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Abstract

This paper presents work in progress on automatic scene
interpretation of airport aprons based on a multi-camera
video surveillance system. The Scene Tracking and Scene
Understanding modules are described and preliminary re-
sults and evaluation are presented.

1 Introduction

This paper introduces work in progress on the EU project
AVITRACK [5]. The main aim of this project is to auto-
mate the supervision of commercial aircraft servicing oper-
ations on the ground at airports (in bounded areas known
as aprons). Figure 1 shows a birds-eye view simulating the
expected positions of various vehicles that are integral to
the task of servicing the aircraft. A combination of visual
surveillance algorithms in a multi-camera environment are
applied to track semantically meaningful objects and recog-
nise activities predefined by a set of servicing operations.
The architecture employed is a decentralised eight
camera tracking system with overlapping fields of view
(FOV) [3]; the cameras are marked by blue triangles in Fig-
ure 1 with each having a stationary FOV. Each camera agent
performs per frame detection and tracking of scene objects,
and the output data is transmitted to a central server where
data association and fused object tracking is performed.
This tracking result is subsequently fed to a video event
recognition module where spatial and temporal events relat-
ing to the servicing of the aircraft are detected and analysed.

1.1 Scene Tracking and Understanding

The application of signal processing theory to detect and
track objects in dynamic scenes is a well researched prob-
lem; the application of such methods to robust apron ac-
tivity analysis presents new challenges that must be over-
come. For example, the system must be capable of moni-
toring and recognizing the activities and interaction of nu-
merous vehicles and personnel in a dynamic environment
over an extended period of time. Another constraint is that
it must operate in real-time (at 12.5 FPS with resolution
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Figure 1: The distribution of equipment around a parked
A320 aircraft in apron echo-40 at Toulouse Airport.

720x 576). The tracking of moving objects on the apron has
previously been performed using a top-down model based
approach [15] although such methods are generally com-
putationally expensive and are less generic than bottom-
up approaches. Video event recognition algorithms analyse
tracking results both spatially and temporally to automati-
cally recognise the activities occuring in the scene; for air-
craft servicing analysis these activities occur around parked
aircraft in apron areas. Recent work by Xiang et al [14]
applied a hierarchical dynamic Bayesian network to model
and hence recognise scene events; however, such models
are incapable of recognising simultaneous complex scene
activities in real-time over extended time periods.

Section 2 details the scene tracking module comprising
per-camera motion detection, bottom-up feature-based per-
camera object tracking and finally fused object tracking us-
ing the combined object tracking results from the camera
agents. Section 3 describes the video event recognition
module including both the representation of video events
and the video event recognition algorithm itself applied to
apron monitoring.



2 Scene Tracking

The scene tracking module is responsible for the detection
and tracking of moving objects from individual cameras;
the tracked object locations are subsequently transformed
into the 3D world co-ordinates. The data fusion algorithm
determines single measurements in the world co-ordinates
for each object from the multiple camera observations.

2.1 Motion Detection

The output of a motion detector is generally used to find
foreground regions (e.g. connected components), which can
then be used by the tracking algorithms to track objects of
interest across multiple frames.The airport apron, being an
outdoor environment, provides a number of challenges to
motion detection. It must handle a wide range of environ-
mental conditions, illumination changes and weather. The
illumination changes can be long-term, such as the diurnal
cycle, or short-term, caused by cloud movements, reflec-
tions, etc.

16 motion detection algorithms were implemented and
qualitatively evaluated for the project. The performance
criteria for the evaluation were ‘Susceptibility to Noise’,
‘Robustness to IHlumination Changes’, ‘Detection Sensitiv-
ity’ and ‘Speed’ with all algorithms implemented in C++
and evaluated on dual 2.8Ghz pentium workstations with
2GB RAM running Suse Linux 9.1. Five algorithms that
were found to perform adequately on a range of test data
and the evaluation is presented here. The specific test se-
quence evaluated was ‘Airport03062004’, a frame of which
is shown in Figure 2. The five algorithms evaluated were:

Linear prediction [8]
Mixture of Gaussians [9]
Colour and edge fusion [6]
Kernel density estimation [7]
Colour mean and variance
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All these methods had acceptable susceptibility to noise,
although detection noise was encountered on thin object
components (e.g. the aircraft wing edge) perhaps due
to aliasing or JPEG artifacts. All the algorithms were
reasonably robust to illumination changes, the algorithms
were modified with a shadow/highlight detection compo-
nent based on the work of Horprasert et al [10]. The colour
and edge fusion technique was found to be the most sensi-
tive for detection in regions with low contrast; linear pre-
diction was also found to have a good detection sensitivity,
often finding moving object regions undetected by the other
techniques. The most efficient algorithms with regards to
processing requirements were the colour and mean vari-
ance and the Gaussian mixture model; it was found after

Figure 2: (Clockwise from top-left) Observed video frame
and the detection results for the motion detection algorithms
1-5 (see enumerated list) for frame 1500 taken from the
sequence ‘Airport03062004’, Camera 3.

this performance evaluation that the colour and edge fusion
and kernel density estimation algorithms could be made sig-
nificantly faster by simplifying some of the routines and as-
sumptions made. A representative set of results from the
motion detection algorithms is shown in Figure 2; interest-
ingly, the performance of all the algorithms appears to be
of a similar level with relatively minor response differences
between them.

Figure 2 demonstrates the common failing of the detec-
tion algorithms tested; with false negatives detected due to
the similar appearance (at pixel level) of the aircraft body
and the background and false positives detected in shad-
owed background regions. The false negatives detected
generally have negligible effect on the estimated bound-
ing box dimensions, since the edges of moving object re-
gions are mostly detected. The false positives (caused
mainly by strong shadow in this example) present a much
greater challenge since existing shadow/highlight detec-
tion methods generally rely on colour information to find
such regions. The AVITRACK datasets contain predom-
inantly achromatic regions (both moving and stationary);
this results in failure for existing shadow/highlight detec-
tion methods due to unreliable colour information in such
regions.



2.2 Object Tracking

Real-time object tracking can be described as a correspon-
dence problem, and involves finding which object in an
image frame relates to which object in the next frame of
a video stream. Normally, the time interval between two
successive frames is small, meaning that the changes vis-
ible from one frame to the other should be limited. This
allows the use of temporal constraints and/or object fea-
tures that can help to simplify the correspondence problem.
Tracking algorithms have to deal with problems such as mo-
tion detection errors and the interactions between objects as
viewed by a camera; they can appear to merge together, oc-
clude each other, fragment, undergo rigid or non-rigid mo-
tion, etc. Three approaches to bottom-up tracking of de-
tected objects have been applied in the AVITRACK project.
These are based on the tracking of local features, colour in-
formation and difference image clusters.

The Kanade-Lucas-Tomasi (KLT) feature tracker (de-
scribed in [4]) combines the Lucas-Kanade method for
matching local features in adjacent frames with the Shi-
Tomasi feature selection criterion. The colour based tracker
uses an object’s histogram as the global colour model for
tracking, and is an adaptation of the CamShift algorithm
[12] (which in turn is an extension of the Mean Shift algo-
rithm). The difference image clusters algorithm is based on
the work of Pece [13], and uses a probabilistic generative
model for detecting and tracking objects.

The KLT algorithm considers features to be independent
entities and tracks each of them individually. Therefore, it
must be incorporated into a higher-level tracking process
that is able to group features into objects, maintain associa-
tions between the features and the objects, and use the indi-
vidual tracking results of the features to track objects from
one frame to the next, taking into account interactions be-
tween objects, such as merging situations, object splitting,
stationary objects, etc. For each object O being tracked, a
set S of features is maintained. For a list of known objects
{O;} at time ¢t — 1, the tracking process for time ¢ can be
summarised as:

1. Generate object predictions {P;} for time ¢ from the
list of known objects {O;} at¢ — 1.

2. Run the KLT algorithm to track the features of {P;}
individually.

3. Given a list of measurement objects { M } detected by
the motion detector at time ¢, match predictions { P, }
to the measurement objects.

4. Any remaining unmatched predictions in {P;} are set
as missing observations. Any remaining unmatched
measurement objects in {M;} are considered as po-
tential new objects.

5. Update the state of those predictions in { P; } that were
matched to measurement objects and replace lost fea-
tures. The final result is a list of tracked objects {O; }
attime ¢.

6. Lett =1t + 1and repeat step 1.

The predicted objects are obtained from the set of
tracked objects at frame t — 1 i.e. {P;}, = {O;},_,. The
measurement objects {1/} are connected regions of fore-
ground pixels detected by the motion detector at time t. A
match function is defined which returns the total number of
features W of a prediction P; that reside in the foreground
region of a measurement MM i.e.

f(Piij):HW:WESPNWGMJH (1)

In the ideal case, given a prediction P;, (1) should return
a non-zero value for only one of the measurements that
matches P;. But objects, as viewed by a camera, can in-
teract with each other in complex ways - for example, ob-
jects can appear to merge, an object may split into parts, be
occluded, etc. A rule-based approach is adopted to handle
such cases. The first rule handles ideal matches, i.e. one-to-
one matches between predictions and measurements:

f(P“M]) >0 and (2)
f(Pr, Mj) =0, f(P,M)=0 Vk#i,l#]

The second rule handles the case when an object at time
t — 1 splits into several objects when seen at time ¢. This
occurs when several measurement regions match with a sin-
gle prediction P; - in other words, the set of meaurements
is partitioned into two subsets: the subset M1 of measure-
ments that match only with P; and the subset of those that
do not match with P;:

F(P,M;) >0 M;eM1CM, |M1|>1 and
f(Pe,M;) =0, VM, € M1,k #i and ©)
F(P, M) =0, VM, ¢ M1

The prediction is then split into new objects, one for each
of the matched measurements in M 1. The features of the
original prediction P; are then assigned to the correspond-
ing new object depending on whether they reside within its
measurement region or not. In this way, features are main-
tained throughout an object splitting event. The object with
the highest match score is assigned the object ID of the orig-
inal prediction.

The third matching rule handles merging objects. This
occurs when more than one prediction matches with a mea-
surement region:

f(P,M;) >0 P,ePLCP, |P1>1 and
f(Pi,My) =0, VP, € P1,k#j and ()
f(P,M;) =0, VP, ¢ P1



In this case the state of the predictions (such as position
and bounding box) cannot be obtained by a straightforward
update from the measurement’s state, since only one com-
bined (merged) measurement is available from the motion
detector. Instead, the known local states of the tracked fea-
tures are used to update the global states of the predictions.
The prediction’s new centre is estimated by taking the av-
erage relative motion of its local features from the previous
frame at time ¢ — 1 to the current one. This is based on
the assumption that the average relative motion of the fea-
tures is approximately equal to the object’s global motion -
this may not always be true for non-rigid objects undergo-
ing large motion, and may also be affected by the aperture
problem due to the small size of the feature windows. The
sizes of the bounding boxes of the predictions are also up-
dated in order to maximise the coverage of the measurement
region by the combined predictions’ bounding boxes. This
handles cases where objects are moving towards the camera
while in a merged state and hence their sizes increase. If not
done, the result is parts of the measurement region that are
not explained by any of the predictions.

When objects become stationary, they are integrated into
the motion detector’s background model. A multi-layered
model is used to handle overlapping stationary objects and
allow re-activation once they start moving again. The crite-
ria used for checking whether an object has become station-
ary or not was relaxed so that if only a small localised part of
the object remains in motion, the whole object is integrated
into the background and a new object is created. For ex-
ample, a person emerging from a vehicle just as it becomes
stationary. The same approach is used for the re-activation
criteria. The set of rules used to match predictions to mea-
surements was extended to include cases when stationary
objects and moving objects interact with each other.

Tracking results from the local feature algorithm are
shown in Figure 3. Qualitative evaluation has been per-
formed, and the local feature tracking method was found to
give the best results so far. It can suffer from loss of object
identity if the local features are lost during merged or oc-
cluded states and cannot be replenished fast enough. It also
requires objects to be textured in order for good features
to be selected. The results of the difference image clusters
method look promising, but it suffers from tracking failures
when clusters merge together and it requires a higher-level
process to preserve identities. The colour tracking method
performs quite badly because of the achromatic nature of
most of the objects present in the AVITRACK datasets.

2.3 Data Fusion

The main advantages of using a multi-camera tracking sys-
tem are:

e Occlusion Minimisation - If a target becomes occluded

Figure 3: The results obtained from the local feature based
tracking algorithm.

in a camera view, there is a higher probability of ob-
serving the target unoccluded with a different camera
viewpoint.

e A larger Visible Area - This consists of the combined
area (i.e. network field-of-view) observed by all the
cameras from their respective viewpoints. This results
in targets being potentially observed for a longer pe-
riod of time over a wider area.

e Improved 3D localisation - A more accurate and reli-
able 3D position can be computed for targets observed
by multiple cameras.

The data fusion module combines the tracking data
seen by each of the individual cameras to maximise the
useful information content of the scene being observed
and hence achieving the above-mentioned advantages over
single-camera systems. Data fusion also helps to minimise
the volume of data generated by the many cameras and
helps to reduce the bandwidth needed to send information
to later processing modules. Spatial registration of the cam-
eras is performed using per camera calibration and the cam-
era streams are synchronised temporally across the network
by the central server to prevent temporal drift between the
image frames acquired by each camera, which will affect
the fusion accuracy.

The current method for data fusion is based on a near-
est neighbour Kalman filter approach [3]. A measurement
uncertainty for each camera is used in the fusion of the
data (approximated as 1/d?, where d; is the distance from
the observing camera 7); the Kalman filter assumes a con-
stant velocity model with a state vector X, = [z y i 7]".
This work is in the early stages of development; future
work is envisaged to evaluate the covariance based measure-
ment uncertainty method adopted by Ellis et al [11] and the
JPDAF / multi-hypothesis techniques described in [3].



3 Scene Understanding

The goal of video event recognition is to perform a high
level interpretation of the scene observed through video se-
quences by detecting video events occurring in the scene.
The approach to detect video events uses cognitive vision
techniques based on spatio-temporal reasoning, a priori
knowledge of the observed environment and a set of pre-
defined event models. The Video Event Recognition mod-
ule takes as input the tracked mobile objects from a Scene
Tracking module and generates as output the events which
have been recognised. The a priori knowledge of the en-
vironment corresponds to the empty scene model. It con-
tains the list of all the contextual objects (e.g. equipments,
zones of interest, airport walls, jet-bridge) in the scene. The
contextual objects are characterised by their 3D geometry
(approximate shape) and their semantics (e.g. how they in-
teract with operating people).

The set of event models is defined by the experts of
the domain (e.g. managers of handling companies) using
a video event description language described in [1].

3.1 Video Event Representation

The aim of video event representation is to make explicit all
the knowledge necessary for the system to be able to detect
events occurring in the scene. The description of this knowI-
edge has to be declarative and intuitive (in natural terms),
so that the experts of the aircraft activity monitoring in this
case can easily define and modify it. Thus, the video event
recognition uses mainly the knowledge represented by ex-
perts through event models.

This representation of knowledge needs to be clear, rich,
intuitive and flexible. The proposed model of a video event
E is composed of five components:

e aset of Physical Object variables corresponding to the
physical objects involved in E (any contextual objects
including static objects (equipment, zones of interest)
and mobile objects (people, vehicles,...))

e a set of temporal variables corresponding to the com-
ponents (sub-events) of E

e aset of forbidden variables corresponding to the com-
ponents that are not allowed to occur during the detec-
tion of E

e aset of constraints (symbolic, logical, spatial and tem-
poral constraints including Allen’s interval algebra op-
erators) involving these variables

e aset of decisions corresponding to the tasks predefined
by experts that are needed to be executed when E has
been detected (e.g. to launch an alarm or to display a
message on a window)

There are four types of video events: primitive states,
composite states, primitive events and composite events.

A state describes a situation characterising one or sev-
eral physical objects defined at time t or a stable situation
defined over a time interval. A primitive state (e.g. a person
is inside a zone) corresponds to a vision property directly
computed by the Scene Tracking module. A composite state
corresponds to a combination of primitive states.

For example, Figure 4 describes the model of the com-
posite state “Vehicle_Stopped_Inside_Zone”. This state in-
volves two physical objects : a vehicle and a zone of in-
terest. Two components must be detected to recognise this
state : state c1, the vehicle v1 is stopped (named “Vehi-
cle_Stopped”) and state c2, the vehicle is located inside a
zone of interest z1 (named “Inside_Zone”). There is one
temporal constraint indicating that c2 occurs during c1.

CompositeState(\Vehicle_Stopped_Inside_Zone,
PhysicalObjects((v1 : Vehicle), (z1 : Zone))
Components{ (c1: PrimitiveState Inside_Zone(v1, z1))

(c2 : PrimitiveState Vehicle_Stopped(v1)))
Constraints{ (c2 during c1)))

Figure 4: The model of the composite state “Vehi-
cle_Stopped_Inside_Zone” is composed of two components
clandc2

An event is an activity containing at least a change of
state values between two consecutive times (e.g. a vehicle
enters a zone of interest : it is outside the zone and then
inside the zone). A primitive event (as shown in Figure 5)
is a change of primitive state values and a composite event
is a combination of states and/or events.

PrimitiveEvent{Changes_Zone,
PhysicalObjects((m1 : MobileObject), (z1: Zone), (z2 : Zone))
Components{(c1 : PrimitiveState Inside_Zone(m1, z1))
{c2 : PrimitiveState Inside_Zone(m1, z2)))
Constraints( (c1 meet c2)))

Figure 5: The model of the primitive event “Changes_Zone”
is composed of two components c1 and c2

3.2 Video Event Recognition

The video event recognition algorithm has to detect which
events are occuring in a stream of mobile objects tracked by
the Scene Tracking module.

The algorithm to recognise a primitive state consists in
a loop of two operations : (1) selection of a set of physi-
cal objects then (2) verification of the corresponding atem-
poral constraints until all combinations of physical objects
have been tested. Once a set of physical objects satisfies
all atemporal constraints, the primitive state is said to be
recognised. In order to facilitate primitive event recogni-
tion, event templates are generated for each primitive event
the last component of which corresponds to this recognised
primitive state. The event template contains the list of phys-



ical objects involved in the primitive state. These physical
objects partially instantiate the event template.

To recognise a primitive event given the event template
partially instantiated, the recognition algorithm consists in
selecting (if needed) a set of physical objects matching the
remaining physical object variables of the event model then
looking backward in the past if a previously recognised
primitive state matches the first component of the event
model. If these two recognised components verify the event
model constraints, the primitive event is said to be recog-
nised. In order to facilitate composite event recognition,
after each primitive event recognition, event templates are
generated for all composite events the last component of
which corresponds to this recognised primitive event.

The recognition of composed states and events usually
implies a search in a large space composed of all the pos-
sible combinations of components and physical objects. To
avoid this combinatorial explosion, all composed states and
events are decomposed into states and events composed at
the most of two components through a stage of compilation
in a preprocessing phase. Then the recognition of composed
states and events is performed similarly to the recognition
of primitive events. The video event recognition algorithm
is detailed in [2].

4 Video Event Recognition for Apron
Monitoring

The challenge for apron monitoring was to adapt this algo-
rithm (from earlier work on metro station monitoring) to a
new type of environment and new types of physical objects.
On the apron, there are not only people but also many vehi-
cles of different types which are involved in all the handling
operations. Thus the video event description language has
been extended with new types of physical objects and the
video event recognition module has been modified to adapt
it to this new application domain.

In this domain, video event recognition is used to per-
form a high level interpretation of activities around parked
aircrafts on an apron. The activities to recognise are mainly
the apron handling operations (e.g. “catering”, “refueling”,
“baggage loading™) processed by the handling companies.
The automatic recognition of handling operations can repre-
sent an efficient tool for the handling companies who works
on apron areas.

The automatic recognition of handling operations is also
a real challenge for cognitive vision research because it
addresses the recognition of complex activities involving
many physical objects of different types (people, aircrafts,
cars, trucks, jet bridges...) over a large space observed by a
camera network (i.e. eight cameras for one apron) over an
extended period of time (e.g. aircraft servicing operation is

approx. one hour).

Figure 6: Detection of the Stop of the G.P.U. Vehicle in its
area

4.1 Predefined video events

At present, a first set of 5 primitive states, 4 com-
posite states and 3 primitive events have been de-
fined, needed for the recognition of handling opera-
tions. There are 3 states: “Inside_Zone”, “Outside_
Zone”, “Stays_Inside_Zone” and 3 events: “Enters_Zone”,
“Leaves_Zone”, and “Changes_Zone” concerning the local-
isation of a mobile object relative to a zone of interest.

There are 6 specific states describing the dy-
namics of a vehicle:  “Vehicle_Stopped”, “Vehicle_
Stopped_Inside_Zone”, “Vehicle_Arrived_In_Zone”, “\ehi-
cle_In_Motion”, “Vehicle_Moves_At_Walking_Pace”, and
“Vehicle_Exceeds_Zone_Speed”.

For video event recognition, the initial focus is on han-
dling operations involving only one vehicle and/or a per-
son. The main test was performed for the “Aircraft Arrival
Preparation” event. This operation involves a vehicle (a
Ground Power Unit, named G.P.U.) and its driver (named
Handler) relative to four zones. The system has to recog-
nise that the G.P.U vehicle arrives and stops in the “G.P.U.
Access Area” and then the driver gets out from the vehicle
and deposits the chocks and the stud at the location where
the plane will stop (illustrated in Figure 6 and described in
Figure 7).

The following 4 composite states and 4 composite events
have been defined to model the G.P.U. operation:

e composite state “Gpu_Arrived_In_.ERA” (Event 1)

e composite event “Gpu_Enters_Gpu_Access_Area”
(Event 2)

e composite state “Gpu_Exceeds_ERA _Speed” (Event
3)

e composite state “Gpu_Stopped_In_Gpu_Access_Area”
(Event 4)



e composite state “Handler_Gets_Out_Gpu” (Event 5)

e composite event “Handler_Deposits_Chocks_Or_Stud”
(Event 6)

e composite event
“Handler_From_Gpu_Deposits_Chocks_Or_Stud”
(Event 7)

e composite event “Aircraft_Arrival Preparation”
(Event 8) : the full operation involving the G.P.U.

The operation “Aircraft Arrival Preparation” (as shown
in Figure 7) is recognised when the 5 video events involving
the G.P.U. vehicle have been recognised and the constraints
verified.

CompositeEvent (Aircraft_Arrival_Preparation,

PhysicalObjects( (p1 : Person), (v1 : Vehicle), (z1 : Zone),

(22 : Zone), (23 : Zone), (24 : Zone))

: CompositeState Gpu_Arrived_In_ERA(v1, 1))

: CompositeEvent Gpu_Enters_Gpu_Access_Area(v1, z2))

Components( [c1

(c2

(c3 : CompositeState Gpu_Stopped _In_Gpu_Access Area(v1, z2))
(

(c5

c4 : CompositeState Handler_Gets_Out_Gpuipl, v1, 22, 23))

c5 : CompositeEvent Handler_From_Gpu_Deposits_

Chocks_Or_Stud(p1, v1, 22, z3, z4)))
Constraints( (v1-=Type = "GPU")
(z1-=Name = "ERA")
(z2-=Name = "GPU_Access")
(z3->Name = "GPU_Door")
(z4-=Mame = "Arrival_Preparation”)
({c1 before c2)
(c2 before ¢3)
(c3 before c4)
(c4 before c5)
(c4 during ¢3)
(c5 during ¢3)))
Figure 7: The model of the composite event “Air-
craft_Arrival_Preparation” contains 6 physical objects, 5

components and 11 constraints

The video event corresponding to the “Refueling Opera-
tion” has also been modeled. The system has to recognise
that the Tanker arrives and stops in the “Refueling Area”
and then the driver gets out from the vehicle and refuels
the aircraft. The video event recognition module has been
tested on a first stage of the "Refueling Operation” corre-
sponding to the part when the Tanker is getting ready to
refuel the aircraft (as described in Figure 8).

To model the Tanker arrival, 3 composite states and 2
composite events are defined:

e composite state “Tanker_Arrived_In_ERA” (Event 9)

e composite event “Tanker_Enters_Refueling_Area”
(Event 10)

e composite state “Tanker_Exceeds_ERA _Speed”
(Event 11)

e composite state “Tanker_Stopped_In_Refueling_Area”
(Event 12)

e composite event “Tanker_Arrival” (Event 13) : the
arrival of the Tanker before performing the refueling
operation

CompositeEvent(Tarker_Arrival,

PhysicalObjects( (v1 : Vehicle), (z1: Zone), (22 : Zone))

Components( (c1: CompositeState Tanker_Arrived_In_ERA{v1, z1))

(c2 : CompositeEvent Tarker_Enters_Refuelling Area(vi1, z2))

[e3 : CompositeState Tanker_Stopped_In_Refuelling_Area(v1, 22}))
(v1->Type = "Tanker")

(z1-=Name = "ERA")
(z2-=Name = "Refuelling_Area")
(c1 before c2)

(c2 before ¢3)))

Figure 8: The model of the composite event
“Tanker_Arrival” contains 3 physical objects, 3 com-
ponents and 5 constraints

Constraints{

The “Tanker_Arrival” event (shown in Figure 8) is recog-
nised when the 3 events involving the Tanker vehicle have
been recognised and the constraints verified.

The plan is to start with basic operations and to pro-
gressively move to more complex situations involving more
people and vehicles.

4.2 Results

This section deals with the evaluation of the Scene Under-
standing module. This was first evaluated using sequences
for which the Scene Tracking module gives good results.

The video events involving a G.P.U. have been tested on
a dataset of 4 scenes corresponding to 8 video sequences
(containing from 1899 to 3774 frames and including one
night sequence) showing the “Aircraft Arrival Preparation”
on the same apron and one scene showing the “Tanker Ar-
rival”. Eight cameras observe the same scene with different
fields of view. The video event recognition module has been
tested on the two best points of view from where the G.P.U
can be observed and on the only point of view from where
the Tanker can be observed.

The evaluation is at present mainly qualitative and per-
formed manually with no ground truth. The aim is to get an
idea of the performance of the Scene Understanding mod-
ule and to anticipate potential problems in event detection
for apron monitoring. All video events are recognised cor-
rectly (45 TPs) with very few false alarms (3 FPs) and no
miss detection (0 FNs). Theses results are very encourag-
ing but one has to keep in mind that situations where the
Scene Tracking module miss detects or over detects mobile
objects are not addressed.

Events 5, 6, 7 and 8 are only detectable on one of the
two tested cameras because the zone of interest is just ob-
servable by one camera. The FPs of event 5 are due to a too
vague modeling of event 5. This event is detected when the
handler (driver of the G.P.U. vehicle) exits from the vehi-
cle in a predefined zone near the door of the vehicle (called
“Gpu_Door”). This event is detected incorrectly when a per-
son walks in this zone and is analysed by the system as ex-
iting the G.P.U vehicle.



Event Sequences TP | FP | EN
G.PU.

Event 1 4scenes*2cam. | 8 0 0
Event2 | 4scenes*2cam. | 8 0 0
Event 3 4 scenes. *2cam. | 8 0 0
Event4 | 4scenes. *2cam. | 8 0 0
Event 5 2scenes*1cam. | 2 3 0
Event6 | 2scenes*1lcam. | 2 0 0
Event 7 2scenes*1cam. | 2 0 0
Event8 | 2scenes > 1cam 2 0 0
Tanker

Event 9 1 scene * 1 cam. 1 0 0
Event 10 | 1 scene * 1 cam. 1 0 0
Event 11 | 1scene * 1 cam. 1 0 0
Event 12 | 1scene * 1 cam. 1 0 0
Event 13 | 1scene * 1 cam. 1 0 0

Table 1: TP = “Event exists in the real world and is recog-
nised”, FP = “Event does not exist in the real world and is
recognised (over detection)”, FN = “Event exists in the real
world and is not recognised (miss detection)”

4.3 Discussion and Future Work

The preliminary results are encouraging for both the Scene
Tracking and Understanding modules. The performance of
single-view object tracking provides adequate results; how-
ever, tracking is sensitive to significant dynamic and static
object occlusion within the scene. Future work will address
data fusion (single- and multi-view), effective shadow de-
tection and supression, and explicit occlusion analysis. The
Scene Understanding results prove that the proposed ap-
proach can be adapted to apron monitoring. The main diffi-
culty in using the video event recognition module for apron
monitoring is first to model the handling operations using
expert knowledge (25 video events) and second to add new
possibilities in the video event description language, such
as declaring new types of physical objects. Future work
will consider the recognition of more complex operations
involving more people and vehicles. Currently, video event
recognition has only been evaluated using inputs from the
Scene Tracking module where all physical objects are com-
pletely tracked. The next step is to work on uncertainty to
enable recognition of events even when the Scene Tracking
module loses physical objects or gives unreliable output.
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