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Abstract

This paper presents recent work done on video sequence
interpretation. WWe propose a framework based on two kinds
of a priori knowledge : predefined scenarios and con-
textual information. This approach has been applied on
video sequences of the AVS-PV visual surveillance euro-
pean project.

1. Introduction

This paper presents recent work we have done on video
understanding *. Our goal is to detect mobile objects (spe-
cially people) and to analyze their behavior. We propose
a framework based on a priori knowledge. This work is
based on three hypotheses: first we consider a static cam-
era, second we use a unique monocular cameraand third we
deal with real-time constraints. The first hypothesis (static
camera) is often verified for current visual surveillance net-
works and alows us to simplify the low-level detection of
mobile objects w.r.t. afixed environment. The second hy-
pothesis (unique monocular camera) is verified in amost
all current visual surveillance networks. The third hypoth-
esis (real-time constraints) is very interesting as it implies
that the solutions should be kept with a minimal computing
time. But it also implies afully automated system. After a
presentation of related work (Section 2), we present (Sec-
tion 3) the current low-level image processing techniques
used for mobile object detection and tracking. In Section
4 we describe the role of a priori contextual information
and different ways of representing this information. Then
(Section 5) we adress the problem of high-level description
of mobile object behavior using generic observable events
and application-dependent scenarios. Finally, (Section 6)
results obtained on different visual surveillance applications
in the european Esprit project AVS-PV are shown and dis-
cussed. The paper concludes with future work for enhanc-
ing the robustness of such image understanding systems.
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2. Related work

Cohen, Bremond Medioni and Nevatia (University of
South California), in DARPA's VSAM focus on event
recognition involving vehicles and humans ([14] and [7]).
The particularity of this work is that videos are filmed by
non-fixed camera. They used models of maps of the envi-
ronment to place aerial images in an a priori known map.
They used a property net to compute events and states,
which controls the evolution of predefined automaton de-
scribing situations. Herzog (VITRA) proposes a system
able to dynamically describe scene with humans. The orig-
inality of hiswork is the application environment: a soccer
stadium ([1] and [1Q]) and the inference method based on
timeinterval logic, to describe temporal sequence of events,
which are computed and typed separatly. Intille and Bobick
(MIT Medialab), in asimilar environment, focus on analy-
sis of American football scenes. Their aim is the recogni-
tion of particular strategies in the complex players interac-
tions ([11] and [12]). The main point is that those activi-
ties are not just human behaviors but human group behav-
ior. Shah (University of Central Florida) is interested by
dynamic description of human behaviors in office environ-
ments ([2] and [8]). Even if the problem is the recognition
of long duration activities, the authors insist on the impor-
tance of the recognition of *key instants’ which are the con-
ditions of changing states in an automaton representing the
global behaviors. The “Key instants’ are generated when
certain conditions are realised.

Tessier (ONERA), in the PERCEPTION project, pro-
poses an original method to describe behavior. Petri nets
are used to represent dynamic evol utions of a car park scene
with humans and vehicles ([16] and [4]). Buxton and Gong
(University of Sussex) gave animportant contribution to the
domain with the VIEWS project ([3]). The system was able
to deal with humans and vehicles on roads, streets or in car
parks. A high level representation based on Bayesian net-
works was computed. This work points out the necessity
to deal with uncertainty and to use contextual information
to enhance detection and tracking results. In the same vein,
Ivanov and Grimson (MIT) work on detection of human and



vehicle behaviorsin car park. The interest of this research
isin the event’s combination method ([13]). A behavior is
represented by a set of rules based with a stochastic context-
free grammar, which allows certain combinations of simple
constant predicates. The general scheme of our approach
is based on the use of predefined scenarios [6] and a pri-
ori contextual information [5]. In this paper we propose a
method based on both n-ary tree to declare events [17] and
temporal logics to declare application dependent scenarios.

3. Perception

In this section we will shortly present the perception
component we have used. A more detailed description can
befoundin [15]. The perception methods are standard ones
which verify the real-time constraint hypothesis. Their role
is to incrementally provide a history of the persons who
have been detected in the scene. It is composed of four
main sub-parts: motion detection, person detection, person
tracking and smoothing. Each sub-part contains alternative
methods which are manually selected and parametrizedin a
configuration phase.

3.1. Motion detection

Motion detection is basically a thresholding of the dif-
ference of the current image with respect to areferenceim-
age. Before the difference is computed we filter the current
image with a 3 x 3 gaussian filter to reduce noise. Then
for each pixel we compute the absolute difference between
its intensity (grey or colour) and the intensity of the corre-
sponding pixel in the reference image. If this differenceis
greater than a certain threshold «, the pixel is marked as
mobile and otherwise it's marked as stationary. We then
update the reference image I, with information from the
current image 1. according to the following equation:
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We seethat for 5 = 1 we detect motion asthe differencebe-
tween subsequent imagesin the sequenceand that for 3 = 0
motion is detected with respect to a fixed background im-
age. o and 3 are parameters of the motion detector.

3.2. People detection

The goal is to detect which mobile regions (blobs) cor-
respond to a person. We use a model of a person with 8
parameters. the position of the center of gravity (pz img,
PYimg), the height h;,,,, and the width 1;,,,, in the 2D im-
age, the 3D position (pxs3p, pysp) on the ground plane
of the scene, the 3D width I5p and the 3D size hsp. The
bounding box of aperson is defined by the image measures

(PTimg, DYimg)s Nimg € limg. The people detection ago-
rithm analyzes the set of blobs. Both 2D image criteria
and 3D scene criteria are used. Thefirst ones are based on
the 2D distance between blobs in the image. The goal is
to merge the closest blobs in the image. The second ones
are based on constraints on the 3D height and width. The
3D measures are obtained by linear projection of the image
plane.

3.3. Peopletracking

The goal of this step is to update the set of trajectories.
For that purpose, the persons who have been detected in the
current image must be matched with those detected in the
previous ones. This matching can be defined as a function
fromthe set P, of personsdetected atime ¢t — 1 into the
set P, of the persons detected atime t. We use 3 dterna-
tive methods: a method based on the amount of overlap in
the 2D image, a method based on the proximity of the per-
sonsin the 3D scene and a restrictive method based on the
proximity of the personsin the 3D scene. Thefirst method
(based on the amount of overlapinthe 2D image) states that
two persons detected at two consecutive times are the same
real person if the percentage of overlap of their bounding
box is greater than athreshold. The second method matches
apersonat timet withapersonattimet — 1 if their 3D dis-
tance is below a threshold. The third method is similar to
the second one, but the function must be either an injection
or asurjection.

3.4. Smoothing

Thefirst goal of this step isto correct errors made in the
previous perception steps on the different 3D measures of
aperson: (pxsp, pysp) the position on the ground plane,
himg the height and {;,,, the width. The second goal is to
estimate (v3p, vysp) the instantaneous speed of the per-
sons. Three smoothing methods are used. The first method
uses a standard Kalman filter. The state vector is defined
by (px3p, pysp, vrsp, vysp). Thelinear dynamic model
is based on the hypothesis of a constant speed. The second
and third methods are respectively median and mean filter-
ing with temporal window size 3, 50r 7. (vxsp, vysp)
is initialized by computing v(t) = 21=2U=1) then each of
the four values px3p, pysp, vrsp and vysp arefiltered.

4. Contextual information

As our goal is to provide a framework which can be
adapted to specific conditions we propose to define two
kinds of a priori informations: contextual information (see
this section) and predefined scenarios (see section 5). Con-
textual information is an a priori information which con-



tains a description of the static environment observed by a
camera. For each particular camera looking at a particular
environment, a security operator must provide, in aconfigu-
ration phase, pertinent information according to the formal-
ism we propose. For more details on the role of context in
video understanding see [5]. The context contains in addi-
tion to geometric information some semantic information.
Its structure is made of a set physical objects, a set of in-
teresting areas and a calibration matrix which enables the
passage from the 2D image plane to 3D coordinates.

The geometry of the interesting areas is described by a
list of polygons defined in planes which may have any ori-
entation. The geometry of each physical object, or piece of
equipment, is a generalized cylinder defined by its height
and its polygonal basis.

The semantic information of each piece of equipment
and of each interesting area is made of six attributes : four
with symbolic values and two with numerical values. The
four attributes with symbolic values are : the type (equip-
ment or ared), the function (i.e. table, seat, corridor, etc...)
the name (i.e. seat3, corridor2, etc...) and characteristics
(i.e. yellow, fragile, etc...). The two attributes with numer-
ical values which are very useful for scenario recognition
are: the normal distance and the normal time of usage of an
equipment.

Figures 1 and 2 show two examples of environmentswe
have modeled; for each example the left image shows the
view observed from the camera and the right image shows
the 3D model of the same environment based on the geo-
metrical information contained in the context. For instance
for the first example of a coffee room the context contains:
the calibration matrix, the description of nine pieces of
equipment (three seats, one table, one coffee machine, one
elevator, one dustbin, one door, and one heater) and the de-
scription of three areas (a seat area, an entrance, and acorri-
dor). The second exampleis areal scene of metro station in
Nuremberg which has been selected in the european project
AVS-PV. Thisis an entrance of a metro station, eight equip-
ments and two areas have been defined. The equipment are
six turnstiles and two ticket vending machines. The areas
are an entrance and a corridor.

Figure 3 shows an example of the complete description
of aticket vending machine for a metro station in Nurem-
berg.

5. Interpretation

In this section we adress the problem of high-level
description of mobile object behavior using generic ob-
servable events and application-dependent scenarios. The
recognition process of temporal concepts can be reduced to
the recognition of atemporal ones: object states. Aneventis
a spatio-temporal property which represents a significative
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change in the state of objects in the scene. Typica events
usally are “to enter”, “to start running”, “to stand up” or
“to leave”. The algorithm for event recognition is the fol-
lowing : an event is recognized if for a given object state,
the value of this state is significantly different between an
image (corresponding to time ¢ ) and another image (corre-
spondingtotimet,, witht,, =ty + d,e.. Thetimeinterval
between I, and I,, is called recognition delay d ..

For instance, if apersonis, at timet,, far from a coffee
machine then close to that coffee machine at time ¢,,, then
the event “the person moves close to the coffee machine’ is
recognized.

The problem of event recognition can be reduced to the
atemporal problem of finding a set of states describing the
scene with enough accuracy. In other words, solving the
problem of event recognitionis reduced to solving the prob-
lem of symbolic description of the scene. So, if for eachim-
age we have a symbolic description of the scene, it is suf-
ficient to compare these descriptions to know the changes
which had happened, i.e. the events which have occured.
This scene description must perform the passage from nu-
merical to symbolic values and must be generic enough to
be applied to different environments and different applica-
tive domains.

5.1. State model

The objective is to provide a set of generic states based
on aformalism which enables its extension and its parame-
trization. A state of objects in the scene is defined by an
n-ary tree which represents the way this state is computed
(see Fig. 4 an abstract example of such atree). Four types
of nodes are distinguished: object nodes, descriptor nodes,
operator nodes and classifier nodes (see below for their de-
finition). The leaves of this tree are the objects involved
in that state. Father nodes of the leaves are numerical de-
scriptors of these objects. All intermediate nodes are oper-
ator nodes. The root node is always a classifier node which
computes the symbolic value of the object state. The mini-
mal tree structure is reduced to 3 nodes, 1 object leaf node
1 descriptor intermediate node and 1 classifier root node.
The number of branches of the tree and the length of the
branches are free.

Objects. Objects are the objects of the scene at time ¢,
i.e. an element of O, the set of the objects o; ; where i is
the class of the object and j itslabel. For instance the object
Operson,1 1S @ Mobile object which has been recognized as
being a person and whose label is 1. 0cquipment,door2 1S @N
object belonging to the class equipment labeled as door2.

Descriptors. Descriptors are functions defined from O
to RP to access an object measure. For instance, the size,
the position, the shape, the trgjectory, the orientation or the
volume are possible descriptors. This notion ensures the
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Figure 4. Example of state modeling. Objects
are in light grey, descriptors are in grey, the
operator is in dark grey, and the classifier in
black.

anchoring of the model in the numerical results of the per-
ception component.

Oper ator s.Operators are functions defined from (RP* x
... X RP»)to RY in order to operate on the measures. Ex-
amples of operators are the distance, the norm, the classical
arithmetic or logic ones.

Classifiers. Classifiers are functions defined from R? to
S, the set of authorized symbols of the state. For instance
close and far can be possible symbols for a state. These
classifiers ensure the passage from numbers to symbols by
defining anumerical domain of definition for each symbolic
value.

We have used this model of state to define a first set of
states (see two examples on figure 5). For that we have
defined three classes of objects, four descriptors, four oper-
ators and eight classifiers.

The 3 classes of objects are person, area, and
equipment. Persons are the mobile objects of the scene
which have been detected by the perception component.
Persons are described by a vector (pxsp, pysp) repre-
senting the location of the person on the ground, a vector
(vasp, vysp) representing the speed vector of the person
and the size h3p of that person. Areas and equipments are
those which are defined in the context (see Section 4). An
areais a static object representing a subpart of the ground
of the scene with a polygon. An egquipment represents any
volumic object of the environment for which we know the
polygonal basis and the height h.

The 4 descriptors are; position, size, speed and shape.
More precisely: position(o;,;) applied to a person gives



RELATI VE POSTURE
. DI STANCE

10e
any
‘ 40 seat ed
0 T T | Sl ZE

0 60 120 260

DI STANCE S| ZE

POSI TID\? SHAPE Q Oper son, 1

o person, 1 O O Oequi prent, 1

CONSTR

. DI STANCE
10e

coupl ed
20 P
any
0 ANGLE

0 45 135225 315360

ANGLE

SPEED

Oper son, 1

person, 2

person, 1 person, 2
Figure 5. Two instances of the model of state.
Objects are in light grey, descriptors are in
grey, the operator is in dark grey, and the clas-
sifier in black.

access to (prsp, pysp), size(o;,;) applied to a person or
to an equipment enables us to recover its size, speed(o; ;)
applied to a person returns the speed vector (vzsp, vysp)
and shape(o; ;) applied to an equipment or an areareturns
its associated polygon.

The 4 operators are; distance the euclidean distance,
norm the norm of a vector, angle the angle between two
vectorsin degrees and constr an operator which constructs
a 2D vector with its scalar components.

We have defined 8 classifiers which compute 8 states:
posture, direction, velocity, location, proximity,
relative location, relative posture and relative walk

For instance we have defined (see figure 5) the state
relative walk(0person.ir Operson, ;) DYy Measuring the angle
between the speed vectors of 0person,; 8Nd Operson,; and
the distance between these two persons. If the speed vec-
tors have a similar orientation (an angle below 45 degrees
or greater than 315 degrees) and if the distanceis small (be-
low 200cm) then these persons are considered as having a
coupled relative walk.

5.2. Event recognition

Event recognition is now straight forward: for each im-
age frame the object states are computed with the current
objects detected in the scene at that time. If for a detected
object and for a state model, there is a change in its sym-
bolic value anew event is created at that time.

The 8 predefined state models enable us to define 18
types of event.

Posture changes create the events o,crson,i falls down or
crouches down or stands up.

Direction changes create the events 0person,i
goes right side or goes left side, or goes away or ar-
rives. Velocity changes create the events o e, son,i StOPS OF
walksor startsruning.

Location changes create the events operson,; l€8VES OF
entersogreq, ;-

Proximity —changes create the eventS operson,i
moves close to or moves away from o.quipment,; -
Relative location changes create the events operson,i
moves closeto or moves away from operson, ;-

Relative posture changes create the event operson,; SitS 0N
Oequipment,j-

Relative walk changes create the event operson,; and
Operson,j Walk together.

5.3. Scenario recognition

The final problem is to incrementally recognize prede-
fined scenarios representing behaviors. A scenarioisanin-
terdependent set of events. To recognize a scenario implies
to recognize al the events which compose it and to verify



their dependencies. The constraints can be temporal, spa-
tial, logical or agebraic.

Wewill now give details of the scenario model we use. A
scenario s; ., where is the scenario identifier and ¢ the cur-
rent time of recognition, is composed of four parts. Events,
Constraints, Conditions, and Success. Examplesof scenario
are shown in next section (see Fig. 6, 7, 11 and 12).

Events. They aretheevents{ey, ..., e,, ..., e,, } requested
by the scenario. Each event e; isassociated with thevariable
t; which representsthetimewhen e; occured. Therearetwo
categoriesof eventsin thispart: positive eventsand negative
events. Positive events must occur for the total recognition
and negative events must not occur during scenario recog-
nition.

Constraints. They are tempora constraints
{c1,..esCiy oy cn b Those constraints are described as
first degreelinear inequationsonty, ..., t;, ..., t, .

Conditions. They are non-temporal constraints
{k1,...,k;, ..., kp} on the objects involved in the events. It
forces an event object attribute to a predefined value. This
attribute can be symbolic (hame, function, etc...) or numer-
ical (height, size, velocity, etc...).

Success. They are keywords { f1, ..., fi, ..., fq}, Which
indicate the kind of feedback associated with the scenario.
This part is used when the scenario is totally instanciated.
There are two kinds of feedback: external and internal. Ex-
ternal feedback is used to trigger an alarm to the security
operators and internal feedback is used to generate an event
to signify that the scenario has been totally recognized.

A scenario can betotally recognized, when al the events
are recognized and al the constraints are verified; it can
be partially recognized, when a subset S of all events are
recognized and the constraints involving events of S are
verified; when no event of a scenario are recognized, this
scenario is caled a blank scenario. The principle of the
scenario recognition algorithm [6] consists of two points:
as previously described, we generate, image after image,
interesting events which happened in the scene, then with
those events we instantiate in parallee predefined scenario
models. It means that scenario recognition corresponds to
updating a set of partialy recognized scenarios. This sce-
nario recognition method is an extension of the work on
chroniclesexplainedin[9].

In  short, gven a st of scenarios
{81,6=1,--» Si.t—1,8i+1,0,--,Sko} composed of par-
tially recognized at t — 1 scenarios and blank scenarios and
aset of events {e1 4, ..., e+ } recognized at ¢, the principle
of scenario recognition is based on two points.

For each s$; € {817t_17 vy Sit—1, Sit1,05 --» 8}670}, for
each event of s; if the event matches an event ey ¢, ..., en ¢
and verifies the tempora congtraints ¢y, ..., ¢;, ..., ¢,, and
the non-temporal constraints ki, ..., k;, ..., ky,, we create
sj¢. Itresultsanew set {s; ¢, ..., 51,1} Of scenarios. In this

Scenario
Name = “forbidden access to area’,
Events= (¢t1, enters(pi : Person, a1 : Area)),
not(t2, leaves(pi : Person, a1 : Area)),
Constraints=t; < ta, ta < t1 + 1.0,
Conditions = function(a, “forbidden_access’),
Success = darm(pi, “has entered ared’,a1)

Figure 6. AVS-PV scenario model:“forbidden
access to area”’

Scenario

Name = “graffiti on wall”,

Events =
(t1, moves close to (p1 : Person, e1 : Equipment)),

not(t2, moves away from (p1 : Person, e1 : Equipment)),
Constraints= t; < to,

to < t1 +normal_presence_time(e;),
Conditions = function(e1, "wall”),
Success = darm(p1, “doing graffiti onto” ,e1)

Figure 7. AVS-PV scenario model: “graffiti on
wall”

context, an event of s; matches e; ; means that e; ; is an
instance of this event.

We removeinvalid scenarios s; ¢ from {s1 ¢, ..., $;,¢ }. if:
-one negative event e, of s; , has been instanciated,
-oneof thecy, ..., ¢, ..., ¢, iMplies that s; , will not bein-
stanciated.

6. Results of metro station applications

In this part, we will describe the results obtained on
real visual surveillance applications for metro stations. The
videos come from the CCTV networks of the metro opera-
tors partners of the AV S-PV european project. We havefor-
malized the expertise of three security engineersin aknowl-
edge base containing currently 15 scenarios.

Metro Station in Brussels. In the following, we de-
tail how two scenarios described in figures 6 and 7 are
recognized. These scenarios belong to the knowledge base
built for AVS-PV european project and videos have been
recorded in a STIB Metro Station in Brussels. The camera
observes the platform of a metro station. The aims of those
two scenarios are: to prevent vandalism against equipment
and to ensure the safety of passengers.

At t;, a detected person (named Person 1 in the foll-
lowing) goes inside the tracks area. The event “person 1
enters tracks areais triggered. This areais labelled as a
forbbiden area, so the first event of “forbidden access to
area’ scenarioisrecognized. Severa frames after, at ¢ (Ssee



Figure 8. Left: Metro platform in Brussels at
t2. Right: 3D position of the detected person
(represented by a cylinder) w.r.t the context.
An alarm ‘forbidden access to area” is sent to
the security operator.

Figure 9. Left: Metro platform in Brussels at
t3. Right: an event “person 1 moves close to
equipment wall” is detected.

Fig. 8), Person 1 is still inside the “tracks’ area, so the
event "Person 1 exits the “tracks’ area’ has not been trig-
gered. The non-occurence of the event matches the second
event (negative event) of the scenario “forbidden access to
area’. Anaarm is sent to the security operator.

Further at t3 (see Fig. 9), Person 1is close to the equip-
ment “wall”, so the event “ person 1 moves close to equip-
ment wall” is triggered. This event instanciates the first
event of the scenario “graffiti on wall”.

Further at t, (see Fig.10), Person 1 is still close to the
equipment “wall”, sotheevent “ person 1 moves of f equip-
ment wall” has not been triggered. The non-occurence of
the event matches the second event (negative event) of the
scenario “graffiti on wall”. An aarm is sent to the security
operator.

Metro Station in Nuremberg. In the following, we de-
tail how two other scenarios described in figures 11 and 12
are recognized. These scenarios belong also to the knowl-
edge base built for AVS-PV european project and videos
have been taken in a VAG Metro Station in Nuremberg
(Germany). In this example, the camera observes the en-

Figure 10. Left: Metro platform in Brussels at
t4. Right: an alarm ‘graffiti on wall” is sent to
the security operator.

Scenario
Name = “Presence period near fragile equipment”,
Events =
(t1, moves close to (p1 : Person, ei : Equipment)),
not(t», moves away from (p1 : Person, ei : Equipment)),
(ts, stops(p1 : Person)),
Constraints=
t1 < to, t1 < i3,
ty < tp +normal_presence time(e;),
Conditions = function(e, "fragile”),
Success =
alarm(“ Presence period near equipment” e ),
loopback(t2, presence_period_near_fragile, e1, p1)

Figure 11. AVS-PV scenario model: “Pres-
ence period near fragile equipment”

trance of a metro station. The aim of those two scenar-
iosisto prevent vandalism against ticket vending machines.
These machines have been defined in the context (see Sec-
tion 3) as fragile equipment.

At t1, adetected person (named Person 1 in the folllow-
ing) is far from an equipment labeled as “fragile’. Further
at to (seeFig. 13), person lisclose to equipment labeled as
“fragile”’, so the event “person 1 moves close to an equip-
ment” istriggered. The first event of scenario “Period near
fragile equipment” is instanciated.

Further at t; Person 1is still close to the machine, so the
negative event of scenario “Period near fragile equipment”
isinstanciated. Secondly, the fact that Person 1 stops trig-
gerstheevent “Person 1 stops”. Thethree events of the sce-
nario “Period near fragile equipment” are recognized and an
alarm is sent to the security operator. The complete recog-
nition of this scenario triggers the specific loopback event:
presence_near_fragile” equipment. This specific event
matches the first event of the scenario “Repeated Presence
period near fragile equipment”. Then at ¢, (see Fig. 14) an



Scenario
Name = “Repeated period near fragile equipment”,
Events=
(t1, presence_period_near_fragile, e, p1),
(t2, moves close to (p1 : Person, e : Equipment)),
not(ts, moves away from (p1 : Person, ei : Equipment)),
(ta, stop(p1 : Person))
Constraints =
t1 < to, ta < t3, t2 < iy,
t3 < t2 +normal_presence_time(e:),
Conditions = function(ey, "fragile”),
Success = darm(“Vandalismon " ,e1)

Figure 12. AVS-PV scenario model: “Re-
peated Presence period near fragile equip-
ment”

Figure 13. Left: Metro entrance in Nuremberg
at t,. Right: an event “person 1 moves close to
an equipment” is detected.

Figure 14. Left: Metro entrance in Nurem-
berg at ¢,. Right: an event ‘person 1
moves away from an equipment” is detected

Figure 15. Left: Metro entrance in Nuremberg
at t;. Right: a “Vandalism’ 'alarm is sent to
the security operator.

other event is detected because the Person 1 moves away in
the direction of the corridor to check is anybody is arriving.

At t5 (see Fig. 15), the event “Person 1 moves close to
equipment” istriggered. This equipment is the same equip-
ment that the one at ¢5. The scenario “Repeated Presence
period near fragile equipment” is now totally recognized.
An alarm is sent to the security operator.

The results of these applications were considered very
satifactory by the metro operators. The richness of the for-
malism for scenario description allows to specify a set of
constraints (temporal as well as atemporal ones) which re-
duce false alarms. The formalism we have proposed for
scenario description has enabled us to represent the exper-
tise for these applications. The knowledge modeling is still
difficult. The main reason is that we need to manage the
passage from vague security concepts (such as “abnormal
behavior”) to rigorous scenario models. These results have
been processed off-line on a Sun UltralO workstation. The



computing time per image is between 220ms and 530ms
for the complete chain (including perception and interpreta-
tion). Among the 25 images digitized per second, 5 images
(one per 200ms) are processed.

7. Conclusion

In this paper we have shown that high-level video un-
derstanding can be performed based on images taken from
a single static camera and with simple perception methods
working almost in real-time. This has been possible by us-
ing two sets of a priori information:; first, contextual infor-
mation describing the 3D geometry of the observed scene
and semantic information on the static objects and interest-
ing areas, second, general knowledge of predefined scenar-
iosvalid for an application domain. We have proposed afor-
malism to represent these two types of a priori information
and explained how to use them for video understanding. We
have al so proposed aformalism for event recognition based
on object state models. This formalism is independent of
a particular application domain and enables the passage be-
tween the perception dataand the scenario models. The cur-
rent video understanding framework we propose has shown
severa limitations. Onetype of problemsistheimprecision
and uncertainty in the detection and location of mobile ob-
jects; most of these low-level detection errors are due either
to reflections, shadows or occlusions. A solution to cope
with these problems is to relax our second hypothesis and
not to restrict ourselves to the use of a single camera. An-
other more general problem is that as every vision system,
this framework needs, for each perception method and for
each interpretation method, to set the values of numerical
parameters in a configuration phase. One solution to solve
this problem is to use learning techniques to find the best
parameter values for an application.
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