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Abstract. This paper presents a distributed multi-camera visual surveillance sys-
tem for automatic scene interpretation of airport aprons. The system comprises
camera based tracking and classification of objects followed by sensor fusion
and high level interpretation based on cognitive spatio-temporal reasoning. The
performance of the system is demonstrated for a range of test scenarios.

1 Introduction

This paper describes work undertaken on the EU project AVITRACK1. The main aim of
this project is to automate the supervision of commercial aircraft servicing operations
on the ground at airports (in bounded areas known as aprons, shown in Figure 1). A
combination of visual surveillance and video event recognition algorithms are applied
in a multi-camera end-to-end system providing real-time recognition of the activities
and interactions of numerous vehicles and personnel in a dynamic environment.

In visual surveillance the tracking of objects is commonly achieved using top-
down(e.g. [13]) or bottom-up methods. Bottom-up tracking generally refers to a process
comprising two sub-processes motion detection and object tracking; bottom-up tracking
is generally computationally efficient compared to the top-down method.

Tracking algorithms have to deal with motion detection errors and complex object
interactions. Apron analysis presents further challenges due to the size of the vehicles
tracked (e.g. the aircraft size is 34 × 38 × 12 metres), therefore prolonged occlusions
occur frequently throughout congested apron operations. Many of the objects are also of
near-identical appearance, consequently appearance-based matching performs poorly in
such a scenario.

Video event recognition algorithms analyse tracking results spatially and temporally
to automatically recognise the high-level activities occurring in the scene; for aircraft
servicing analysis such activities occur simultaneously over extended time periods in
apron areas. Recent work by Xiang et al [16] applied a hierarchical dynamic Bayesian
network to recognise scene events; however, such models are incapable of recognising
simultaneous complex scene activities in real-time over extended time periods. The
approach adopted for AVITRACK [14] addresses these problems using cognitive vision
techniques based on spatio-temporal reasoning, a priori knowledge of the observed
scene and a set of predefined video events corresponding to aircraft service operations.

Section 2 gives an overview of the deployed system. Section 3 details the Scene
Tracking module comprising per-camera motion detection, bottom-up feature-based

1 This work is supported by the EU, grant AVITRACK (AST3-CT-3002-502818).



Fig. 1. The distribution of equipment around a parked aircraft in apron E40 at Toulouse Airport.

object tracking and finally fused object tracking using the combined object tracking
results from the camera agents. Section 4 describes the Scene Understanding module
including both the representation of video events and the video event recognition algo-
rithm itself applied to apron monitoring. Section 5 presents the results, while Section 6
contains the discussion and lists future work.

2 System Overview

The system deployed is a decentralised multi-camera environment with overlapping
fields of view (FOV); currently, eight cameras are used to monitor the scene. This sys-
tem is suitable for monitoring airport aprons since there are several mounting points for
cameras on the airport building and overlapping fields of view are required to ensure
consistent object labelling and enhanced occlusion reasoning within the scene. The ma-
jority of the camera mounting points observe the right hand side of the fuselage since
this is where baggage loading and unloading operations take place. Spatial registra-
tion of the cameras is performed using per camera coplanar calibration and the camera
streams are synchronised temporally across the network by the central video server.

The architecture of the system is shown in Figure 2 comprising two main modules
- Scene Tracking and Scene Understanding. In the Scene Tracking module a Frame
Tracker module runs independently for each of the cameras, performing motion detec-
tion, frame to frame tracking and object categorisation. A central Data Fusion module
receives the single-camera observations from the Frame Tracker modules, fuses the ob-
servations and generates 3D results to maximise the useful information content of the
scene being observed. In the Scene Understanding module a Long-Term Tracker uses a
temporal window to provide trajectory information required for event recognition and
behaviour analysis. The Event and Scenario Recognition module uses the tracking re-
sults to perform event detection and high level scene interpretation. An offline Scene
Modelling module is used to generate geometric and semantic scene and object models,
as well as defining video event models.

The system must be capable of monitoring and recognising the activities and in-
teraction of numerous vehicles and personnel in a dynamic environment over extended



Fig. 2. The system architecture deployed for the AVITRACK project.

periods of time, operating in real-time (12.5 FPS, 720×576 resolution) on colour video
streams. The relatively low quantity of the distributed modules and the physical dis-
tances between them allows the network to be operated via a standard 1Gb ethernet.

The communications framework selected for the distributed modules is via a ORO-
COS::SmartSoft CORBA [11] implementation. The modules communicate using the
XML standard; although inefficient for communication over a network, the XML stan-
dard allows the system to be efficiently integrated as a series of black box modules with
a defined interface between them. The partners in the project are able to develop the
modules independently while adhering to the XML interface standard; this standardis-
ation allowed the modules to be successfully integrated in the end-to-end system with
few problems. The added advantage of the XML is that the human operators can manu-
ally inspect the XML to explain some system failures that may occur during integration.

3 Scene Tracking

The Scene Tracking module is responsible for the per-camera detection and tracking
of moving objects, transforming the image positions into 3D world co-ordinates, and
fusing the multiple camera observations of each object into single world measurements.

3.1 Frame-to-Frame Tracking

For detecting connected regions of foreground pixels, 16 motion detection algorithms
were implemented for AVITRACK and evaluated quantitatively on various apron se-
quences under different environmental conditions (sunny conditions, fog, etc.). The
metrics adopted, the evaluation process and the results obtained are described in more
detail in [1]. Taking into account processing efficiency as well as sensitivity, the colour
mean and variance method was selected [15]. This motion detector has a background
model represented by a pixel-wise Gaussian distribution N(µ, σ2) over the normalised
RGB colour space. In addition, a shadow/highlight detection component based on the
work of Horprasert et al [10], is used to handle illumination variability. The algorithm



also employs a multiple background layer technique to allow the temporary inclusion
into the background model of objects that become stationary for a short period of time.
For real-time object tracking, the KLT algorithm [12] is used, and it considers features
to be independent entities and tracks each of them individually. Therefore, it is incor-
porated into a higher-level tracking process that groups the sparse local features into
objects, maintain associations between features and objects, and uses the individual
tracking results of the features to track the objects globally, while taking into account
complex object interactions. To mantain the association between features and objects
from one frame to the next, the spatial information and the motion information of fea-
tures are used. Spatial rule-based reasoning is applied to detect the presence of merging
or splitting foreground regions, based on the idea that if a feature belongs to an object
at time t − 1, then the feature should remain spatially within the foreground region of
the object at time t. The motion of the individual features are robustly fitted to trans-
lational and affine motion models to estimate the membership of features to objects. If
the motion models are not distinct or unreliable then spatial-based reasoning is used;
otherwise a combination of both is used.

On the apron activity tends to happen in congested areas with several vehicles sta-
tionary in the proximity of the aircraft. To allow stationary and moving objects to be
differentiated, the motion detection process (Section 3.1) was extended to include a
multiple background layer technique. The tracker identifies stopped objects by one of
two methods: analysing an object’s region for connected foreground pixels which have
been labelled as ’motion’ over a time window; or by checking the individual motion of
local features of an object. The accuracy of the second method depends on the feature
density parameter ρ. Stationary objects are integrated into the motion detector’s back-
ground model as different background layers. The advantage this method over pixel
level analysis (e.g. Collins et al [7]) is that for extended time periods (e.g. 30 minutes)
pixel level methods tend to result in fragmented layers that do not represent cohesive
objects. More detail about the Scene Tracking module can be found in [2].

To efficiently recognise the people and vehicles on the apron, a multi-stage cat-
egorisation approach is adopted: the first stage consists of a bottom-up process that
categorises the main object categories (people, ground vehicles, aircraft or equipment);
this is achieved using a Gaussian mixture model classifier trained on efficient descrip-
tors such as 3D width and height, dispersedness and aspect ratio. This is inspired by the
work of Collins et al [6] where it was shown to work well for distinct object classes.
The classification stage is applied to the vehicle category to recognise the individual ve-
hicle sub-types, which cannot be determined from simple descriptors. Hence, a proven
top-down method [9, 13] is applied to fit textured 3D models to the detected objects in
the scene. These models are fitted to the image data by back projection and evaluated
using normalised cross-correlation to determine the best model pose.

3.2 Data Fusion

The Data Fusion module is based on a nearest neighbour Kalman filter approach [4]
with a constant velocity model. The measurement uncertainty is estimated by propagat-
ing a nominal image uncertainty using the method presented in [5]. The measurement
uncertainty field is shown in Figure 3 for camera 6; this estimate of uncertainty al-



Fig. 3. (Left) Tracking results for 3 cameras for frame 9126 of sequence 21. (Middle) shows
data fusion results on the ground-plane for the sequence (9600 frames) with the vehicle track
shown in white. (Top-right) the fused observation (in black) for the vehicle (frame 9126) using
the covariance accumulation method, (Middle-right) shows the result for covariance intersection.
(Bottom-right) shows the sensory uncertainty field measured for camera 6.

lows formal methods to be used to associate observations originating from the same
measurement, as well as providing mechanisms for fusing observations into a single
estimate.

In the association step a validation gate [4] is applied to limit the potential matches
between tracks and observations. Matched observations are fused to find the estimate
of the location and uncertainty of the object, based on covariance intersection. Covari-
ance intersection estimates the fused uncertainty for a set of matched observations as
a weighted inverse summation; the weighting is chosen such that it is in favour of the
sensors that have more certain measurements. The fused observations are demonstrated
in Figure 3; the (unweighted) covariance accumulation method [5] results in a more
localised estimate of the fused measurement than the covariance intersection approach.
More detail about the Data Fusion module can be found in [2].

4 Scene Understanding

The Scene Understanding module is responsible for the recognition of video events in
the scene observed through video sequences. This module performs a high-level inter-
pretation of the scene by detecting video events occurring in it. The method to detect
video events uses cognitive vision techniques based on spatio-temporal reasoning, a pri-
ori knowledge of the observed environment and a set of predefined event models which
are written using the description language described in [8]. A Video Event Recogni-
tion module takes the tracked mobile objects from the previously described modules
as input, and outputs video events that have been recognised. The a priori knowledge



exploited includes the camera information, the vehicle models, the expected moving
objects and the empty scene model containing the contextual objects.

4.1 Video Event Representation

The video event representation corresponds to the specification of all the knowledge
used by the system to detect video events occurring in the scene. To allow experts in
the aircraft activity monitoring to easily define and modify the video event models, the
description of the knowledge is declarative and intuitive (in natural terms). The video
event representation is based on the video event description language described in [8].
Thus, the video event recognition uses the knowledge represented by experts through
event models. The proposed model of a video event E is composed of five parts:

– a set of Physical Object variables corresponding to the physical objects involved in
E: any contextual object including static object (equipment, zone of interest) and
mobile object (person, vehicle, aircraft, etc.) The vehicle mobile objects can be of
different subtypes to represent different vehicles (GPU, Loader, Tanker, etc.)

– a set of temporal variables corresponding to the components (sub-events) of E.
– a set of forbidden variables corresponding to the components that are not allowed

to occur during the detection of E.
– a set of constraints (symbolic, logical, spatial and temporal constraints including

Allen’s interval algebra operators [3]) involving these variables.
– a set of decisions corresponding to the tasks predefined by experts that need to be

executed when E is detected (e.g. activating an alarm or displaying a message).

There are four types of video events: primitive state, composite state, primitive event
and composite event. A state describes a situation characterising one or several physical
objects defined at time t or a stable situation defined over a time interval. A primitive
state (e.g. a person is inside a zone) corresponds to a vision property directly computed
by the vision module. A composite state, as shown in Figure 4, corresponds to a com-
bination of primitive states. An event is an activity containing at least a change of state
values between two consecutive times (e.g. a vehicle leaves a zone of interest - it is in-
side the zone and then it is outside). A primitive event, as shown in Figure 4, is a change
of primitive state values and a composite event is a combination of states and/or events.

Fig. 4. (Left) The model of the composite state “Vehicle Stopped Inside Zone”: a vehicle is
detected as stopped inside a zone of interest. (Right) The model of the primitive event “En-
ters Zone”: a vehicle enters a zone of interest.



Fig. 5. (Left) Two dynamic zones (in blue) linked with the Loader and the Transporter vehicles
involved in the detected event “Worker Manipulating Container” (event 26). (Right) The Unload-
ing operation involves 8 physical objects and 3 composite components with 2 constraints on the
vehicle subtypes, 4 constraints on the zones of interest and 2 temporal constraints.

4.2 Video Event Recognition

The video event recognition algorithm recognises which events are occurring in a stream
of mobile objects tracked by the vision module. The recognition of composite states and
events usually requires a search in a large space composed of all the possible combina-
tions of components and objects. To avoid this combinatorial explosion, all composite
states and events are simplified into states and events composed of at most 2 compo-
nents through a stage of compilation in a preprocessing phase. Then the recognition of
composite states and events is performed in a similar way to the recognition of primitive
events, as described in the method of Vu et al [14].

In the Video Event Recognition module, a priori knowledge corresponds to apron
zones of interest (access zones, stopping zones), aircraft and vehicle (e.g. GPU, Loader,
Tanker and Transporter) models. In apron monitoring, some problems may occur while
trying to build an accurate context of the scene. For example, access zones to aircraft
can be at different positions according to the aircraft type. To solve these problems,
dynamic properties have been added to the a priori knowledge, by defining dynamic
zones in the local coordinate system of vehicles. Figure 5 illustrates the use of dynamic
context. This notion of dynamic context allows more complex scenarios to be defined
in which mobile objects can directly interact with each other.

4.3 Predefined Video Events

Currently a set of 21 basic video events have been defined, including 10 primitive states,
5 composite states and 6 primitive events. These basic video events are used in the def-
inition of video events representing the handling operations. The primitive states cor-
respond to spatio-temporal properties related to persons and vehicles involved in the
scene. Some examples include: a person is located inside a zone of interest, a person
is close to a vehicle, a vehicle is located inside a zone of interest, a vehicle is close
to another vehicle, a vehicle has stopped, etc. Using these primitive states, different



composite states have been modelled, such as: a person stays inside a zone of inter-
est, a vehicle has arrived in a zone of interest, and a vehicle has stopped in a zone of
interest (shown in Figure 4). The composite states have in turn been used to model dif-
ferent primitive events, for example: a person enters a zone of interest, a person moves
between zones of interest, a vehicle enters a zone of interest (shown in Figure 4), a
vehicle moves between zones of interest, etc. These states and events are then used in
the definition of the composite events (modelling behaviours) representing the apron
operations.

Current work is on video events involving (1) the GPU (Ground Power Unit) vehi-
cle which operates in the aircraft arrival preparation operation, (2) the Tanker vehicle
which operates in the refuelling operation and (3) the Loader and Transporter vehicles
which are involved in the baggages loading/unloading operations. To recognise these
operations 28 composite video events were defined, including 8 video events for the
aircraft arrival preparation operation, 8 video events for the refuelling operation, and 12
video events for the unloading operation.

The aircraft arrival preparation operation (event 8) involves the GPU, its driver and
4 zones of interest. The system recognises that the GPU vehicle arrives in the ERA
Zone (event 1), obeys the speed limit (event 2); then it enters (event 3) and stops (event
4) in the “GPU Access Area”, the driver gets out of the vehicle (event 5) and deposits
the chocks and stud at the location where the plane will stop (events 6 and 7). This op-
eration and another modelled one, the refuelling operation, are considered to be basic
operations because they only consist of one person and one vehicle.

The baggage unloading operation (Figure 5) is more complex. This operation in-
volves both a Loader and a Transporter vehicle, the conductor of the Loader, and a
person working in the area. This operation is composed of the following steps: first, the
Loader vehicle arrives in the ERA zone (event 17), enters its restricted area (event 18)
and then stops in this zone (event 19); a dynamic zone is automatically added, at the
rear of the Loader’s stop position (“Loader Arrival”, event 20), where the Transporter
will enter and stop. When the Transporter enters (event 21) and stops (event 22) in this
zone (“Transporter Arrival”, event 23), another dynamic zone is automatically added
to the context. The back of the Loader is then elevated (event 24) and the baggage con-
tainers are unloaded from the aircraft by the Loader conductor (event 25) one by one.
The conductor unloads these containers into the dynamic zone of the Transporter where
a worker arrives (event 26) and directs the containers (event 27) on to the Transporter.

5 Results

The Scene Tracking evaluation assesses the performance of the three core components
(motion detection, object tracking and data fusion) on representative test data.

The performance evaluation of the different motion detector algorithms for AVIT-
RACK is described in more detail in [1]. It is noted that some objects are partially de-
tected due to the achromaticity of the scene and the presence of fog causes a relatively
high number of foreground pixels to be misclassified as highlighted background pixels
resulting in a decrease in accuracy. Strong shadows also cause problems, often detected
as part of the mobile objects. The performance evaluation of the tracking algorithm is
described in more detail in [2]. In is noted that some objects can produce a ghost which



remains behind the previous object position. An object is integrated into the background
when becomes stationary for an extended time period. In these cases, ghosts are created
when stationary objects start to move again. Partial detection of objects can result in
fragmentation in tracked objects with similar colour as the background.

The Data Fusion module performs adequately given correctly detected objects in the
Frame Tracker (a representative result is shown in Figure 3). The Data Fusion module
incorporates uncertainty information in the location estimate of the observation and it
is often an inaccurate location estimate that results in the failure of the data association
step; a significant proportion of the localisation problems that occur in the Data Fusion
module can be traced back to motion detection errors i.e. shadow, reflections etc.

The Scene Understanding evaluation have been performed on sequences for which
the tracking module gives good results. Video event recognition has been tested on
sequences involving the GPU (aircraft arrival preparation operation), the Tanker (refu-
elling operation) and the Loader/Transporter vehicles (baggage unloading operation).

Video events 1 to 4 involving a GPU have been tested on a dataset of 4 scenes corre-
sponding to 2×4 video sequences (containing from 1899 to 3774 frames and including
one night sequence). These events are detected with a perfect True Positive rate. The
video events 4 to 8 involving also a GPU have been tested on 2 scenes corresponding
to 2 video sequences because only one camera is available to observe these events. The
video events involving the Tanker have been tested on one scene (more than 15000
frames corresponding to about 30 minutes) showing the “Tanker Arrival” (event 13)
and the driver of the Tanker branching the refuelling pipe to the aircraft (events 14, 15,
16). The “Unloading Baggage operation” involving the Loader (events 17 to 20, event
24 and event 25) and the Transporter (events 21 to 23) have been tested on one scene
where the cameras point of view allows to fully observe the vehicle movements and
interactions between vehicles and people.

The results of the qualitative evaluation are shown in Table 2. The goal is to give an
idea of the performance of the Scene Understanding and to anticipate potential prob-
lems in event detection for apron monitoring. All video events are recognised correctly
(49 TPs) without false alarms (0 FPs) and misdetection (0 FNs). These results are very
encouraging but one has to keep in mind that situations where the vision module mis-
detects or overdetects mobile objects were not addressed.

Vehicle type Sequence TP FP FN
GPU
Events 1 to 4 4 scenes * 2 cam. 32 0 0
Events 4 to 8 2 scenes * 1 cam. 8 0 0
Tanker
Events 9 to 13 2 scenes * 1 cam. 10 0 0
Events 14 to 16 1 scene * 1 cam. 3 0 0
Loader-Transporter
Events 17 to 28 1 scenes * 1 cam. 12 0 0

Table 1. Performance results of the Scene Understanding module for apron monitoring. TP =
“Event exists in the real world and is well recognised”, FN = “Event exists in the real world but
is not recognised”, FP = “Event does not exist in the real world but is recognised”.



6 Discussion and Future Work
The results are encouraging for the presented system. The performance of multi-view
object tracking provides adequate results; however, tracking is sensitive to significant
dynamic and static occlusions within the scene. Future work will address shadow/ghost
supression and explicit occlusion analysis.

The Scene Understanding results show that the proposed approach is adapted to
apron monitoring and can be applied to complex activity recognition. The recognition
of complex operations in parallel (e.g. “baggage unloading”) involving people and ve-
hicles gives encouraging results. Future work will incorporate uncertainty to enable
recognition of events even when the Scene Tracking module gives unreliable output.
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