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Abstract

This paper presents recent work done on video sequence
interpretation. We propose a framework based on two kinds
of a priori knowledge : predefined scenarios and con-
textual information. This approach has been applied on
video sequences of the AVS-PV visual surveillance euro-
pean project.

1. Introduction

This paper presents recent work we have done on video
understanding 1. Our goal is to detect mobile objects (spe-
cially people) and to analyze their behavior. We propose
a framework based on a priori knowledge. This work is
based on three hypotheses: first we consider a static cam-
era, second we use a unique monocular camera and third we
deal with real-time constraints. The first hypothesis (static
camera) is often verified for current visual surveillance net-
works and allows us to simplify the low-level detection of
mobile objects w.r.t. a fixed environment. The second hy-
pothesis (unique monocular camera) is verified in almost
all current visual surveillance networks. The third hypoth-
esis (real-time constraints) is very interesting as it implies
that the solutions should be kept with a minimal computing
time. But it also implies a fully automated system. After a
presentation of related work (Section 2), we present (Sec-
tion 3) the current low-level image processing techniques
used for mobile object detection and tracking. In Section
4 we describe the role of a priori contextual information
and different ways of representing this information. Then
(Section 5) we adress the problem of high-level description
of mobile object behavior using generic observable events
and application-dependent scenarios. Finally, (Section 6)
results obtained on different visual surveillance applications
in the european Esprit project AVS-PV are shown and dis-
cussed. The paper concludes with future work for enhanc-
ing the robustness of such image understanding systems.

1Work done with support from Dyade GIE Bull INRIA

2. Related work

Cohen, Bremond Medioni and Nevatia (University of
South California), in DARPA’s VSAM focus on event
recognition involving vehicles and humans ([14] and [7]).
The particularity of this work is that videos are filmed by
non-fixed camera. They used models of maps of the envi-
ronment to place aerial images in an a priori known map.
They used a property net to compute events and states,
which controls the evolution of predefined automaton de-
scribing situations. Herzog (VITRA) proposes a system
able to dynamically describe scene with humans. The orig-
inality of his work is the application environment: a soccer
stadium ([1] and [10]) and the inference method based on
time interval logic, to describe temporal sequence of events,
which are computed and typed separatly. Intille and Bobick
(MIT Media lab), in a similar environment, focus on analy-
sis of American football scenes. Their aim is the recogni-
tion of particular strategies in the complex players’ interac-
tions ([11] and [12]). The main point is that those activi-
ties are not just human behaviors but human group behav-
ior. Shah (University of Central Florida) is interested by
dynamic description of human behaviors in office environ-
ments ([2] and [8]). Even if the problem is the recognition
of long duration activities, the authors insist on the impor-
tance of the recognition of ’key instants’ which are the con-
ditions of changing states in an automaton representing the
global behaviors. The “Key instants” are generated when
certain conditions are realised.

Tessier (ONERA), in the PERCEPTION project, pro-
poses an original method to describe behavior. Petri nets
are used to represent dynamic evolutions of a car park scene
with humans and vehicles ([16] and [4]). Buxton and Gong
(University of Sussex) gave an important contribution to the
domain with the VIEWS project ([3]). The system was able
to deal with humans and vehicles on roads, streets or in car
parks. A high level representation based on Bayesian net-
works was computed. This work points out the necessity
to deal with uncertainty and to use contextual information
to enhance detection and tracking results. In the same vein,
Ivanov and Grimson (MIT) work on detection of human and
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vehicle behaviors in car park. The interest of this research
is in the event’s combination method ([13]). A behavior is
represented by a set of rules based with a stochastic context-
free grammar, which allows certain combinations of simple
constant predicates. The general scheme of our approach
is based on the use of predefined scenarios [6] and a pri-
ori contextual information [5]. In this paper we propose a
method based on both n-ary tree to declare events [17] and
temporal logics to declare application dependent scenarios.

3. Perception

In this section we will shortly present the perception
component we have used. A more detailed description can
be found in [15]. The perception methods are standard ones
which verify the real-time constraint hypothesis. Their role
is to incrementally provide a history of the persons who
have been detected in the scene. It is composed of four
main sub-parts: motion detection, person detection, person
tracking and smoothing. Each sub-part contains alternative
methods which are manually selected and parametrized in a
configuration phase.

3.1. Motion detection

Motion detection is basically a thresholding of the dif-
ference of the current image with respect to a reference im-
age. Before the difference is computed we filter the current
image with a � � � gaussian filter to reduce noise. Then
for each pixel we compute the absolute difference between
its intensity (grey or colour) and the intensity of the corre-
sponding pixel in the reference image. If this difference is
greater than a certain threshold �, the pixel is marked as
mobile and otherwise it’s marked as stationary. We then
update the reference image Ir with information from the
current image Ic according to the following equation:

Ir � ��� �� Ir � �Ic

We see that for � � �we detect motion as the difference be-
tween subsequent images in the sequence and that for � � �
motion is detected with respect to a fixed background im-
age. � and � are parameters of the motion detector.

3.2. People detection

The goal is to detect which mobile regions (blobs) cor-
respond to a person. We use a model of a person with 8
parameters: the position of the center of gravity �px img ,
pyimg�, the height himg and the width limg in the �D im-
age, the �D position �px�D � py�D� on the ground plane
of the scene, the �D width l�D and the �D size h�D. The
bounding box of a person is defined by the image measures

�pximg , pyimg�, himg et limg . The people detection algo-
rithm analyzes the set of blobs. Both �D image criteria
and �D scene criteria are used. The first ones are based on
the �D distance between blobs in the image. The goal is
to merge the closest blobs in the image. The second ones
are based on constraints on the �D height and width. The
�D measures are obtained by linear projection of the image
plane.

3.3. People tracking

The goal of this step is to update the set of trajectories.
For that purpose, the persons who have been detected in the
current image must be matched with those detected in the
previous ones. This matching can be defined as a function
from the set Pt�� of persons detected a time t � � into the
set Pt of the persons detected a time t. We use 3 alterna-
tive methods: a method based on the amount of overlap in
the �D image, a method based on the proximity of the per-
sons in the �D scene and a restrictive method based on the
proximity of the persons in the �D scene. The first method
(based on the amount of overlap in the �D image) states that
two persons detected at two consecutive times are the same
real person if the percentage of overlap of their bounding
box is greater than a threshold. The second method matches
a person at time t with a person at time t� � if their �D dis-
tance is below a threshold. The third method is similar to
the second one, but the function must be either an injection
or a surjection.

3.4. Smoothing

The first goal of this step is to correct errors made in the
previous perception steps on the different �D measures of
a person: �px�D� py�D� the position on the ground plane,
himg the height and limg the width. The second goal is to
estimate �vx�D � vy�D� the instantaneous speed of the per-
sons. Three smoothing methods are used. The first method
uses a standard Kalman filter. The state vector is defined
by �px�D � py�D� vx�D � vy�D�. The linear dynamic model
is based on the hypothesis of a constant speed. The second
and third methods are respectively median and mean filter-
ing with temporal window size 3, 5 or 7 . �vx�D � vy�D�

is initialized by computing v�t� � p�t��p�t���
�t

then each of
the four values px�D, py�D, vx�D and vy�D are filtered.

4. Contextual information

As our goal is to provide a framework which can be
adapted to specific conditions we propose to define two
kinds of a priori informations : contextual information (see
this section) and predefined scenarios (see section 5). Con-
textual information is an a priori information which con-
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tains a description of the static environment observed by a
camera. For each particular camera looking at a particular
environment, a security operator must provide, in a configu-
ration phase, pertinent information according to the formal-
ism we propose. For more details on the role of context in
video understanding see [5]. The context contains in addi-
tion to geometric information some semantic information.
Its structure is made of a set physical objects, a set of in-
teresting areas and a calibration matrix which enables the
passage from the 2D image plane to 3D coordinates.

The geometry of the interesting areas is described by a
list of polygons defined in planes which may have any ori-
entation. The geometry of each physical object, or piece of
equipment, is a generalized cylinder defined by its height
and its polygonal basis.

The semantic information of each piece of equipment
and of each interesting area is made of six attributes : four
with symbolic values and two with numerical values. The
four attributes with symbolic values are : the type (equip-
ment or area), the function (i.e. table, seat, corridor, etc...)
the name (i.e. seat3, corridor2, etc...) and characteristics
(i.e. yellow, fragile, etc...). The two attributes with numer-
ical values which are very useful for scenario recognition
are: the normal distance and the normal time of usage of an
equipment.

Figures 1 and 2 show two examples of environments we
have modeled; for each example the left image shows the
view observed from the camera and the right image shows
the 3D model of the same environment based on the geo-
metrical information contained in the context. For instance
for the first example of a coffee room the context contains:
the calibration matrix, the description of nine pieces of
equipment (three seats, one table, one coffee machine, one
elevator, one dustbin, one door, and one heater) and the de-
scription of three areas (a seat area, an entrance, and a corri-
dor). The second example is a real scene of metro station in
Nuremberg which has been selected in the european project
AVS-PV. This is an entrance of a metro station, eight equip-
ments and two areas have been defined. The equipment are
six turnstiles and two ticket vending machines. The areas
are an entrance and a corridor.

Figure 3 shows an example of the complete description
of a ticket vending machine for a metro station in Nurem-
berg.

5. Interpretation

In this section we adress the problem of high-level
description of mobile object behavior using generic ob-
servable events and application-dependent scenarios. The
recognition process of temporal concepts can be reduced to
the recognition of atemporal ones: object states. An event is
a spatio-temporal property which represents a significative

Figure 1. Left: image of a coffee room. Right:
�D scene model.

Figure 2. Left: image of a metro station.
Right: �D scene model.

name = ticket vending machine 1
type = equipment
function = ticket vending machine
characteritics = fragile
proximity = 100 cm
normal time = 30 s
polygon = ([0, 415, 0],[0, 520, 0,],

[-50, 520, 0], [-50, 415, 0])
height = 180 cm

Figure 3. Example of description of a ticket
vending machine
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change in the state of objects in the scene. Typical events
usally are “to enter”, “to start running”, “to stand up” or
“to leave”. The algorithm for event recognition is the fol-
lowing : an event is recognized if for a given object state,
the value of this state is significantly different between an
image (corresponding to time t�) and another image (corre-
sponding to time tn, with tn � t� � drec. The time interval
between I� and In is called recognition delay drec.

For instance, if a person is, at time t�, far from a coffee
machine then close to that coffee machine at time tn, then
the event “the person moves close to the coffee machine” is
recognized.

The problem of event recognition can be reduced to the
atemporal problem of finding a set of states describing the
scene with enough accuracy. In other words, solving the
problem of event recognition is reduced to solving the prob-
lem of symbolic description of the scene. So, if for each im-
age we have a symbolic description of the scene, it is suf-
ficient to compare these descriptions to know the changes
which had happened, i.e. the events which have occured.
This scene description must perform the passage from nu-
merical to symbolic values and must be generic enough to
be applied to different environments and different applica-
tive domains.

5.1. State model

The objective is to provide a set of generic states based
on a formalism which enables its extension and its parame-
trization. A state of objects in the scene is defined by an
n-ary tree which represents the way this state is computed
(see Fig. 4 an abstract example of such a tree). Four types
of nodes are distinguished: object nodes, descriptor nodes,
operator nodes and classifier nodes (see below for their de-
finition). The leaves of this tree are the objects involved
in that state. Father nodes of the leaves are numerical de-
scriptors of these objects. All intermediate nodes are oper-
ator nodes. The root node is always a classifier node which
computes the symbolic value of the object state. The mini-
mal tree structure is reduced to 3 nodes, 1 object leaf node
1 descriptor intermediate node and 1 classifier root node.
The number of branches of the tree and the length of the
branches are free.

Objects. Objects are the objects of the scene at time t,
i.e. an element of O, the set of the objects oi�j where i is
the class of the object and j its label. For instance the object
operson�� is a mobile object which has been recognized as
being a person and whose label is 1. oequipment�door� is an
object belonging to the class equipment labeled as door2.

Descriptors. Descriptors are functions defined from O

to Rp to access an object measure. For instance, the size,
the position, the shape, the trajectory, the orientation or the
volume are possible descriptors. This notion ensures the

OO

CLASSIFIER

OPERATOR

DESCRIPTOR 1 DESCRIPTOR 2

class1, label1 class2, label2

STATE  

Figure 4. Example of state modeling. Objects
are in light grey, descriptors are in grey, the
operator is in dark grey, and the classifier in
black.

anchoring of the model in the numerical results of the per-
ception component.

Operators.Operators are functions defined from �R p� �
� � � � Rpn� to Rq in order to operate on the measures. Ex-
amples of operators are the distance, the norm, the classical
arithmetic or logic ones.

Classifiers. Classifiers are functions defined from Rp to
S, the set of authorized symbols of the state. For instance
close and far can be possible symbols for a state. These
classifiers ensure the passage from numbers to symbols by
defining a numerical domain of definition for each symbolic
value.

We have used this model of state to define a first set of
states (see two examples on figure 5). For that we have
defined three classes of objects, four descriptors, four oper-
ators and eight classifiers.

The 3 classes of objects are person, area, and
equipment. Persons are the mobile objects of the scene
which have been detected by the perception component.
Persons are described by a vector �px�D � py�D� repre-
senting the location of the person on the ground, a vector
�vx�D � vy�D� representing the speed vector of the person
and the size h�D of that person. Areas and equipments are
those which are defined in the context (see Section 4). An
area is a static object representing a subpart of the ground
of the scene with a polygon. An equipment represents any
volumic object of the environment for which we know the
polygonal basis and the height h.

The 4 descriptors are: position, size, speed and shape.
More precisely: position�oi�j� applied to a person gives
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Figure 5. Two instances of the model of state.
Objects are in light grey, descriptors are in
grey, the operator is in dark grey, and the clas-
sifier in black.

access to �px�D � py�D�, size�oi�j� applied to a person or
to an equipment enables us to recover its size, speed�o i�j�
applied to a person returns the speed vector �vx�D � vy�D�
and shape�oi�j� applied to an equipment or an area returns
its associated polygon.

The 4 operators are: distance the euclidean distance,
norm the norm of a vector, angle the angle between two
vectors in degrees and constr an operator which constructs
a �D vector with its scalar components.

We have defined 8 classifiers which compute 8 states:
posture, direction, velocity, location, proximity,
relative location, relative posture and relative walk

. For instance we have defined (see figure 5) the state
relative walk�operson�i, operson�j ) by measuring the angle
between the speed vectors of operson�i and operson�j and
the distance between these two persons. If the speed vec-
tors have a similar orientation (an angle below 45 degrees
or greater than 315 degrees) and if the distance is small (be-
low 200cm) then these persons are considered as having a
coupled relative walk.

5.2. Event recognition

Event recognition is now straight forward: for each im-
age frame the object states are computed with the current
objects detected in the scene at that time. If for a detected
object and for a state model, there is a change in its sym-
bolic value a new event is created at that time.

The 8 predefined state models enable us to define 18
types of event.
Posture changes create the events operson�i falls down or
crouches down or stands up.
Direction changes create the events operson�i
goes right side or goes left side, or goes away or ar-
rives. Velocity changes create the events operson�i stops or
walks or starts runing.
Location changes create the events operson�i leaves or
enters oarea�j .
Proximity changes create the events operson�i
moves close to or moves away from oequipment�j .
Relative location changes create the events operson�i
moves close to or moves away from operson�j .
Relative posture changes create the event operson�i sits on
oequipment�j .
Relative walk changes create the event operson�i and
operson�j walk together.

5.3. Scenario recognition

The final problem is to incrementally recognize prede-
fined scenarios representing behaviors. A scenario is an in-
terdependent set of events. To recognize a scenario implies
to recognize all the events which compose it and to verify
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their dependencies. The constraints can be temporal, spa-
tial, logical or algebraic.

We will now give details of the scenario model we use. A
scenario si�t, where i is the scenario identifier and t the cur-
rent time of recognition, is composed of four parts: Events,
Constraints, Conditions, and Success. Examples of scenario
are shown in next section (see Fig. 6, 7, 11 and 12).

Events. They are the events fe�� ���� ei� ���� eng requested
by the scenario. Each event ei is associated with the variable
ti which represents the time when ei occured. There are two
categories of events in this part: positive events and negative
events. Positive events must occur for the total recognition
and negative events must not occur during scenario recog-
nition.

Constraints. They are temporal constraints
fc�� ���� ci� ���� cmg. Those constraints are described as
first degree linear inequations on t�� ���� ti� ���� tn .

Conditions. They are non-temporal constraints
fk�� ���� ki� ���� kpg on the objects involved in the events. It
forces an event object attribute to a predefined value. This
attribute can be symbolic (name, function, etc...) or numer-
ical (height, size, velocity, etc...).

Success. They are keywords ff�� ���� fi� ���� fqg, which
indicate the kind of feedback associated with the scenario.
This part is used when the scenario is totally instanciated.
There are two kinds of feedback: external and internal. Ex-
ternal feedback is used to trigger an alarm to the security
operators and internal feedback is used to generate an event
to signify that the scenario has been totally recognized.

A scenario can be totally recognized, when all the events
are recognized and all the constraints are verified; it can
be partially recognized, when a subset S of all events are
recognized and the constraints involving events of S are
verified; when no event of a scenario are recognized, this
scenario is called a blank scenario. The principle of the
scenario recognition algorithm [6] consists of two points:
as previously described, we generate, image after image,
interesting events which happened in the scene, then with
those events we instantiate in parallee predefined scenario
models. It means that scenario recognition corresponds to
updating a set of partially recognized scenarios. This sce-
nario recognition method is an extension of the work on
chronicles explained in [9].

In short, given a set of scenarios
fs��t��� ���� si�t��� si����� ��� sk��g composed of par-
tially recognized at t� � scenarios and blank scenarios and
a set of events fe��t� ���� en�tg recognized at t, the principle
of scenario recognition is based on two points.

For each sj � fs��t��� ���� si�t��� si����� ��� sk��g, for
each event of sj if the event matches an event e��t� ���� en�t
and verifies the temporal constraints c�� ���� ci� ���� cm and
the non-temporal constraints k�� ���� ki� ���� kp, we create
sj�t. It results a new set fs��t� ���� sl�tg of scenarios. In this

Scenario
Name = “forbidden access to area”,
Events = (t�� enters�p� � Person� a� � Area)),
not(t�� leaves�p� � Person� a� � Area)),
Constraints = t� � t�� t� � t� � ���,
Conditions = function(a�, “forbidden_access”),
Success = alarm(p�, “has entered area”,a�)

Figure 6. AVS-PV scenario model:“forbidden
access to area”

Scenario
Name = “graffiti on wall”,
Events =
(t��moves close to �p� � Person� e� � Equipment)),
not(t�� moves away from �p� � Person� e� � Equipment)),
Constraints = t� � t��

t� � t� + normal_presence_time(e�),
Conditions = function(e�� ”wall”),
Success = alarm(p�, “doing graffiti onto”,e�)

Figure 7. AVS-PV scenario model: “graffiti on
wall”

context, an event of sj matches e��t means that e��t is an
instance of this event.

We remove invalid scenarios si�t from fs��t� ���� sl�tg, if:
-one negative event ek of si�t has been instanciated,
-one of the c�� ���� ci� ���� cm implies that si�t will not be in-
stanciated.

6. Results of metro station applications

In this part, we will describe the results obtained on
real visual surveillance applications for metro stations. The
videos come from the CCTV networks of the metro opera-
tors partners of the AVS-PV european project. We have for-
malized the expertise of three security engineers in a knowl-
edge base containing currently 15 scenarios.

Metro Station in Brussels. In the following, we de-
tail how two scenarios described in figures 6 and 7 are
recognized. These scenarios belong to the knowledge base
built for AVS-PV european project and videos have been
recorded in a STIB Metro Station in Brussels. The camera
observes the platform of a metro station. The aims of those
two scenarios are: to prevent vandalism against equipment
and to ensure the safety of passengers.

At t�, a detected person (named Person 1 in the foll-
lowing) goes inside the tracks area. The event “person 1
enters tracks area is triggered. This area is labelled as a
forbbiden area, so the first event of “forbidden access to
area” scenario is recognized. Several frames after, at t� (see
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Figure 8. Left: Metro platform in Brussels at
t�. Right: 3D position of the detected person
(represented by a cylinder) w.r.t the context.
An alarm ‘forbidden access to area” is sent to
the security operator.

Figure 9. Left: Metro platform in Brussels at
t�. Right: an event “person 1 moves close to

equipment wall” is detected.

Fig. 8), Person 1 is still inside the “tracks” area, so the
event ”Person 1 exits the “tracks” area” has not been trig-
gered. The non-occurence of the event matches the second
event (negative event) of the scenario “forbidden access to
area”. An alarm is sent to the security operator.

Further at t� (see Fig. 9), Person 1 is close to the equip-
ment “wall”, so the event “person 1 moves close to equip-
ment wall” is triggered. This event instanciates the first
event of the scenario “graffiti on wall”.

Further at t� (see Fig.10), Person 1 is still close to the
equipment “wall”, so the event “person 1moves off equip-
ment wall” has not been triggered. The non-occurence of
the event matches the second event (negative event) of the
scenario “graffiti on wall”. An alarm is sent to the security
operator.

Metro Station in Nuremberg. In the following, we de-
tail how two other scenarios described in figures 11 and 12
are recognized. These scenarios belong also to the knowl-
edge base built for AVS-PV european project and videos
have been taken in a VAG Metro Station in Nuremberg
(Germany). In this example, the camera observes the en-

Figure 10. Left: Metro platform in Brussels at
t�. Right: an alarm ‘graffiti on wall” is sent to
the security operator.

Scenario
Name = “Presence period near fragile equipment”,
Events =
(t��moves close to �p� � Person� e� � Equipment)),
not(t�� moves away from �p� � Person� e� � Equipment)),
(t�� stops�p� � Person)),
Constraints =
t� � t�� t� � t��

t� � t� + normal_presence_time(e�),
Conditions = function(e�� ”fragile”),
Success =
alarm(“Presence period near equipment”,e�),
loopback(t� , presence_period_near_fragile, e�, p�)

Figure 11. AVS-PV scenario model: “Pres-
ence period near fragile equipment”

trance of a metro station. The aim of those two scenar-
ios is to prevent vandalism against ticket vending machines.
These machines have been defined in the context (see Sec-
tion 3) as fragile equipment.

At t�, a detected person (named Person 1 in the folllow-
ing) is far from an equipment labeled as “fragile”. Further
at t� (see Fig. 13), person 1 is close to equipment labeled as
“fragile”, so the event “person 1 moves close to an equip-
ment” is triggered. The first event of scenario “Period near
fragile equipment” is instanciated.

Further at t� Person 1 is still close to the machine, so the
negative event of scenario “Period near fragile equipment”
is instanciated. Secondly, the fact that Person 1 stops trig-
gers the event “Person 1 stops”. The three events of the sce-
nario “Period near fragile equipment” are recognized and an
alarm is sent to the security operator. The complete recog-
nition of this scenario triggers the specific loopback event:
presence_near_fragile” equipment. This specific event
matches the first event of the scenario “Repeated Presence
period near fragile equipment”. Then at t� (see Fig. 14) an
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Scenario
Name = “Repeated period near fragile equipment”,
Events =
(t�, presence_period_near_fragile, e�, p�),
(t�� moves close to �p� � Person� e� � Equipment)),
not(t�� moves away from �p� � Person� e� � Equipment)),
(t�� stop�p� � Person))
Constraints =
t� � t�� t� � t�� t� � t��

t� � t� + normal_presence_time(e�),
Conditions = function(e�� ”fragile”),
Success = alarm(“Vandalism on ”,e�)

Figure 12. AVS-PV scenario model: “Re-
peated Presence period near fragile equip-
ment”

Figure 13. Left: Metro entrance in Nuremberg
at t�. Right: an event “person 1 moves close to

an equipment” is detected.

Figure 14. Left: Metro entrance in Nurem-
berg at t�. Right: an event ‘person 1
moves away from an equipment” is detected

Figure 15. Left: Metro entrance in Nuremberg
at t	. Right: a “Vandalism’ ’alarm is sent to
the security operator.

other event is detected because the Person 1 moves away in
the direction of the corridor to check is anybody is arriving.

At t	 (see Fig. 15), the event “Person 1 moves close to

equipment” is triggered. This equipment is the same equip-
ment that the one at t�. The scenario “Repeated Presence
period near fragile equipment” is now totally recognized.
An alarm is sent to the security operator.

The results of these applications were considered very
satifactory by the metro operators. The richness of the for-
malism for scenario description allows to specify a set of
constraints (temporal as well as atemporal ones) which re-
duce false alarms. The formalism we have proposed for
scenario description has enabled us to represent the exper-
tise for these applications. The knowledge modeling is still
difficult. The main reason is that we need to manage the
passage from vague security concepts (such as “abnormal
behavior”) to rigorous scenario models. These results have
been processed off-line on a Sun Ultra10 workstation. The
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computing time per image is between 220ms and 530ms
for the complete chain (including perception and interpreta-
tion). Among the 25 images digitized per second, 5 images
(one per 200ms) are processed.

7. Conclusion

In this paper we have shown that high-level video un-
derstanding can be performed based on images taken from
a single static camera and with simple perception methods
working almost in real-time. This has been possible by us-
ing two sets of a priori information: first, contextual infor-
mation describing the �D geometry of the observed scene
and semantic information on the static objects and interest-
ing areas, second, general knowledge of predefined scenar-
ios valid for an application domain. We have proposed a for-
malism to represent these two types of a priori information
and explained how to use them for video understanding. We
have also proposed a formalism for event recognition based
on object state models. This formalism is independent of
a particular application domain and enables the passage be-
tween the perception data and the scenario models. The cur-
rent video understanding framework we propose has shown
several limitations. One type of problems is the imprecision
and uncertainty in the detection and location of mobile ob-
jects; most of these low-level detection errors are due either
to reflections, shadows or occlusions. A solution to cope
with these problems is to relax our second hypothesis and
not to restrict ourselves to the use of a single camera. An-
other more general problem is that as every vision system,
this framework needs, for each perception method and for
each interpretation method, to set the values of numerical
parameters in a configuration phase. One solution to solve
this problem is to use learning techniques to find the best
parameter values for an application.
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