitoring.

1. Introduction

This paper describes work undertaken on the EU project
AVITRACK. The aim of this project is to automate the su-
pervision of commercial aircraft servicing operations on the
ground at airports (in bounded areas known as aprons). A
combination of visual surveillance algorithms are applied
in a decentralised multi-camera environment with overlap-
ping fields of view [3] to track objects and recognise ac-
tivities predefined by a set of servicing operations. Each
camera agent performs per frame detection and tracking
of scene objects, and the output is transmitted to a central
server where data association and fused object tracking is
performed. This result is subsequently fed to a video event
recognition module where spatial and temporal events relat-
ing to the servicing of the aircraft are detected and analysed.
The system must be capable of monitoring and recognising
the activities and interaction of numerous vehicles and per-
sonnel in a dynamic environment over an extended period
of time, and must operate in real-time (defined as 12.5 FPS
with resolution 720× 576) on colour video streams.

The tracking of moving objects on the apron has previ-
ously been performed using a top-down model based ap-
proach [14] although such methods are generally computa-

tionally expensive when applied to real time tracking. An
alternative approach, bottom-up scene tracking, refers to a
process that comprises the two sub-processes motion detec-
tion and object tracking; the advantage of bottom-up scene
tracking is that it is more generic and computationally effi-
cient compared to the top-down method.

Motion detection methods attempt to locate connected
regions of pixels that represent the moving objects within
the scene; there are many ways to achieve this including
frame to frame differencing, background subtraction and
motion analysis (e.g. optical flow) techniques. Background
subtraction methods [13, 10] store an estimate of the static
scene, which can be accumulated over a period of observa-
tion; this background model is subsequently applied to find
foreground (i.e. moving) regions that do not match the static
scene. The airport apron, being an outdoor environment,
provides several challenges to motion detection. It must
handle a wide range of environmental conditions, weather,
and illumination changes, which can be long-term changes
(diurnal cycle) or short-term (cloud movements, reflections,
etc). The AVITRACK test sequences, like many CCTV
applications, also suffer from chrominance and luminance
sensitivity and have significant JPEG artifacts; the moving
objects and apron are also of an achromatic nature with low
contrast between the observed foreground and background.

Image plane based object tracking methods take as input
the result from the motion detection stage and commonly
apply trajectory or appearance analysis to predict, associate
and update previously observed objects in the current time
step. The Kanade-Lucas-Tomasi (KLT) feature tracker [12]
combines a local feature selection criterion with feature-
based matching in adjacent frames. The CamShift algo-
rithm [6] uses appearance based (colour histogram) repre-
sentation of objects to perform tracking using the mean-
shift algorithm. The work of Pece [11] filters the spatial



location and extent of objects using a recursive probabilis-
tic generative model. Tracking algorithms have to deal with
motion detection errors and complex object interactions;
e.g. objects appear to merge together, occlude each other,
fragment, undergo non-rigid motion, etc. Apron analysis
presents further challenges due to the size of the vehicles
tracked (e.g. the aircraft size is 34× 38× 12 metres), there-
fore prolonged occlusions occur throughout apron opera-
tions. The apron can also be congested with objects; this
enhances the difficulty of associating objects with regions.

Video event recognition algorithms analyse tracking re-
sults spatially and temporally to automatically recognise the
high-level activities occurring in the scene; for aircraft ser-
vicing analysis such activities occur simultaneously over
extended time periods in apron areas. Recent work by Xi-
ang et al [16] applied a hierarchical dynamic Bayesian net-
work to recognise scene events; however, such models are
incapable of recognising simultaneous complex scene ac-
tivities in real-time over extended time periods.

Section 2 details the scene tracking module comprising
per-camera motion detection, bottom-up feature-based per-
camera object tracking and finally fused object tracking us-
ing the combined object tracking results from the camera
agents. Section 3 describes the video event recognition
module including both the representation of video events
and the video event recognition algorithm itself applied to
apron monitoring. Section 4 presents the results, while Sec-
tion 5 contains the discussion and lists future work.

2. Scene Tracking

The scene tracking module is responsible for the detection
and tracking of moving objects from individual cameras;
the tracked object locations are subsequently transformed
into 3D world co-ordinates. The data fusion algorithm de-
termines single world measurements for each object from
the multiple camera observations.

2.1. Motion Detection

The output of a motion detector is connected regions of
foreground pixels, which are then used to track objects of
interest across multiple frames. 16 motion detection algo-
rithms were implemented and evaluated. Of these, the fol-
lowing three algorithms (all based on the aforementioned
background subtraction method) have acceptable suscepti-
bility to noise and good detection sensitivity: mixture of
Gaussians [13], colour and edge fusion [10] and colour
mean and variance. By taking into account processing effi-
ciency as well as sensitivity, the colour mean and variance
method was selected. The colour mean and variance al-
gorithm has a background model represented by a pixel-
wise Gaussian distribution N(µ, σ2) over the normalised

RGB colour space. In addition, a shadow/highlight detec-
tion component based on the work of Horprasert et al [9], is
used to handle illumination variability. The algorithm also
employs a multiple background layer technique to allow the
temporary inclusion into the background model of objects
that become stationary for a short period of time.

2.2. Object Tracking
Real-time object tracking can be described as a correspon-
dence problem, and involves finding which object in a video
frame relates to which object in the next frame. Normally,
the time interval between two successive frames is small,
therefore inter-frame changes are limited, thus allowing the
use of temporal constraints and/or object features to sim-
plify the correspondence problem. Three approaches to ob-
ject tracking were applied: based on the tracking of local
features [12], colour information [6] and difference image
clusters [11]. The local feature tracking method (KLT) was
found to give the most reliable tracking result in evaluation
and was chosen for use in this project. The KLT algorithm
considers features to be independent entities and tracks each
of them individually. Therefore, it is incorporated into a
higher-level tracking process that groups features into ob-
jects, maintain associations between them, and uses the in-
dividual feature tracking results to track objects, taking into
account complex object interactions. For each object O, a
set of sparse features S is maintained, with the number of
features determined dynamically from the object size and a
configurable feature density parameter ρ.

Given a set of tracked objects
{
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at time t − 1,
and a set of observations
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at time t obtained from the
motion detector, i.e. connected components of foreground
pixels, the tracking process is summarised as:
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considered potential new objects.

5. Update the state of those predictions in {P t
i } that were

matched to observations and replace lost features. The
final result is a set of tracked objects {Ot

i} at time t.
Let t = t + 1 and repeat step 1.

For step 3 above, a match function is defined which returns
the number of tracked features W of prediction P t

i that re-
side in the foreground region of observation M t

j :

f
(

P t
i , M t

j

)

=
∣

∣

∣

{

W : W ∈ SP t

i

, W ∈ M t
j

}∣

∣

∣
(1)



For a non-interacting object, (1) returns a non-zero value
for only one prediction-observation pair. But to handle
complex object interactactions, a rule-based approach is
adopted. The rule for object splitting takes care of assign-
ing the local features to the corresponding new object, so
that features are maintained through the splitting event. In
the case of merging objects, the known local states of the
tracked features are used to update the ‘unknown’ global
states of the predictions. Other rules are used to handle in-
teractions of moving objects with objects that have become
stationary (integrated into the background model), and sta-
tionary object re-activation once they start moving again.

2.3. Data Fusion

The data fusion module combines the tracking data seen by
each of the individual cameras to maximise the useful in-
formation content of the scene being observed and hence
achieves enhanced occlusion reasoning, a larger visible area
and improved 3D localisation. Data fusion also minimises
the volume of data generated by the many cameras and re-
duces the bandwidth needed to send information to later
modules. Spatial registration of the cameras is performed
using per camera coplanar calibration (with radial lens dis-
tortion coefficient) and the camera streams are synchronised
temporally across the network by the central server.

The method for Data Fusion is based on a nearest neigh-
bour Kalman filter approach [3] with a constant veloc-
ity model. The measurement noise covariance R is esti-
mated by propagating a nominal image plane uncertainty
Λ such that the measurement uncertainty in the world co-
ordinate system is given by [4] i.e. R (xw, yw, zw) =

J (xc, yc)ΛJ (xc, yc)
T where J is the Jacobian matrix

found by taking the derivatives of the two mapping func-
tions between the image and world co-ordinate systems.
The measurement uncertainty field is shown in Figure 1 for
camera 6; this estimate of uncertainty allows formal meth-
ods to be used to associate observations originating from the
same measurement, as well as providing mechanisms for
fusing observations into a single estimated measurement.
For each object the measurement location and associated
uncertainty is also dependent on the object dimensions; a
bias is incorporated in the estimate using a heuristic method
that includes the camera angle to the ground plane, object
category and the measured object size.

In the association step a validation gate [3] is applied
to limit the potential matches between existing tracks and
observations. Matched observations are combined to find
the fused estimate of the location and uncertainty of the ob-
ject, this is achieved using covariance accumulation and co-
variance intersection. Covariance accumulation estimates
the fused uncertainty Rfused for N matched observations

as Rfused =
(

R
−1

1
+ . . . + R

−1

N

)−1

. The covariance in-

tersection method is conceptually similar to the accumula-
tion except that the observation uncertainty covariances are
weighted in the summation:
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i/
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i ). R

c
i is

the measurement uncertainty of the i’th associated observa-
tion (made by camera c); Covariance intersection therefore
weights in favour of the sensors that have more certain mea-
surements. The resulting fused observations are shown in
Figure 1; the covariance accumulation method results in a
more localised estimate of the fused measurement than the
covariance intersection approach. Unassociated measure-
ments are fused into new tracks, using a validation gate be-
tween observations to constrain the association and fusion
steps. The track category is estimated as a weighted aver-
age over the fused observations; with each class probability
modelled using a supervised 2-D Gaussian Mixture Model,
representing object width and height in world co-ordinates.

3. Scene Understanding
The scene understanding module is responsible for the
recognition of video events in the scene observed through
video sequences. This module performs a high-level in-
terpretation of the scene by detecting video events occur-
ring in it. The method to detect video events uses cogni-
tive vision techniques based on spatio-temporal reasoning,
a priori knowledge of the observed environment and a set of
predefined event models. A Video Event Recognition mod-
ule takes the tracked mobile objects from the previously de-
scribed modules as input, and outputs the recognised events.

The a priori knowledge is the knowledge about the ob-
served empty scene. This includes the camera information,
the vehicle models, the expected moving objects and the
empty scene model (also called the static environment ob-
served by the cameras) containing the contextual objects
(e.g. equipment, zones of interest, walls, doors). Contextual
objects are characterised by their 3D geometry (to provide
an approximative shape) and by their semantics (to describe
how they interact with mobile objects like persons or vehi-
cles). The a priori knowledge also includes the set of event
models defined by the domain experts using a video event
description language described in [7].

3.1. Video Event Representation
The video event representation corresponds to the speci-
fication of all the knowledge used by the system to detect
video events occurring in the scene. To allow experts in
the aircraft activity monitoring to easily define and modify
the video event models, the description of the knowledge
is declarative and intuitive (in natural terms). Thus, the



Figure 1: (Left) Tracking results for 3 cameras for frame 9126 of sequence 21. (Middle) shows data fusion results on the ground-plane
for the sequence (9600 frames) with the vehicle track shown in white. (Top-right) the fused observation (in black) for the vehicle (frame
9126) using the covariance accumulation method, (Middle-right) shows the result for covariance intersection. (Bottom-right) shows the
sensory uncertainty field measured for camera 6.

video event recognition uses the knowledge represented by
experts through event models. The proposed model of a
video event E is composed of five parts:

• a set of Physical Object variables corresponding to the
physical objects involved in E : any contextual object
including static object (equipment, zone of interest)
and mobile object (person, vehicle, aircraft...). The
vehicle type can be of different subtypes to represent
different vehicles types (GPU, Loader, Tanker etc.)

• a set of temporal variables corresponding to the com-
ponents (sub-events) of E

• a set of forbidden variables corresponding to the com-
ponents that are not allowed to occur during E

• a set of constraints (symbolic, logical, spatial and tem-
poral constraints including Allen’s interval algebra op-
erators [2]) involving these variables

• a set of decisions corresponding to the tasks predefined
by experts that need to be executed when E is detected
(e.g. activating an alarm or displaying a message)

There are four types of video events: primitive state,
composite state, primitive event and composite event. A

Figure 2: The model of the composite state “Worker Arrived”
(event 25) : the Transporter vehicle is stopped (c1) in its area (z2)
and a worker stays inside (c2) the container zone (z1) waiting for
container to be unloaded and to be attached to the Transporter.

state describes a situation characterising one or several
physical objects defined at time t or a stable situation de-
fined over a time interval. A primitive state (e.g. a per-
son is inside a zone) corresponds to a vision property di-
rectly computed by the vision module. A composite state,
as shown in Figure 2, corresponds to a combination of prim-
itive states. An event is an activity containing at least a
change of state values between two consecutive times (e.g.
a vehicle leaves a zone of interest : it is inside the zone and
then it is outside). A primitive event, as shown in Figure 3,
is a change of primitive state values and a composite event
is a combination of states and/or events.



Figure 3: The model of the primitive event “Enters Zone” : a
vehicle enters a zone.

3.2. Video Event Recognition
The video event recognition algorithm recognises which
events are occurring in a stream of mobile objects tracked
by the vision module. The algorithm to recognise a primi-
tive state consists of two operations in a loop: (1) selection
of a set of physical objects; then (2) verification of the cor-
responding atemporal constraints until all combinations of
physical objects have been tested. Once a set of physical ob-
jects satisfies all atemporal constraints, the primitive state is
said to be recognised. In order to facilitate primitive event
recognition, event templates are generated for each primi-
tive event, the last component of which corresponds to this
recognised primitive state. The event template contains the
list of physical objects involved in the primitive state. These
physical objects partially instantiate the event template.

To recognise a primitive event, given the event template
partially instantiated, the recognition algorithm selects (if
needed) a set of physical objects matching the remaining
physical object variables of the event model. It then looks
back in the past for any previously recognised primitive
state that matches the first component of the event model.
If these two recognised components verify the event model
constraints, the primitive event is said to be recognised. In
order to facilitate composite event recognition, after each
primitive event recognition, event templates are generated
for all composite events, the last component of which cor-
responds to this recognised primitive event.

The recognition of composite states and events usually
requires a search in a large space composed of all the possi-
ble combinations of components and objects. To avoid this
combinatorial explosion, all composite states and events are
simplified into states and events composed of at most 2
components through a stage of compilation in a preprocess-
ing phase. Then the recognition of composite states and
events is performed in a similar way to the recognition of
primitive events. The video event recognition algorithm is
based on the method of Vu et al [15].

3.3. Video Event Recognition for Apron Mon-
itoring

In the Video Event Recognition module, a priori knowledge
corresponds to apron zones of interest (access zones, stop-
ping zones), aircraft and vehicle (e.g. GPU, Loader, Tanker

Figure 4: Two dynamic zones (in blue) linked with the
Loader and the Transporter vehicles involved in the event
“Worker Manipulating Container” (event 26) detected.

and Transporter) models. Even if the handling operations
on the apron are codified and controlled, some problems
may occur while trying to build an accurate context of the
scene. For example, access zones to aircraft can be at differ-
ent positions according to the aircraft type. In some cases,
we need to detect a person getting out of a parked vehicle
which does not always stop exactly at the same place. To
solve these problems, dynamic properties have been added
to the a priori knowledge, by defining dynamic zones in the
local coordinate system of vehicles. In order to effectively
use dynamic context, accurate information is needed from
the tracking modules for the orientation when a vehicle is
parked. A transformation matrix is computed from local to
global scene coordinate system and then dynamic zones are
added to the context. Figure 4 illustrates the use of dynamic
context. This notion of dynamic context allows more com-
plex scenarios to be defined in which mobile objects can
directly interact with each other.

3.4. Predefined Video Events
At the moment, we have defined a set of 21 basic video
events (with one person and one vehicle) including 10 prim-
itive states (e.g. a person is located inside a zone), 5 com-
posite states (e.g. a vehicle is stopped inside a zone) and 6
primitive events (e.g. a vehicle changes zone). These basic
video events are used in the definition of video events repre-
senting the handling operations. We have worked on video
events involving (1) the GPU (Ground Power Unit) vehicle
which operates in the aircraft arrival preparation operation,
(2) the Tanker vehicle which operates in the refuelling oper-



Figure 5: The Unloading operation involves 8 physical objects (1
person, 3 vehicles and 4 zones of interest). It is composed of 3
composite components which are recognised when the Loader ve-
hicle arrives (event 20 is recognised when events 17, 18, 19 have
been recognised), when the Transporter arrives (event 23 is recog-
nised when events 21, 22 have been recognised), and the worker
is manipulating an unloaded container (event 26) to attach it to
the Transporter. There are 2 constraints on the vehicle subtypes, 4
constraints on the zones of interest and 2 temporal constraints.

ation and (3) the Loader and Transporter vehicles which are
involved in the baggages loading/unloading operations. To
recognise these operations we have defined 28 composite
video events including 8 video events for the aircraft arrival
preparation operation, 8 video events for the refuelling op-
eration, and 12 video events for the unloading operation.
The aircraft arrival preparation operation (event 8) involves
the GPU, its driver and 4 zones of interest. The system
recognises that the GPU vehicle arrives in the ERA Zone
(event 1), respecting the speed limit (event 2) and then it en-
ters (event 3) and stops (event 4) in the “GPU Access Area”
and then the driver gets out from the vehicle (event 5) and
deposits the chocks and stud at the location where the plane
will stop (events 6 and 7).
The refuelling operation involves the Tanker which arrives
in ERA zone (event 9), respecting the speed limit (event 10)
and then enters (event 11) and stops (event 12) in the “Re-
fuelling Area”. This sequence corresponds to the Tanker
arrival (event 13). Then the driver gets out from the Tanker
and gets inside the Tanker platform zone (event 14), acti-
vates the Tanker platform (event 15), branches the fuel pipe
(event 16) and refuels the aircraft.

The operation of baggage unloading is more complex.
This operation involves both a Loader and a Transporter
vehicle, the conductor of the Loader, and a person work-
ing in the area. This operation is composed of succes-
sives steps. First the Loader vehicle arrives in the ERA
zone (event 17) and enters in its restricted area (event 18),
then it stops in this zone (event 19) and automatically a dy-
namic zone is loaded in the back of the Loader stop po-
sition (“Loader Arrival”, event 20), where the Transporter
will enter and stop. When the Transporter enters (event

21) and stops (event 22) in this zone (“Transporter Arrival”,
event 23), another dynamic zone is automatically added to
the context. Then the back of the Loader is elevated (event
24) and receives the baggage containers which are unloaded
from the aircraft by the Loader conductor (event 25) one
by one. Then the conductor unloads these containers into
the dynamic zone of the Transporter where a worker arrives
(event 26) and takes the containers (event 27) to attach them
to the Transporter. The Unloading operation (as shown in
Figure 5) is detected when the events 17, 18, 19, 20, 21, 22,
23, 26 and 27 have been recognised by the system.

4. Results
4.1. Scene Tracking
The Scene Tracking evaluation accesses the performance of
the three core components (motion detection, object track-
ing and data fusion) on representative test data. More de-
tail on the Scene Tracking evaluation work is given in [1]
and [5]. To evaluate the performance of the colour mean
and variance motion detector three apron datasets were cho-
sen. Dataset 1 (9148 frames) contains the presence of fog
whereas Datasets 2 and 3 (6023 frames) are acquired on a
sunny day. Fifteen reference frames were chosen from each
dataset for which ground truth motion images were man-
ually generated. These segmented objects were compared
with the foreground objects detected by the motion detector
and false positive, false negative, true positive and true neg-
ative object pixels were counted and summed up over the
chosen frames. The following metrics defined by Ellis [8]
were used to evaluate the performance of the algorithm:

• Detection rate: TP/(TP + FN)

• Accuracy: (TN + TP )/N

• False negative rate: FN/(TP + FN)

• False positive rate: FP/(FP + TN)

where N is the total number of pixels, TP number of true
positives, TN number of true negatives, FN and FP number
of false negatives and positives respectively.

Figure 6 demonstrates the robustness of the motion de-
tector against illumination changes and weather conditions.
Objects in the scene such as the aircraft from Dataset 1
are partially detected due to the achromaticity of the scene.
Strong shadows are detected as part of the mobile objects,
and holes and fragmentation are presented in objects with
the same colour as background. The results of the perfor-
mance evaluation can be seen in Table 1. It is desirable to
have a detection rate and accuracy approaching 100% and a
false positive/negative rate approaching 0%. For Datasets 1
and 3, the motion detector provides a detection rate of 77%
and a false negative rate of 23%. In Dataset 2 the detection



Figure 6: Representative motion detection result from Dataset 1
showing (Top-Left) reference image, (Top-Right) ground truth and
(Bottom) detection result.

rate decreases to 60%. The achromatic nature of the scene
generates a considerable number of false negatives causing
the decrease in detection rate and the increase in false neg-
ative rate. The fog in Dataset 1 causes a high number of
foreground pixels to be misclassified as highlighted back-
ground pixels resulting in a decrease in accuracy (93%).

Representative results of the local feature tracking
method are presented in Figure 1. The local feature track-
ing method gives the best results so far although it suffers
from loss of object identity if the local features are lost dur-
ing merged or occluded states and cannot be replenished.
Objects must also be textured in order for good features to
be selected. The difference image clusters approach looks
promising, but suffers from object identity loss when clus-
ters merge and requires higher-level processing to alleviate
this. The colour tracking method performs quite badly due
to the achromatic nature of the scene.

The data fusion module performs adequately given iso-
lated targets correctly detected in the frame tracker (a rep-
resentative result is shown in Figure 1). The data fusion
module incorporates uncertainty information in the location
estimate of the observation and it is often an inaccurate lo-
cation estimate that results in the failure of the data associ-
ation step; a significant proportion of the localisation prob-
lems that occur in the data fusion module can be traced back

Dataset detect. rate accur. false pos. rate false neg. rate

1 0.7688 0.9351 0.0736 0.2310

2 0.6052 0.9737 0.0134 0.3946

3 0.7664 0.9779 0.0181 0.2334

Table 1: Performance results of the colour mean & variance mo-
tion detector in the apron datasets.

to motion detection errors i.e. shadow, reflections etc.

4.2. Scene Understanding
The Scene Understanding evaluation have been performed
on sequences for which the Scene Tracking module gives
good results. We have tested the video event recognition on
sequences involving the GPU (aircraft arrival preparation),
the Tanker (refuelling) and the Loader and the Transporter
vehicles (baggage unloading).

The video events 1 to 4 involving a GPU have been tested
on a dataset of 4 scenes corresponding to 2*4 video se-
quences (containing from 1899 to 3774 frames and includ-
ing one night sequence). These events are detected with a
perfect True Positive rate. The video events 4 to 8 involving
also a GPU have been tested on 2 scenes corresponding to
2 video sequences because only one camera is available to
observe these events. The video events involving the Tanker
have been tested on one scene (more than 15000 frames cor-
responding to about 30 minutes) showing the “Tanker Ar-
rival” (event 13) and the driver of the Tanker branching the
refuelling pipe to the aircraft (events 14, 15, 16).
The “Unloading Baggage operation” involving the Loader
(events 17 to 20, event 24 and event 25) and the Transporter
(events 21 to 23) have been tested on one scene where the
point of view allows to fully observe the vehicle movements
and interactions between vehicles and people. Eight cam-
eras observe the same scene with different fields of view.
The video event recognition module has been tested on the
two best points of view from where the GPU can be ob-

Vehicle type Sequence TP FP FN
GPU
Events 1 to 4 4 scenes * 2 cam. 32 0 0
Events 4 to 8 2 scenes * 1 cam. 8 0 0
Tanker
Events 9 to 13 2 scenes * 1 cam. 10 0 0
Events 14 to 16 1 scene * 1 cam. 3 0 0
Loader-Transporter
Events 17 to 28 1 scenes * 1 cam. 12 0 0

Table 2: Performance results of the Scene Understanding module
for apron monitoring. TP = “Real world event is recognised”, FN
= “Real world event is not recognised”, FP = “Spurious event is
recognised”.



served and on the only point of view from where the Tanker
can be observed, and from the best point of view from where
the Loader and the Transporter can be observed.

Currently, this evaluation is mainly qualitative and per-
formed manually, the results of the evaluation are shown in
Table 2. The goal is to give an idea of the performance of the
Scene Understanding and to anticipate potential problems
in event detection for apron monitoring. All video events
are recognised correctly (49 TPs) without false alarms (0
FPs) and misdetection (0 FNs). These results are very en-
couraging but one has to keep in mind that situations where
the vision module misdetects or overdetects mobile objects
were not addressed.

5. Discussion and Future Work
The results are encouraging for both the Scene Tracking and
Understanding modules. The performance of multi-view
object tracking provides adequate results; however, track-
ing is sensitive to significant dynamic and static object oc-
clusion within the scene. Future work will address shadow
supression, and explicit occlusion analysis.

The Scene Understanding results show that the proposed
approach is adapted to apron monitoring and can be ap-
plied to complex activity recognition. The main difficulty
for apron monitoring is to model operations using a priori
expert knowledge (49 video events already defined) and to
recognise them all in parallel. The recognition of complex
operations (e.g. “baggage unloading”) involving people and
vehicles gives good results and encourages us to continue
with more complex operations with more interactions be-
tween people and vehicles. Another issue is to incorporate
uncertainty to enable recognition of events even when the
Scene Tracking module gives unreliable output.
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