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1 Introduction

The objective of this chapter is to show how explicit expertise can help solv-
ing complex image processing problems. Two different kinds of problems are
addressed : the use of an image processing library and the automation of
image understanding.

A major problem image processing library users are faced with is how
to build an application for a specific problem. For instance how to select the
programs and how to set the tunable parameters to get pertinent information
from the images at hand. This problem has been addressed by researchers
in the field of artificial intelligence and image processing and is often called
intelligent image processing, program supervision, software re-use or even
software configuration.

A second difficult problem which has been addressed for years by re-
searchers in the field of artificial intelligence and image processing is how to
extract the semantics contained in an image or a set of images. This prob-
lem of image understanding can range from object recognition in the case
of a static image to event and scenario recognition in the case of temporal
sequence of images.

First in section 2 we briefly introduce artificial intelligence concepts and
more precisely knowledge-based techniques. These techniques are then used
in section 3 to build intelligent image processing systems and in section 4 to
build intelligent image understanding systems.

2 Artificial Intelligence

It is very difficult to find a unique definition of Artificial Intelligence (A.IL. in
short). Among the various definitions available in the literature ([5],[6],[19],
[4], [46]) we have selected the two following ones: “A.I. is an attempt to build
computable models of cognitive process”, or “in A.l. we affect to computers
tasks which would be considered as intelligent if they were performed by hu-
man beings”. In fact these definitions illustrate two main reasons to study A.
I.. Researchers in cognitive psychology and cognitive science want to study
the human brain; their interest is finding programs simulating human per-
formances. So they are close to the first definition. Computers scientists and
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engineers want to extend the capabilities of computers; their interest is in
technological applications of Artificial Intelligence. Their motivation is closer
to the second definition of A. I.. Let us briefly study the application domains
of A.I. with respect to the results obtained so far. Games have been among
the first application domains. Very good results have been obtained for diffi-
cult tasks as playing chess as the best systems are able to reach the level of
experts; on the same way automatic theorem prover are able to solve scholar
problems in group theory, topology, geometry or mechanics. For years the
domain of medical diagnosis has been studied by A.I. scientists and experts
systems were able to produce diagnosis and to propose treatments for par-
ticular diseases. On the contrary for domains very close to daily life, like
natural language understanding, speech understanding and visual perception
the results are very far from what a children can do easily (i.e. to speak and
to see).

2.1 Knowledge-based systems

In this section we introduce the notions of knowledge-based systems and
knowledge representation which will be useful in the following. Knowledge-
based systems are the successors of the old expert systems based on pro-
duction rules and inference engines. Dendral which has been developed by
a team in Stanford in 1970 for mass spectrography in chemistry is consid-
ered as the ancestor of the expert systems. The first expert system, Mycin,
has been created in 1974 for diagnosis of infectious blood diseases (for more
detailed historical information see [5] and [46]). The main idea of expert sys-
tems is to simulate the behaviour of a specialist in a very precise domain.
The objective is to cope the absence of a specialist either for problem solving
or for teaching. Expert systems are software tools which use the knowledge
provided by a specialist, which are able to handle symbolic and uncertain
data and which use a reasoning strategy. These systems separate knowledge
contents and deductive tools using this knowledge. They are not classical
softwares as there is a clear distinction among the different roles in their
building and their use. Three roles are distinguished: the end-user, the ex-
pert and the software engineer. More precisely the end-user fills the base of
facts with data to be processed; the expert builds the knowledge base with
the expertise of the domain; the software engineer builds a reasoning engine
which is independent of the expert’s domain but which implements a rea-
soning strategy. Knowledge-based systems on the contrary to expert systems
are not restricted to production rule as knowledge representation scheme and
the reasoning engine is not limited to an inference engine. Different types of
reasoning have been experimented in the literature to solve various problems.
Among them the main ones are classification, diagnosis, design, simulation
and planning.
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2.2 Knowledge representation

A knowledge representation is a set of syntactic and semantic conventions
to describe a piece of knowledge. In order to build knowledge bases the ex-
perts describe the contents of their knowledge using knowledge representation
schemes. A knowledge representation scheme must allow to explicit what is
important and must be easy to handle. Two main knowledge representation
schemes are presented in the following, production rules and frames. These
schemes will be used in section 3 for representing the knowledge on the use
of image processing library and in section 4 for representing the knowledge
on image understanding.

Production rules Production rules are directly inspired from predicate
logic and the inference capabilities of modus ponens. A production rule very
generally expresses an “if-then” relashionship.

General syntax for production rules
Rule ruleX
comment : "a comment explaining the rule"
if
condition
and/or
condition
then
conclusion

which means that if a set of conditions are true then the conclusion holds.
For instance in the domain of the bridge game, if we want to express that
during bidding one can open with a specific distribution, we can use the
production rule R1bridge:

Example of production rule
Rule Rlbridge
comment : "bidding rule for opening"
if
balanced hand
and
16 to 18 head points
then
opening 1 no trump.

This rule means that if we have a balanced hand and between 16 and 18
head points then we can open at the level of 1 no trump.

Each piece of knowledge can be expressed with a different rule. A knowl-
edge base can contain hundreds of production rules. It is very easy to add,
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modify or remove a production rule in a knowledge base. This allows to ex-
tend or update a knowledge base. Production rules can be grouped in different
sets to structure the knowledge and help the reasoning.

The power of expression of production rules relies on the kind of logic
they are based. For rules based on propositional logic symbols represent all
propositions or facts, everything is a constant. It was the case in the previous
example for bidding rule Rlbridge. A usual kind of production rules are
rules based on 0+ order logic. The formalisms (object, attribute, value) or
(attribute, value) are used; the values can be referenced. The rule R2 shows
an example of 0+ order production rule, where the value of the temperature in
the room is not directly given in the rule but referenced through the attribute
room-temperature.

Example of 0+ order production rules
Rule R2
comment : "use the heater if the temperature is too low"
if
room-temperature < 19
then
change heating-status to on.

For rules based on first-order logic or predicate logic quantifiers and vari-
ables can be used. The rule R3 shows an example of first-order production
rule, where two variables X and Y and one quantifier, 3, are used.

Example of first-order production rules
Rule R3
comment : “ track mobile regions which are possible human beings"
if
3 mobile object X
and
shape of X = human
and
1.4 meters < size of X < 2 meters
then
track X.

In conclusion we can say that production rules are simple, in particular
in the case of propositional logic; they are very modular and readable. They
allow fast modifications of a knowledge base and explanations are easy to
provide to a user. On the contrary they have different drawbacks: the knowl-
edge is fragmented, the uniform formalism for expressing the knowledge leads
to a lack of efficiency for problem solving.

Frames A Frame is a knowledge representation scheme which comes from
cognitive research on human reasoning. The hypothesis is that human beings
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refer when reasoning to prototypes already stored in memory and compare
them to objects or events corresponding to new situations.

Minksy in 1975 has proposed Frames for previsions concerning structured
objects. Schank in 1977 has proposed Scripts for previsions concerning se-
quences of events. The concept of Frames is a declarative knowledge repre-
sentation scheme well adapted for structured object descriptions.

A Frame is a set of attributes (or properties). Each attribute has several
slots which describe the characteristics of the attribute. The attributes are
very dependent of the nature of object it represents. The slots are predefined
general characteristics useful for any kind of attribute; classical slots are the
type, the current value, a default value, a possible range of values. Framel is
an example of frame with n attributes and 4 kind of slots.

Framel
Attributes Slots Slot values
attribute 1 type type-value
value attribute-value
default default-value
attribute 2 type type-value
value value
range-of-values range-value
attribute 3 type type-value
value attribute-value
range-of-values range-value
default default-value
attribute n type type-value
value attribute-value
range-of-value default-value
default default-value

The general frame Framel

A frame is useful to describe a general concept, as the concept of a chair.
The frame Chair here-after describes a chair in terms of a number of legs, a
back and a number of arms.
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Frame:Chair

number-of-legs type integer
value unknown
default 4

back type symbolic
value unknown
range-of-values (straight, curved)

number-of-arms type integer
value unknown
range-of-values (0, 2)
default 0

The frame Chair describing a general chair

Frames are also useful to describe particular objects or instances of a class
of objects. The following example of frame, John’s chair, describes a specific
chair (i.e. John’s chair); the attributes are the same as for the general frame
Chair but attributes values are set to John’s chair description. For instance
the back is curved.

Frame:John’s chair

number-of-legs type integer
value 4
default 4

back type symbolic
value curved
range-of-values (straight, curved)

number-of-arms type integer
value 0
range-of-values (0, 2)
default 0

A frame describing a particular instance of chair

The properties which can be described with frames are: internal properties
( size, age, color,etc...), structural properties (subparts), relations between
objects (close-to, above, etc..), roles (father, server, etc...).

Frames can be organized in hierarchies, with inheritance of structure,
values or daemons. Typical links between the frames are specialisation and
instantiation links. The specialisation link kind-of enables to define sub-
classes. The instantiation link is-a enables to attach to a general class several
instances.

Frames are mainly a declarative static representation. However a certain
level of dynamicity exists because procedures can be attached to the at-
tributes to guide the reasoning. In particular specific daemons can be defined
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in slots. For instance very often a slot if-needed allows to attach a function to
compute the value of an attribute if the value is unknown. Another possibilty
is to define a slot if-added to use a function to check some coherency if the
value of the attribute has been filled.

Frames have got a very large success due to appropriated languages as
frames language (i.e. KRL). Their impact has been larger than knowledge
representation domain. They have strongly influenced the design of he object
oriented languages in computer science (i.e. smalltalk, C++).

Hybrid representation There is no unique universal representation scheme.
Rules and Frames have their specificity and can be used in hybrid systems
in different ways: cooperation where rules describe heuristics and frames rep-
resent the objects and their relations, frames can be referenced in rules,
frames can activate rule bases (using daemons), rules can be frames which
are grouped into classes.

2.3 Conclusion

The initial goal of Artificial Intelligence was very ambitious. After years of
research in this domain, it appears that building a general problem solver
(see GPS in the seventies) and aiming at representing the general knowledge
we have on the world is an utopy. On the contrary Artificial Intelligence has
provided efficient tools for modelling reasoning and for knowledge represen-
tation. We will describe in the following how the techniques can help solving
specific problems when the knowledge is well formalized.

3 Intelligent Image Processing Systems

The field of image processing has produced a large number of powerful pro-
grams and many different program libraries have been developed. In such
libraries the individual programs are integrated from a low-level point of
view. But no support is provided to users who need to solve practical image
processing problems. Every end-user cannot have a deep understanding of
program semantics and syntax. Inexperienced ones may only have a basic
understanding of the field of image processing and its terminology. On the
other hand, programs implement more and more complex functionalities and
their use is equally difficult. If it is too demanding for an end-user to catch
the complexity of new programs, these programs will never be widely ap-
plied. In this section our goal is to present program supervision techniques
to help users manage image processing techniques that are needed for their
applications. From the analysis of the task of an image processing expert
who processes data using a set of programs, knowledge models related to this
task have been derived. Based on these models, knowledge-based systems for
program supervision take in charge the management of the library use and
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free the users of doing it manually. This aid can range from an advisory guide
up to fully automatic program monitoring systems. The basic idea is to au-
tomate the choice and execution of programs from a library to accomplish a
user’s processing objective. This is done by encapsulating the knowledge of
program use in a knowledge base and by emulating the strategy of an expert
in the use of the programs.

3.1 Program Supervision

Program supervision is a research domain with an increasing number of work
coming from many applicative and technical domains [56]. These research
activities are often motivated by a particular application domain (as image
processing, signal processing or scientific computing). Contrary to knowledge-
based systems for image interpretation which have been studied for about 20
years, knowledge-based systems for image processing program supervision are
more recent. In Japan, numerous teams, belonging both to the research and
to the industrial sector, have spent an important effort on this problem (see
[58], [47] and [35]). In Europe work has been developed either as research on
general tools (as OCAPI [18]) or as industrial tools for a particular application
(as the VIDIMUS Esprit project [10]). In the United States early work has
been done by Johnston [32] and by Bailey [3]. Recently [26] and [15] have
used planning techniques for composing image analysis processes.

Program Supervision aims at facilitating the (re)configuration of data
processing programs. Such a configuration may involve the chaining of many
different programs. It is to note that the program codes usually pre-exist (in a
library, for example) and the goal is not to optimize the programs themselves,
but their use. A program supervision knowledge-based system helps a non-
specialist user to apply programs in different situations as shown in figure
1.

User request | program Supervision
plan system
- PSengine / Programs
S B B
Knowledge Base ||
0O O

Fig. 1. A knowledge-based program supervision system helps a user (re)use a set
of programs for solving a request on input data 7 to obtain output data O, as
the result of the execution of a plan of programs. It is composed of a program
supervision engine and a knowledge base.

A knowledge-based system performing program supervision is composed
of 1) a set of existing programs, 2)a knowledge base describing how to use
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these programs and 3) a program supervision engine. The role of the pro-
gram supervision engine is to exploit knowledge about programs in order to
produce a plan of programs, that achieves the user’s goal. It emulates the
strategy of an expert in the use of programs. The final plan that produces
satisfactory outputs is usually not straightforward, it often results from sev-
eral trials and errors. The reasoning engine explores the different possibilities
and computes the best one, with respect to expert criteria, available in the
knowledge base. The reasoning of a program supervision system consists of
different phases, that may be completely or only partly automated. The en-
gine of a program supervision system can be decomposed into four phases:
planning and ezecution of programs, evaluation of the results, and repair.
Figure 2 shows the roles and interactions between the different phases.

Program Supervision Engine
Knowledge
Basein Progr
Supervision

1
|

o D plan i ©
\ > | Planning Wanof) Execution | ——mresults

L d
Program » ’ ©

Librar actions — 10 S -

incorrect

Fig. 2. The different phases of a program supervision system

The knowledge base contains operators which are representations of pro-
grams (with descriptions of their data and parameters) and of typical com-
binations of programs, as well as criteria to guide the reasoning process. The
contents of the knowledge base should be sufficient for the engine to select the
programs, to initialise their parameters, to manage non trivial data-flow and
to combine the programs to produce a satisfactory plan of programs, depend-
ing on the input data and user’s request. An exemple showing how an engine
uses this kind of knowledge can be seen in figure 3; this figure presents a
simplified version of the algorithm of the OCAPI program supervision engine
(18)).

In the following we describe the main concepts of a knowledge base in
program supervision : Data, Goals, Requests, Operators and Criteria.

e Data contain all necessary information on the problem of the end-user;

o Goals express constraints on the expected final state;

o Requests are instantiations of goals on particular data, under particular
constraints;

e Operators There are two types of operators: primitive and complex
ones. A primitive operator represents a particular program and a com-
plex operator represents a particular combination of programs. Program
combinations correspond to decompositions into more concrete programs,
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global matching

while not all requests have been processed
-2- selection of the request to be processed
-8- classification of the operators (using choice rules)
while the request is not satisfied
-4- selection of the best operator
-5- ezecution of the operator(using initialisation or adjustement rules)

-6- assessment of the

results (using evaluation rules)

Fig. 3. The algorithm of a program supervision engine (OCAPI)

at different levels of abstraction, either by specialization (alternatives) or

composition (sequences,

parallel, loops, etc.).

1. Primitive Operators are the basic components that manipulate
data. Their representation is composed of:
— A functionality (information on “what is the operator for?”);

— A method or an

action (e.g. calling syntax, simulation method);

— Information on arguments (e.g. name, type of input and output
arguments, signature) “what does the operator act on?”;

— Semantical information: characteristics (known by the expert),
constraints, pre and post conditions (on the data);

— Result evaluation criteria, argument initialisation and adjustment

criteria.

An example of a primitive operator thres-hyst is shown in figure 4.
The functionality is thresholding, the corresponding program hyster
works with a hysteresis method and two thresholds; it has an input
image, two tunable parameters (two thresholds) and an output image;
several preconditions on the input image coding format and noise are
specified and the effect on the output is set.

Output arguments
Parameters

Preconditions

Effects
Calling syntax

Name thres-hyst

Functionality thresholding

Characteristics >-1-threshold, hysteresis-method
Input arguments |in : image

out : image

upper-threshold : thres-hyst-threshold
lower-threshold : thres-hyst-threshold
in.coding.format == inrimage
in.presentation.noise.kind == gaussian
out.contents.segmented = value-based
hyster in out -sh upper-threshold

-sb lower-threshold

Fig. 4. Example of a primitive operator
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2. Complex Operators are skeletons of plans, provided by the expert.

They describe the networks of known possible connections between
operators (choice, sequence, entailment, repetition, etc), in order to
achieve a given goal. Each complex operator may be decomposed into
sub-elements. A complex operator may be represented as a graph, the
leaves of which are associated with primitive operators. In addition
to the operator information, complex operators contain information
about data flow between their elements, together with tactical knowl-
edge i.e. criteria to decide how to traverse the network.
An example of a complex operator pyr-level-match is shown in fig-
ure 5. The functionality is pyramidal stereovision matching; it has a
sequential decomposition into three substeps, first images-reduction,
then primitives-extraction, finally stereo-matching; the input, output
arguments are specified and the data flow is expressed.

Name pyr-level-match

Functionality pyramidal-stereo-matching

Input arguments |right-image: promethee-image
left-image: promethee-image

Output arguments|3D-image: promethee-image
Subcomponents  |images-reduction, primitives-eztraction,
stereo-matching

Control DO images-reduction

THEN primitives-extraction

THEN stereo-matching

Data flow stereo-matching.out-image — 3D-image

Fig. 5. Example of a complex operator

e Criteria Various criteria, implemented by rules, play an important role
during the reasoning, e.g. to choose between different alternatives (choice
criteria), to tune program execution (initialisation criteria), to diagnose
the quality of the results (evaluation criteria) and to repair a bad execu-
tion (adjustment and repair criteria).

1. Choice rules The role of a choice rule is to choose between different
alternative operators having the same functionality. An example of
two alternative operators which perform the same stereo-matching
functionality but with different characteristics is shown in figure 6).
An example of choice rule describing how to select between these
operators based on their characteristics is shown in figure 7.

2. Evaluation rules The role of an evaluation rule (also called assess-
ment rule) is to diagnose the quality of the results. Two examples
of these rules are shown in figure 8. The first rule computes an as-
sessment concerning a too big filter size and decides that there is
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Fonctionality : stereo-matching

Operator-1: o-ma-stereo-match
Characteristics: high-quality
low-adaptability
Operator-2: o-meygret-stereo-match
Characteristics: average-quality
high-adaptability

Fig. 6. Example of alternative operators

If context.user-constraints. quality-matching == high
Then use-operator-with-characteristic high-quality

Fig. 7. Example of choice rule

a failure. The second rule displays results to an end-user in case of
an interactive mode and proposes three possible qualifiers (correct,
too-low, too-high).

If zmaz <= 255
and rayleighmaz > 50

Then global-assess filter-size = too-big
and failure

If context.user-constraints.mode == interactive
Then assess-by-user thresholding (correct, too-low, too-high)

Fig. 8. Example of two evaluation rules

3. Initialisation rules The role of an initialisation rule is to set the
value of operator parameters before program execution. Two exam-
ples of these rules are shown in figure 9.

If contezt.details == too-few
Then nitialise thresh to 90

If contezrt.noise == high
Then initialise window-size to 7

Fig. 9. Example of initialisation rules (thresh and window-size are parameters)

4. Repair rules
The role of repair rules is to define a repair strategy after a failure
decided by evaluation rules. For instance the repair rule shown in
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If assessed size == too-low
Then re-execute

Fig.10. Example of a repair rule

figure 10 implements the following strategy : if a bad assessment of
the size has been decided by evaluation criteria, re-execute the same
operator.

5. Adjustment rules The role of an adjustment rule is to propose a
way to tune a parameter value to improve the quality of the results of
an operator. Two adjustment rules are shown in figure 11. The first
rule expresses that the parameter (window-size) needs to be tuned
after a certain type of assessment (noise == too-high) and how this
parameter must be must be changed (increase), the second rule ex-
presses that after an ambiguous detection the parameter thresh must
be decreased and that an option setting must be changed.

If assessed? noise == too-high
Then increase window-size
If global-assess? detection == ambiguous
Then decrease thresh
and option := with

Fig. 11. Example of two adjustment rules (window-size and thresh are parameters)

3.2 Application of program supervision techniques

This section briefly shows examples of program supervision systems for image
processing in very different application domains. Two examples are related
to road obstacle detection and one example deals with medical imagery. In
addition an example in astronomy for galaxy morphology description will be
detailed in a separate section.

Stereovision-based Road Obstacle Detection The objective in this ex-
ample is to use program supervision techniques for the detection of objects,
such as cars, in urban scenes based on stereo data (see figures 12 and 13).
The library of programmes is compounded of 24 modules (mainly a pyra-
midal stereovision algorithm based on contour chain points ([37]). The role
of program supervision is to enable the re-use of these programmes for very
different images. For that 54 numerical parameters must be initialised. In
this example two kinds of problems are automatically detected and repaired:
bad primitive extraction and bad matching. Two other kinds of thresholding
problems are interactively detected and automatically repaired.
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Fig. 13. Detected cars in a urban scene.

Real-time Road Obstacle Detection The second example takes place
in a european Eureka project for driving assistance. The objective is to use
program supervision techniques to perform real-time program configuration
[38]. The programmes are organized into three perception modules:

e a 3-D obstacle detector using telemetry
(3 modes: full-scanning, unique-measure , tracking, and hardware con-
straints)

e an obstacle detector based on mathematical morphology (2 modes:
detection or focusing),

e a motion segmenter (input data: switching between 2 cameras, and
hardware constraints).
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Each module has been developed by a different French vision research lab-
oratory (LASMEA at Clermont, IRISA in Rennes and Mines Paris). The role
of program supervision is to decide which data must be processed and how
they must be processed (module launch or stop, tuning of different modes,
hardware constaints, etc...).

Medical Imaging In this example the objective is to provide a clinician
with better access to new medical image processing techniques [22]. The
images are 3D MRI images of the brain (see figure 14). The programmes are
21 modules (built by Epidaure from INRIA Sophia). The role of program
supervision is to work in interaction with the user leaving them the task
of interpreting the results. The image processing decisions which have been
automated are: scheduling 10 to 15 programmes w.r.t. image characteristics,
initialisation of numerical values for 27 parameters and 7 choices between
alternative methods.

Fig. 14. Brain segmentation of 3D MRI images

3.3 Program supervision for galaxy image processing

We are interested in automating the data processing of images containing a
galaxy. Our objective is to capitalize the knowledge in galaxy image process-
ing. Another important motivation of this work is to provide a complete
tool for automating the classification of galaxies. It is well known that image
processing is a hard task, especially when the images to process are natural
object images. This type of image has several characteristics : natural ob-
jects have very complex shapes and there are no simple geometric models
to describe them. Thus, automating the treatment of such images requires a
great amount of knowledge of image processing. Galaxies are typical natural
objects. They present a great variability in their shapes as well as in their
luminosity depending on many different factors (time of exposure, intrinsic lu-
minosity of the galaxy, the distance between the galaxy and the telescope...)
As our goal is to automatically classify the galaxies like experts ([60]), we



16 Monique Thonnat

have to extract several numerical data describing, as precisely as possible,
the galaxies. So, we need (but this is not sufficient) a system which is able to
process images. This system has to be more intelligent than this ; it has to be
able to adapt itself to different processing situations. One solution is to use
a specialized program in order to process the images. But such a program
is generally too rigid and is not able to adapt itself to different situations
such as different qualities of the input images (e.g. presence of noise), differ-
ent natures of images (intensity, density), different sizes, different acquisition
ways (with CCD camera, with photography scans), and so on. Furthermore,
a specialized program is hardly readable by anybody else than the author.
In consequence, such a program becomes more and more difficult to extend
or to update.

a)Galaxy NG(C4473 b)Galaxy NGC6946

4

]

c)Galaxy NGC4523 d)Galaxy NGC7531

Fig. 15. Examples of possible variations in galaxy images

So we propose to use program supervision techniques dedicated to galaxy
image processing ([51,50]) to automatically adapt the processing to variations
in the images (see figure 15) and to provide optimal input to an automatic
galaxy classification system.

We have developed PROGAL a knowledge-based system dedicated to su-
pervision of a library of programs in astronomy. The library is a set of 37
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Fig. 16. Different steps of the processing of galaxy images

modular image processing programmes. The objective is to automate the de-
tection of a galaxy in an astronomical image and to describe the shape of
the galaxy (see figure 16) . The final result provided by these image process-
ing programs is a morphological description of galaxies in terms of a set of
numerical measures (see figure 17).

A first version of such a system [40] had been developed with the program
supervision engine OCAPIT [18]. Here, We present the knowledge base which
has been developed with the program supervision engine PEGASE. Tt is a
hierarchical skeleton based planner with a sophisticated repair mechanism.
PEGASE is implemented with the LAMA platform [61]. For more details on
the PEGASE program supervision engine see [62].

Knowledge base contents The last version of PROGAL is a large knowl-
edge base. PROGAL contains 88 operators : 49 primitive operators corre-
sponding to programmes and 39 complex operators expressing numerous ab-
straction levels. There are 30 complex operators with sequential decompo-
sitions and 9 complex operators with choice or alternative decompositions.
PROGAL also contains 114 rules : 36 choice rules, 39 initialisation rules, 11
evaluation rules, 21 repair rules and 7 adjustments rules.

A common entity is shared by all these knowledge elements : the Context.
This structured object, implemented by a frame (see figure 18) is used to
express the possible variations in the contextual information for different
galaxy images. This Context describes if the galaxy is a priori centered or
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galaxy : ngc6946

area 1 67886.7 ; contour c3 : { centre_err : §;
ellipticity 1 0.35; ellipse_err : 0.30;
linear err 2 0.084 compactness : 14.1;
profile :1.96 angle 1 50.4
orientation 1 86.46 excentricity : 0.40 };
contour cl : { centre_err : 0; contour c4 : { centre_err : 12;
ellipse_err :0.19; ellipse_err : 0.25;
compactness : 1.8 ; compactness : 25.7;
angle :-9.5, angle 1 55.4;
excentricity : 0.22 }; excentricity : 0.31 };
contour c2 : { centre_err : 7; contour c5 : { centre_err : 20;
ellipse_err : 0.37; ellipse_err : 0.48;
compactness : 8.1 ; compactness : 38.6 ;
angle HEVA/ angle 1 84.2;
excentricity : 0.34 }; excentricity : 0.54 }.

Fig. 17. The output of the processing

not, if the image is noisy or not, if the image has been calibrated or not
(density or intensity images), the minimal size of the objects in the image
and finally if other objects as stars are a priori known in this region of the
sky.

Context

Attributes Values Comments

galaxy-position centered position of the object in the image
uncentered

min-size [1,1000000] minimal size of the object

noise with noisy image or not
without

image-type intensity image type
density

stars in-front-of-the-galazy eventual presence of other objects
absent everywhere
outside-the-galazy

Fig. 18. Description of the contextual information

In the following we describe this knowledge base through two main as-
pects: planning knowledge and repair knowledge.

Planning knowledge Planning knowledge is mainly described with opera-
tors (primitive and complex) as well as choice and initialisation rules.



Knowledge-based Techniques for Vision 19

The global processing for galaxy description has eight sub-steps :

1. Creation and initialisation of the file containing the numerical parame-
ters.

2. Isolation of the object of interest, the galaxy itself. This step is the most
difficult one.

3. Determination of an object-centered coordinate space.

4. Global parameter computing. Once the galaxy is well isolated, parameters
are extracted concerning global properties of the galaxy such as orien-
tation, barycenter, surface, length along the main direction... (see Fig.
17).

5. Contour construction. In order to describe the galaxy in a multi-scale
way, the processing builds five iso-intensity contours. The construction
itself is a complex task which is decomposed in sub-tasks :

o extraction of an average profile of the galaxy along its main axis

e with this average profile, computing of five different thresholds allow-
ing to build five different contours. This step depends on the context :
if the input image is an intensity one, the thresholds are corrected.

e thresholding the input image with the five computed thresholds

e construction of five contour chains

e an optional step allows the user to construct viewable files of the
constructed contours. This step can be important in order to verify
that the processing has been well done or not.

6. Contour parameter computing. For each of the five extracted contours,
several parameters are extracted : orientation, surface, perimeter, length
along the main and the minor axis, barycenter, distance between the
contour and its approximation by an ellipse.

7. Visualization. Then, optionally, the visualization of the superimposed
contours with the ellipses is possible by construction of viewable files (see
Fig. 16).

8. Storing of the numerical parameters in a file

This decomposition is expressed in the knowledge base by a complex oper-
ator c-galaxy-description with a sequential decomposition into eight sub-
steps as shown in figure 19.

Among these sub-steps three sub-steps (the first, the third and the last)
are simple and are performed by a unique programme; so these three steps
are respectively represented in the knowledge base by the primitive operators
p-initialisation, p-determination-of-axes and p-parameter-storing.

The other five sub-steps are not achieved directly by one programme,
so they are respectively represented in the knowledge base by five complex
operators with sequential decompositions : c-object-isolation, c-global-
parameters, c-contours-construction, c-5contours-parameters and c-
5ellipses-visualization.

We now detail the planning knowledge for the most difficult part : the
isolation of the object of interest. It is a very important step on which depends
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Complex Operator
Name: c-galaxy-description
Comment: "image processing before classification
Functionality: galaxy-description
Input Data: ie
Output Data: gparam
Body:

"

p-initialisation -
c-object-isolation -
p-determination-of-axes -
c-global-parameters -
c-contours-construction -
c-Hcontours-parameters -
c-bellipses-visualization -
p-parameter-storing;

Fig. 19. The complex operator c-galaxy-description with a decomposition into 8
operators expressed in the Body attribute. The “-” sign between operators stands
for a sequential separator “then”.

the quality of the final result. The system must be able to take into account
several conditions and must be able to evaluate the intermediate results of the
processing and if necessary to adjust the treatment. This step is represented
in the knowledge base by a complex operator o-object-isolation as shown in
figure 20. It consists in two main steps which are localization of the center of
the galaxy and effective isolation of the galaxy. The second step of effective
isolation of the galaxy is done by calculating the limits of the galaxy followed
by subtracting the background of the image.

Complex Operator
Name: c-object-isolation
Comment: "detection and extraction of the object"
Functionality: object-isolation
Input Data: ie
Output Data: iisolee
Body:

c-object-location - c-effective-isol ;

Fig. 20. The complex operator c-object-isolation

The first substep (localization of the center of the galaxy) is the most dif-
ficult part. This step is described by a complex operator c-object-location
with 5 substeps (see figure 21).
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First, in order to reduce time processing, a p-preprocessing operator is
applied depending on the size of the input image. An optional criterion is
invoked to decide whether the image must be sampled or not. If the size of
the image is bigger than a certain threshold (contextual information), the
image is sampled.

Complex Operator

Name: c-object-location

Comment: " research of the object in an image "

Functionality: object-location

Input Data: ie

Output Data: is

Body
p-preprocessing -
p-thresh-his-
c-galaxy-area-location -
c-max-conv -
p-center ;

Fig. 21. Complex operator c-object-location with a sequential decomposition into
5 operators

The third sub-step is c-galaxy-area-location as shown in figure 22.

Complex Operator
Name: c-galaxy-area-location
Comment: " galaxy location with two alternatives
Functionality: galaxy-area-location
Input Data: ie
Output Data: is
Body

c-uncentered-image | p-centered-image ;

Fig. 22. Complex operator c-galaxy-area-location with a decomposition into two
alternative operators. The “|” sign stands for the alternative separator “or”.

Depending on the context of utilization, choice criteria (see rules r-gc and
r-guc in figure 23) allow the system to process the image in two possible ways.

e if the galaxy is centered in the image, a sub-image is extracted around
the center of the image; a primitive operator p-centered-image repre-
sents this step in the knowledge base.

e if we have no a priori information on the position of the galaxy,
the system looks for the most important object present in the image
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Choice Rule
Name : r-gc
Let ?c a Context
It ?c.galaxy-position == ’centered
Then use-operator p-centered-image
Choice Rule
Name : r-guc
Let 7c a Context
If ?c.galaxy-position == ’uncentered
Then use-operator c-uncentered-image

Fig. 23. Choice rules to select between operators for galaxy area location

(biggest extended source). This is the most difficult part, a complex
operator c-uncentered-image represents this step in the knowledge
base (see figure 24). This complex operator has 3 substeps among which
c-detection (see figure 25).

Complex Operator
Name: c-uncentered-image
Comment: " research of the biggest object in an image "
Functionality: galaxy-area-location
Input Data: ie
Output Data: is
Body

c-detection - p-extraction - p-mu ;

Fig. 24. Complex operator c-uncentered-image with a sequential decomposition
into 3 operators

We will se in next section on repair knowledge 3.3 how we can check the
quality of the galaxy detection.

Repair knowledge Repair knowledge is mainly described with evaluation,
repair and adjustment rules. In this section we will present how the knowledge
for error detection and recovery is expressed. For the complete processing
there are mainly three types of errors which can be recovered. As is often the
case in image processing, the detection of an error is not possible immediately
after the execution of the “guilty” operator. In Fig. 26 we see a synthetic view
of the complete processing. The first case of error recovery occurs when the
size of the detected object is similar to the size of a star. The second case
occurs when the galaxy has not been correctly isolated. This case is easy to



Knowledge-based Techniques for Vision 23

Complex Operator
Name: c-detection
Comment:  “ detection of the brightest region"
Functionality: galaxy-detection
Input Data: ie
sm
Output Data: is
taille

Body:
p-thresh-muls - p-muls - c-morphlis -
c-contour-chain - p-bbox;

Repair rules: rule-5

Fig. 25. The complex operator c-detection

repair (enlargement of the estimated size of the galaxy) but the error can
only be detected at the end of the processing.

Finally, the last case occurs when the five iso-contours overlap.

We will detail how the knowledge is expressed for the first case (bad galaxy
detection).

Operator p-bboz The operator p-bbox (see figure 27) computes the bounding
box of the detected object. Several evaluation criteria : rule-1 (see figure 28),
rule-2 (see figure 29) and rule-3 (see figure 30) attached to this operator
compare the size of this bounding box (an output of this operator) with the
normal size of the stars in this field (a value provided in the context). If the
evaluation is ambiguous, the repair knowledge sends this information to the
complex operator c-detection using the transmission function send-up (see
rule rule-4 in figure 31).

Operator c-detection If an error is sent to the operator c-detection (already
shown in figure 25 in Planning Knowledge section), PEGASE uses the repair
rule base attached to the operator c-detection to repair it. In this case, if
the error is size-ambiguous (sent by p-bbox), the error recovery is simply
to send it to one of its suboperators p-muls using the function send-down
(see rule rule-5 in figure 32).

Operator p-muls The operator p-muls (see figure 33) contains a repair rule
and an adjustment rule. When the error size-ambiguous, the result assessment
performed after evaluation of the results of p-bbox, is received by p-muls,
the error strategy expressed in the repair rule rule-6 (see figure34) is to re-
execute this operator. The function re-execute triggers the adjustment rule
base attached to this operator to compute a new value for the threshold
smuls. The adjustment method (see rule rule-7 in figure 35) is an adjustment
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into 7 sub-steps. The steps being decomposed into other sub-steps. The leaf of
the tree are concrete programs (or primitive operators). Evaluation, repair and
adjustment rules are located in the tree.
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Primitive Operator
Name: p-bbox
Comment: “ computing the bounding box of a region"
Functionality:  bounding-box
Input Data: ie
sm
Output Data: ix
iy
X
y
size
Evaluation rules: rule-1, rule-2, rule-3
Repair rules: rule-4

Fig. 27. The primitive operator p-bbox

Evaluation Rule
Name : rule-1
Comment : "If the object size is really larger than the size of
a star, the detection is good"
Let ?contert a Context
If size > ?Zcontezt.star-size +( ?contest.star-size / 2)
Then assess-operator good continue

Fig. 28. Evaluation rule attached to operator p-bbox deciding positive assessment

Evaluation Rule
Name : rule-2
Comment : "If the object size is slightly larger than the size of
a star, the detection is limit

Let ¢contert a Context

If size < Zcontext.star-size + (?contert.star-size / 2),
size > fcontest.star-size

Then assess-operator limit continue

Fig. 29. Evaluation rule attached to operator p-bbox deciding that detection is
limit
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Evaluation Rule
Name : rule-3
Comment : "If the object size is smaller or equal to the size
of a star, the detection is ambiguous "
Let ?contert a Context
If size < ?contest.star.size
Then assess-operator ambiguous repair

Fig. 30. Evaluation rule attached to operator p-bbox deciding that detection is

ambiguous

Repair Rule

If
Then

Name : rule-4
Comment : "If the detection is ambiguous, send-up"

assess-operator? p-bbox ambiguous
send-up size-ambiguous

Fig. 31. Repair rule attached to operator p-bbox deciding to send up a negative

assessment

Repair Rule

If
Then

Name : rule-5
Comment : "If the detection is ambiguous, send-down p-muls"

assess-operator? c-detection size-ambiguous
send-down p-muls size-ambiguous

Fig. 32. Repair rule attached to operator c-detection deciding to send down a

negative assessment

per percentage with a step value of 0.05 %. As the goal is to increase the size
of the detected object in the binary image, the threshold has to be decreased.

Primitive Operator

Name: p-muls

Comment: “binarization of an image"
Functionality: thresholding

Input Data: ie

Parameters: smuls

Output Data: is

Repair rules: rule-6
Adjustment rules: rule-7

Fig. 33. The primitive operator p-muls
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Repair Rule
Name : rule-6

Comment : "If the error is size-ambiguous, re-execute"
If assess-operator? p-muls size-ambiguous
Then re-execute

Fig. 34. Repair rule attached to operator p-muls deciding to re-excute the operator
p-muls

Adjustment Rule
Name : rule-7

Comment : "Decrease threshold smuls of five per cent"
If assess-operator? p-muls size-ambiguous
Then adjustment-method smuls percent-float,

adjustment-step smuls .05,
decrease smuls

Fig. 85. Adjustment rule attached to operator p-muls deciding to modify the value
of parameter smuls

The complete treatment can be viewed as a hierarchical processing tree
(see Fig. 26).

Conclusion We have presented PROGAL, a program supervision system
which allows the expert to express his/her knowledge in a natural way. A
main advantage of a knowledge based system is that it allows to capitalize
knowledge : new processing methods can be added or the knowledge can
easily be updated.

Furthermore, this system allows to make dynamic processing in the sense
that it adapts itself to different situations that can occur during the processing
of galaxy images. Thus, this system is a flexible tool able to process different
kinds of images taken in different conditions.

3.4 Conclusion

We have presented knowledge-based techniques for building intelligent im-
age processing systems : program supervison techniques. These techniques
make it possible both to capitalize the knowledge of the use of a set of pro-
grammes in a formalized knowledge base and to build flexible and automatic
systems with dedicated reasoning mechanisms. Program supervision systems
can be developed when several conditions are verified: first, the existence of
a set of modular programs; second, the need of a complex and flexible use
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of these programs (different input parameters values, different selections of
programs,...); third, the existence of a set of explicit criteria to decide what
to do (knowledge of typical decompositions, evaluation criteria, repair strate-

gies,...).

4 TImage Understanding

In this section we study two different image understanding problems: first,
we are interested in the problem of single complex object recognition on
static images then we consider the problem of scenario recognition on video
sequences.

4.1 Object Recognition

Introduction Our goal is to find the class of a structured object using pre-
defined taxonomy. We propose to perform the numerical description of the
objects with vision algorithms and the classification with a knowledge-base
system dedicated to object classification. The computation of the numerical
description of the objects can be controlled by program supervision tech-
niques as explained in the previous section. In this section we are interested
in the interpretation of the numerical description in order to class the object.
The objects we consider are complex and structured objects. We make the
hypothesis that the objects are isolated non overlapping objects. One class
usually has several appearances in the image. For instance the object is a 3D
object but the input data are extracted from a unique 2D image. Another
frequent case is a non-rigid object (an animal or a human being) with vary-
ing distance, size, position or postures. The second hypothesis we make is
that the classes are known and that symbolic and numerical description of
prototypical objects belonging to each class is possible.

We have applied the same object recognition method for different do-
mains: in astronomy we have studied the classification of galaxies according
to their morphology [50]. The objects are luminous 3D objects with no clear
boundaries, various orientations, distances, sizes. The input is the numerical
description of a galaxy extracted from a unique 2D image with a galaxy plus
stars (see section 3 for examples). The classes are function of morphological
and photometrical models. In biology we have studied the recognition of zoo-
planktons [53]. The objects are 3D living organisms more or less transparent
with various orientations, positions, states of maturations and articulations
(non rigid). The input image is a unique 2D image of a zooplankton in aquous
environment. The classes correspond to biological taxonomy.

In the following we first present the classification engine CLASSIC then
we detail an example for planktonic foraminifera classification ([64] and [33]).
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Classification engine The role of a knowledge-based system for object
recognition is to interpret the data obtained by the image analysis algorithms
and to find the class (or classes) that the object belongs to. This role is dif-
ferent than the role of program supervision engines like OCAPI or PEGASE
described in section 3 which are used to control the image analysis algorithms.
We build object recognition systems using a common engine CLASSIC. This
engine is designed for classification and diagnosis problems. It was initially
built for galaxy classification ([27,54]), and has been successfully used for
other applications as the classification of zooplanktons ([53]), the diagnosis
of antenna failures ([41]).

Knowledge representation

CLASSIC organizes knowledge through two kinds of knowledge represen-
tation schemes: prototypes and rules. The prototypes are used to describe in
an explicit way models of various classes of the objects to be classified. These
prototypes are implemented by frames with attributes and predefined slots.
The values of the attributes are symbolic, numerical or even frames. The pro-
totypes are organized in a tree (prototype trees), which reflects the hierarchy
of the classes. In addition to that, deductive rules are used to perform data
abstraction. These rules are implemented by production rules.

Imprecise and uncertain knowledge are represented using results from pos-
sibility theory and fuzzy set theory. An imprecise fact is characterized by a
possibility distribution which corresponds to the characteristic function of a
fuzzy set. A uncertain fact is characterized by a confidence factor (called a
possibility measure) and a doubt factor (which is the certainty of the nega-
tion).

Reasoning

The reasoning in CLASSIC is accomplished by repeatedly passing through
three phases: data abstraction, matching with the prototype, and refinement
of the classification:

e Data abstraction phase allows the passage from measures obtained by
the image analysis algorithms to qualitative textual descriptions used by
experts and to other measures necessary for automatic classification. This
phase is performed mainly by the production rules.

e During the matching phase, the object to be classified is compared to a
prototype. The comparison is performed in two stages:

— (1) Calculate the compatibility coefficient and the incompatibility
coefficient of the prototype, on the basis of the combination of the
compatibility coefficient and the incompatibility coefficient of each
slots of the prototype.

— (2) Accept or reject the prototype by comparing these two coefficients
to the compatibility threshold and the incompatibility threshold.

e The role of the refinement phase is to find a more precise classification
for the object based on its current status of descriptions.
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During the classification process, the object to be classified is compared to
each node in the prototype tree, from the root to the leaves, in order to find
the class which corresponds the best to the object. Each class in the hierarchy
is associated with a rule base. This rule base is invoked when the object is
compatible with that class in order to complete its description. When no
more rule provides any new information, the comparison goes on to the next
node, and so on.

Classification of planktonic foraminifera We have used the classification
engine CLASSIC for automatic classification of planktonic foraminifera.

Foraminifera

Foraminifera are single-celled micro-organisms, enclosed within a miner-
alized shell (test). They live either on the sea floor (benthic foraminifera)
or amongst the marine plankton (planktonic foraminifera) [9]. Their size is
mostly less than 1mm. Being the most important group of the microfossils
(about 2000 genera and 30000 species), the foraminifera are presently the
best known and most comprehensively studied of all the calcareous microfos-
sils. They constitute invaluable indicators in the age determination as well as
the depositional environment of sedimentary strata.

In oil exploration, the identification of foraminifera is an important task.
Their identities can specify the likelihood and the quality of oil to be found.
However it is impossible to have microfossil experts available wherever their
knowledge is needed. It may happen that oil companies spend a million dollars
a day to keep rigs operating in waiting for the expertise results from the
research center [48]. Moreover, the identification of foraminifera has always
been a tedious and time-consuming task for micropaleontologists.

Therefore, it is desirable that some “intelligent” computer systems could
be designed to accelerate microfossil identification. Several attempts have
been made at developing such computer systems [11,21,43,48]. In particular,
the system Vides [48] developed by British Petroleum aims at speeding up
microfossils classification for oil drilling companies. However, all these systems
are interactive so that human intervention is needed during the identification
process. Especially, the descriptions of the specimens to be identified have to
be provided by the user.

Automatic Classification of Planktonic Foraminifera

At the current stage of our work, we focus on the identification of some
species of the group Globotruncanids, which is representative of the plank-
tonic foraminifera with trochospiral coiling of the late Cretaceous time (cf.
[13,44]). In particular, we have tested the following species: Globotruncanita
calearata (Cushman, 1927), Globotruncanita stuarti (De Lapparent, 1918),
Rosita contusa (Cushman, 1926), Rosita fornicata (Plummer, 1931), Abath-
omphalus intermedius (Bolli, 1951), Abathomphalus mayaroensis (Bolli, 1951),
Rugoglobigerina rotundata (Bronnimann, 1951), Gansserina gansseri (Bolli,
1951). Although they belong to the same type (trochospiral) of chamber
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Fig. 36. Schema of automatic classification of planktonic foraminifera.

arrangement, these species have been chosen for their wide range of morpho-
logical variations.

Figure 36 illustrates the structure of our system. It is composed of two
subsystems: an image analysis system for shape description and a knowledge-
based system for classification. The dotted line indicates possible guidance of
the image analysis process by the knowledge-based system.

The identification process is made automatic owing to the image analysis
system. It is a hard task to construct such an automatic system. On one
hand, foraminifera are complex objects with many morphological variations,
and often broken or covered with sediments. Description of their shapes is by
no means easy, sometimes difficult even for a human. On the other hand, the
description terms as well as the classification criteria used by micropaleon-
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tologists are given in natural language; whereas the automatic identification
processes are necessarily based on quantitative measures. The transformation
of the qualitative textual descriptions to quantitative measures is nontrivial.

We have been able to overcome some of the difficulties by proposing var-
ious geometric parameters to characterize the morphological features of the
foraminifera, and by developing a set of image analysis algorithms to obtain
these parameters. We also have designed a set of rules in the knowledge-
based system in order to relate the description parameters we proposed to
the traditional terminology.

(a) (b) (c)
Fig. 37. A specimen to be identified (x100). (a) spiral view. (b) umbilical view.
(c) profile view.

In our system, the identification of a foraminiferon is based on the shape
descriptions of its three characteristic views: the spiral view, the umbilical
view, and the lateral view (cf. Figure 37). Images of these three views are
processed by the image analysis system which produces a set of measures
describing the morphological features of the specimen. The knowledge-based
system is then activated and classifies the specimen into an appropriate class
using these measures.

The image analysis system allows us to obtain most of the descriptive
parameters that are used by the micropaleontologists for foraminifera iden-
tification. However, some of the features, in particular the umbilical struc-
tures, are very difficult to describe automatically by computer vision system.
In fact, their description is sometimes nontrivial even for experts. Automatic
description of these features remains unsolved at present.

Owing to the fact that our knowledge-based system does not use sequen-
tial reasoning as in the traditional taxonomic way, the classification process
can be carried out even with some values “unknown”; though the classifica-
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tion precision might be reduced. In fact, the traditional taxonomic method
uses fixed decision trees, whereas our system makes decisions by matching
the description of the object to be classified with the prototype description
tree (see next section). Moreover, our knowledge-based system also has an
interactive mode to allow users to enter feature values, when necessary, dur-
ing the classification process. Details about our image analysis system can be
found in [34].

Knowledge Base Contents

The knowledge base, consisting of a prototype base and a rule base, is
built up according to the description terms and the classification criteria
used by the experts in the field. As the computed parameters describing the
shape of the foraminifera are mostly different from the terms used by the
experts, we need rules to establish links between these parameters and the
description terms used in the microfossil field.

During the construction of the system we had to describe the character-
istics of each known object using both the terminology used by the experts
and the parameters suitable for computer extraction. All the prototypes are
organized in a hierarchical tree. Production rules are used to derive new data
from the input data with the aim of completing the description of the objects.

Prototype Base

The prototypes are frame-like objects. Both symbolic and numerical val-
ues are used to describe the characteristics of the classes.

Figure 38 illustrates the prototype tree of group Globotruncanids. It di-
rectly reflects the hierarchy of the classes. The nodes of intermediate levels
and the leaves correspond respectively to the genera and the species of the
group.

The organization of prototypes into a hierarchical tree provides a conve-
nient way both for knowledge structuring and for reasoning control. Indeed,
due to the inheritance of descriptions from father nodes to their sons, re-
dundancy is eliminated, and modularity is enhanced. The hierarchical orga-
nization of the knowledge also defines natural reasoning steps and permits
efficient control.

The prototype Globotruncanita is shown below:
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Fig. 38. The hierarchy prototype tree of group Globotruncanids.

Prototype Globotruncanita:
superclass: globotruncanides

contour: {circular spinal}
chamber-nb: [5, 9]

spi-chamber-form: {trapezoidal}
spi-chamber-ornement: {perforated, rugose}
spi-suture-insert: {oblique slightly-oblique perpendicular}
umb-chamber-ornement: {perforated pustulous}
primary-aperture: {umbilical}

accessory: {portici tegilla}

p-spi-form: { convex slightly-convez flat}
p-umb-form: {very-conver convex}
keel-nb: [1, 1]

keel-band: {absent}

The prototype Stuarti is shown below:
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Prototype stuarti
superclass: globotruncanita
contour: circular
chamber-nb: [7, 9]
spi-suture-width: thick
spi-suture-depression:  non-depressed
spi-suture-insert: slightly-oblique perpendicular
umb-chamber-ornement: perforated
accessory-aperture: present
p-spi-form: convex
p-umb-form: convex
p-symmetry: symmetric

Rule Base Production rules are used to complete the description of the
objects to be classified. Particularly, they are used to relate the parameters
obtained by our image analysis algorithms to the description terms used by
the experts. They will also be used, in the future development, to invoke
image analysis procedures depending on the context, as in [53].

Rules are used in a dynamic mode, either to transform numerical data to
symbolic ones, like:

rule “spi-chamber-form-trapezoidal ”

if spi-chamber-compa <= thresh.spi-chamber-compa
spi-chamber-a-¢ <= thresh.spi-chamber-a-c

then spi-chamber-form = trapezoidal

comment For a chamber on the spiral side, if both its compactness
and the ratio of its arc to its chord are small,
then its form is trapezoidal.

or to increase the abstract level of symbolic data, like:

rule “p-symmetry”
if p-spi-form is known
p-umb-form is known
p-spi-form = p-v-form
then p-symmetry = symmetric
comment Viewed from the profile of a specimen, if the form
of its spiral side is the same as that of its umbilical side,
then the object has a symmetric profile.

In our rule base, fuzzy predicates like ~=, ~<, close to, far from, are
also used to manipulate imprecise data. The assignment of appropriate rules
to each node of the prototype tree is performed automatically by the system
engine.

Fact Base

Facts represent the descriptive information about the object to be classi-
fied. For our application, the initial fact base contains the data obtained by
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our image analysis algorithms. Deduced data are dynamically added during
the reasoning. We refer the reader to the next section for examples of initial
data and of deduced ones.

surface: area of the spiral/umbilical sides

diameter: diameter of the spiral/umbilical sides
perimeter: perimeter of the spiral/umbilical sides
peak-nb: number of peaks on the distance curve
peak-form: shape of the peaks on the distance curve
ch-vertices: number of vertices on the convexr hull
ch-points: total number of points on the convex hull
chamber-nb: number of chambers on the last whorl
spi-chamber-surface: surface of a chamber (spiral side)
spi-chamber-perimeter: perimeter of a chamber (spiral side)
spi-chamber-chord: length of a chord of a chamber (spiral side)
spi-chamber-arc: length of the external arc of a chamber (spiral side)
spi-chamber-height: height of a chamber (spiral side)
spi-chamber-ornement: ornement of a chamber (spiral side)
spi-suture-width: width of the suture (spiral side)
spi-suture-depression: depression of the suture (spiral side)
spi-suture-angle: junction angle of the suture and the external contour
umb-chamber-ornement: ornement of a chamber (umbilical side)
maj-axis: length of the major axis of the lateral side
min-axis: length of the minor axis of the lateral side
trocho-spi: width of the spiral side

Working Session The classification of foraminifera is performed as follows:
Given images of the three views of the specimen (see Figure 37), the image
analysis algorithms are applied to obtain initial descriptive parameters of the
object. The knowledge-based system takes these results as input data and
searches the hierarchy tree of the prototypes to find the most compatible
class (or classes). Related rules are invoked during the reasoning process to
complete the descriptions of the object.

Just before activating the classification, the control system verifies whether
all the required parameters have a value. If not, the system will first let the
operator specify the missing values. Otherwise, the system will consider these
values“unknown”.

The working session record is shown below:
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Initial description of p31-3-2
surface: 31369
diameter: 216
perimeter: 598
peak-nb: 1
peak-form: concave
ch-vertices: 60
ch-point: 642
chamber-nb: 7.5
spi-chamber-surface: 2828
spi-chamber-perimeter: 252
spi-chamber-chord: 76
spi-chamber-arc: 80
spi-chamber-height: 5
spi-chamber-ornement: perforated
spi-sutu-width: thick
spi-sutu-depression: non-depressed
spi-sutu-angle: 72

umb-chamber-ornement: perforated

maj-axis: 208
min-axis: 102
trocho-spi: 64

The system checks that the input parameters are compatible with the
descriptions of the prototype Globotruncanids and validates it.

The system scans the base of production rules attached to prototype
Globotruncanids and activates those for which the premises are verified:
Rule spi-sutu-r-angle
(determining that sutures on the spiral side join the spiral suture almost at
right angle)

Rule p-umb-form-convex

(determining that the profile has a convex umbilical side)
Rule p-spi-form-convex

(determining that the profile has a convex spiral side)

Rule spi-chamber-form-trapezoidal

(determining that chambers on the spiral side are trapezoidal)
Rule cont-circu

(determining that the outline is circular)

Rule p-symmetry

(determining that the profile is symmetrical)

According to the new values added in the fact base by the rules, the system
chooses among the subclasses of Globotruncanids those which are compatible
with the specimen p31-3-2. So the prototype Globotruncanita is validated.

Then, the system validates the prototype Stuarti.
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calcarata
globotruncanita <

stuarti

cont usa
rosita <
fornicata

globotruncanids
intermedius
abathomphalus
mayaroensis
rugoglobigerina —— rotundata
gansserina gansseri

Fig. 39. The result of the classification of a specimen. The underlined nodes corre-
spond to validated nodes. The grey nodes correspond to incompatible nodes. The

other nodes are nonexploited nodes.

Final description of p31-3-2

class:

compagctness:
ch-v-over-p:
spi-chamber-compa:
spi-chamber-a-c:

spi-chamber-h-over-c:

half-maj-axis:
trocho-umb:
trocho-spi-over-hm:

trocho-umb-over-hm:

thresholds:
contour:
spi-chamber-form:
spi-suture-insert:
p-spi-form:
p-umb-form:
p-symmetry:

stuarti
11.39992
.09345794
22.45544
1.052632
.06578948
104

38
.6153846
.3653846
thresholds
circular
trapezoidal
slightly-oblique
convex
convex
symmetric
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Figure 39 displays the classification result of the specimen shown in Fig-
ure 37. The deep-grey nodes correspond to validated nodes. The light-grey
nodes correspond to incompatible nodes. Others correspond to the nonex-
ploited nodes. The species to be identified is thus classed as an organism of
group Globotruncanids, genus Globotruncanita, and species Stuarti.

Conclusion We have presented a knowledge-based technique for object
recognition. First an engine dedicated to classification reasoning has been
presented. Then a complex application in micropaleontoly for planktonic
foraminifera identification has been detailed. An overview of the method and
especially the knowledge-based system have been discussed. This system has
been applied to the automatic identification of several important species of
the group Globotruncanids of late Cretaceous time. Automating such a task
has at least two main advantages: (1) The process of identification is much
faster than the interactive systems; (2) An interactive identification is sub-
jective and may yield in different results according to operators; whereas
automatic identification uses unified objective criteria and therefore is more
consistent. Owing to the fact that in this object recognition approach the
knowledge base is separated from the control structure, modifications in the
knowledge base can be carried out easily.

4.2 Scenario Recognition

The second image understanding problem we consider in this section is sce-
nario recognition on video sequences. We propose a framework based on two
kinds of a priori knowledge : predefined scenarios and 3D scene model. This
approach has been applied on video sequences of the AVS-PV visual surveil-
lance european project.

Introduction Our goal is to detect mobile objects (specially people) and to
analyze their behavior. This work is based on three hypotheses: first we con-
sider a static camera, second we use a unique monocular camera and third we
deal with real-time constraints. The first hypothesis (static camera) is often
verified for current visual surveillance networks and allows us to simplify the
low-level detection of mobile objects w.r.t. a fixed environment. The second
hypothesis (unique monocular camera) is verified in almost all current visual
surveillance networks. The third hypothesis (real-time constraints) is very
interesting as it implies that the solutions should be obtained with a short
computing time, i.e. shorter than the time frequency between two consecutive
images of the sequence. But it also implies a fully automated system. After
a presentation of related work, we briefly present the current low-level image
processing techniques used for mobile object detection and tracking. Then
two kinds of a priori knowledge we use are described. First we describe the
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role of a priori 3D scene model and different ways of representing this informa-
tion. Second we adress the problem of high-level description of mobile object
behavior using generic observable events and application-dependent scenar-
ios. Finally, results obtained on different visual surveillance applications in
the european Esprit project AVS-PV are shown and discussed.

Related work Cohen, Bremond Medioni and Nevatia (University of South
California), in DARPA’s VSAM focus on event recognition involving vehicles
and humans ([36] and [20]). The particularity of this work is that videos are
filmed by non-fixed cameras. They used models of maps of the environment
to place aerial images in an a priori known map and a property net to com-
pute events and states involved in predefined automata describing situations.
Herzog (VITRA) proposes a system able to dynamically describe scenes with
humans. The originality of his work is the application environment: a soccer
stadium ([1] and [28]) and the inference method based on time interval logic,
to describe temporal sequence of events, which are computed and typed sep-
arately. Intille and Bobick (MIT Media lab), in a similar environment, focus
on analysis of American football scenes. Their aim is the recognition of par-
ticular strategies in complex players’ interactions ([29] and [30]). The main
point is that those activities are not just human behaviors but human group
behavior. Shah (University of Central Florida) is interested by dynamic de-
scription of human behaviors in office environments ([2] and [23]). Even if the
problem is the recognition of long duration activities, the authors insist on
the importance of the recognition of ’key instants’ which are the conditions of
changing states in an automaton representing the global behavior. The “Key
instants” are generated when certain conditions are realised.

Tessier (ONERA), in the PERCEPTION project, proposes an original
method to describe behavior. Petri nets are used to represent dynamic evolu-
tions of a car park scene with humans and vehicles ([49] and [14]). Buxton and
Gong (University of Sussex) made an important contribution to the domain
with the VIEWS project ([12]). The system was able to deal with humans
and vehicles on streets or in car parks. A high level representation based on
Bayesian networks was computed. This work points out the necessity to deal
with uncertainty and to use contextual information to enhance detection and
tracking results. In the same vein, Ivanov and Grimson (MIT) work on de-
tection of human and vehicle behaviors in a car park. The interest of this
research is in the event combination method ([31]). A behavior is represented
by a set of rules based on a stochastic context-free grammar, which allows
certain combinations of simple constant predicates. The general scheme of
our approach is based on the use of predefined scenarios [17] and scene model
[16]. In this section we propose a method based on trees to declare events
[57] and on temporal logics to declare application dependent scenarios.

Perception
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In this section we will shortly present the perception component we have
used. A more detailed description can be found in [45]. The perception meth-
ods are standard ones which verify the real-time constraint hypothesis. Their
role is to incrementally provide a history of the persons who have been de-
tected in the scene. It is composed of four main sub-parts: motion detection,
person detection, person tracking and smoothing. Each sub-part contains
alternative methods which are manually selected and parametrized in a con-
figuration phase.

Motion detection

Motion detection is basically a thresholding of the difference of the current
image with respect to a reference image. Before the difference is computed
we filter the current image with a 3 x 3 gaussian filter to reduce noise. Then
for each pixel we compute the absolute difference between its intensity (grey
or colour) and the intensity of the corresponding pixel in the reference image.
If this difference is greater than a certain threshold «, the pixel is marked
as mobile and otherwise it’s marked as stationary. We then update the ref-
erence image I with information from the current image I. according to the
following equation:

Ir = (]- _ﬂ)l'r +ﬁlc

We see that for 3 = 1 we detect motion as the difference between subsequent
images in the sequence and that for § = 0 motion is detected with respect to
a fixed background image. a and 3 are parameters of the motion detector.

People detection The goal is to detect which mobile regions (blobs)
correspond to a person. We use a model of a person with 8 parameters: the
position of the center of gravity (pZimg, PYimg), the height hi,, and the
width l;ng in the 2D image, the 3D position (pzsp, pysp) on the ground
plane of the scene, the 3D width I3p and the 3D size hgp. The bounding box
of a person is defined by the image measures (PZimg, PYimg), Rimg €t limg.
The people detection algorithm analyzes the set of blobs. Both 2D image
criteria and 3D scene criteria are used. The first ones are based on the 2D
distance between blobs in the image. The goal is to merge the closest blobs
in the image. The second ones are based on constraints on the 3D height
and width. The 3D measures are obtained by linear projection of the image
plane.

People tracking

The goal of this step is to update the set of trajectories. For that purpose,
the persons who have been detected in the current image must be matched
with those detected in the previous ones. This matching can be defined as a
function from the set P;_; of persons detected a time ¢t — 1 into the set P;
of the persons detected a time ¢. We use 3 alternative methods: a method
based on the amount of overlap in the 2D image, a method based on the
proximity of the persons in the 3D scene and a restrictive method based on
the proximity of the persons in the 3D scene. The first method (based on
the amount of overlap in the 2D image) states that two persons detected at
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two consecutive times are the same real person if the percentage of overlap of
their bounding box is greater than a threshold. The second method matches
a person at time t with a person at time ¢t — 1 if their 3D distance is below
a threshold. The third method is similar to the second one, but the function
must be either an injection or a surjection.

Smoothing

The first goal of this step is to correct errors made in the previous percep-
tion steps on the different 3D measures of a person: (pz3p, pysp) the position
on the ground plane, h;,, the height and l;,,, the width. The second goal
is to estimate (vzsp, vysp) the instantaneous speed of the persons. Three
smoothing methods are used. The first method uses a standard Kalman filter.
The state vector is defined by (pz3p, pysp, vx3p, vysp)- The linear dynamic
model is based on the hypothesis of a constant speed. The second and third
methods are respectively median and mean filtering with temporal window
size 3, 5 or 7 . (vx3p, vysp) is initialised by computing v(t) = %
then each of the four values pxsp, pysp, vzsp and vysp are filtered.

3D scene model As our goal is to provide a framework which can be
adapted to specific conditions we propose to define two kinds of a priori
informations : 3D scene model (see this section) and predefined scenarios
(see section 5). 3D scene model is a priori information which contains a
description of the static environment observed by a camera. For each camera
looking at a particular environment, a security operator must provide, in
a configuration phase, pertinent information according to the formalism we
propose. For more details on the role of scene model in video understanding
see [16]. The 3D scene model contains in addition to geometric information
some semantic information. Its structure is made of a set physical objects, a
set of interesting areas and a calibration matrix for the transformation from
the 2D image plane to 3D coordinates.

The geometry of the interesting areas is described by a list of polygons
defined in planes which may have any orientation. The geometry of each
physical object, or piece of equipment, is a generalized cylinder defined by
its height and its polygonal basis.

The semantic information of each piece of equipment and of each inter-
esting area is made of six attributes : four with symbolic values and two with
numerical values. The four attributes with symbolic values are : the type
(equipment or area), the function (i.e. table, seat, corridor, etc...) the name
(i-e. seat3, corridor2, etc...) and characteristics (i.e. yellow, fragile, etc...).
The two attributes with numerical values which are very useful for scenario
recognition are: the normal distance and the normal time of usage of an
equipment.

Figures 40 and 41 show two examples of environments we have modeled;
for each example the left image shows the view observed from the camera
and the right image shows a 3D view of the same environment based on the
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geometrical information contained in the model. In the first example, a coffee
room, the 3D scene model contains: the calibration matrix, the description
of nine pieces of equipment (three seats, one table, one coffee machine, one
elevator, one dustbin, one door, and one heater) and the description of three
areas (a seat area, an entrance, and a corridor). The second example is a
real scene of a metro station in Nuremberg which has been selected in the
european project AVS-PV. It is an entrance of a metro statio with eight
equipments and two areas. The equipment are six turnstiles and two ticket
vending machines. The areas are an entrance and a corridor.

Figure 42 shows an example of the complete description of a ticket vending
machine for a metro station in Nuremberg.

— = 4 ¥ o

Fig. 41. Left: image of a metro station. Right: 3D scene model.

The contents of the 3D scene model has not the objective of being exhaus-
tive and very detailed. It has to contain all the needed information to help
the interpretation of video sequences. As this information is filled by a human



44 Monique Thonnat

name = ticket vending machine 1

type = equipment

function = ticket vending machine

characteritics —=|fragile

proximity = 100 cm

normal time = (30 s

polygon = ([0: 415, 0]:[0: 520, Oa]a
[-50, 520, 0], [-50, 415, 0])

height = 180 cm

Fig. 42. Example of description of a ticket vending machine

operator for each camera its contents must be limited to useful information.
Although the proposed geometric model and the semantic information can
be enriched in the future.

Interpretation In this section we adress the problem of high-level descrip-
tion of mobile object behavior using generic observable events and application-
dependent scenarios. The recognition process of temporal concepts can be
reduced to the recognition of atemporal ones: object states. An event is a
spatio-temporal property which represents a significative change in the state
of objects in the scene. Typical events usally are “to enter”, “to start run-
ning”, “to stand up” or “to leave”. The algorithm for event recognition is the
following : an event is recognized if for a given object state, the value of this
state is significantly different between an image (corresponding to time tp)
and another image (corresponding to time t,,, with ¢, = tg + dyrec). The time
interval between I and I,, is called recognition delay d,..

For instance, if , at time ¢y, a person is far from a coffee machine, and
close to that coffee machine at time t,, then the event “the person moves
close to the coffee machine” is recognized.

The problem of event recognition can be reduced to the atemporal prob-
lem of finding a set of states describing the scene with enough accuracy. In
other words, solving the problem of event recognition is reduced to solving
the problem of symbolic description of the scene. So, if for each image we
have a symbolic description of the scene, it is sufficient to compare these
descriptions to know the changes which had happened, i.e. the events which
have occured. This scene description must include a translation from numer-
ical to symbolic values and must be generic enough to be applied to different
environments and different applicative domains.

State model

The objective is to define state models which can be extended and para-
metrized. A state of objects in the scene is defined by an n-ary tree which
represents the way this state is computed (see Fig. 43 an abstract example of
such a tree). Four types of nodes are distinguished: object nodes, descriptor
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nodes, operator nodes and classifier nodes (see below for their definition).
The leaves of this tree are the objects involved in that state. Father nodes of
the leaves are numerical descriptors of these objects. All intermediate nodes
are operator nodes. The root node is always a classifier node which computes
the symbolic value of the object state. The minimal tree structure is reduced
to 3 nodes, 1 object leaf node 1 descriptor intermediate node and 1 classifier
root node. The number of branches of the tree and the length of the branches
are free.

DESCRI PTOR 1 Q DESCRI PTOR 2

O o)
classl, |abell class2, |abel 2

Fig. 43. Example of state modeling. Objects are in light grey, descriptors are in
grey, the operator is in dark grey, and the classifier in black.

Objects. Objects are the objects of the scene at time ¢, i.e. an element of
O, the set of the objects o; ; where ¢ is the class of the object and j its label.
For instance the object operson,1 is @ mobile object which has been recognized
as being a person and whose label is 1. 0cquipment,door2 is an object belonging
to the class equipment labeled as door2.

Descriptors. Descriptors are functions defined from O to RP to access an
object measure. For instance, the size, the position, the shape, the trajectory,
the orientation or the volume are possible descriptors. This notion ensures the
anchoring of the model in the numerical results of the perception component.

Operators.Operators are functions defined from (RP* x ... x RP") to R?
in order to operate on the measures. Examples of operators are the distance,
the norm, the classical arithmetic or logic ones.

Classifiers. Classifiers are functions defined from RP to S, the set of
authorized symbols of the state. For instance close and far can be possible
symbols for a state. These classifiers ensure the transformation from numbers
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to symbols by defining a numerical domain of definition for each symbolic
value.
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Fig. 44. Two instances of the model of state. Objects are in light grey, descriptors
are in grey, the operator is in dark grey, and the classifier in black.

We have used this model of state to define a first set of states (see two
examples on figure 44). For that we have defined three classes of objects, four
descriptors, four operators and eight classifiers.

The 3 classes of objects are person, area, and equipment. Persons are
the mobile objects of the scene which have been detected by the perception
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component. Persons are described by a vector (pz3p, pysp) representing the
location of the person on the ground, a vector (vzsp, vysp) representing
the speed vector of the person and the size h3p of that person. Areas and
equipments are those which are defined in the 3D scene model (see Section
4). An area is a static object representing a subpart of the ground of the
scene with a polygon. An equipment represents any volumic object of the
environment for which we know the polygonal basis and the height h.

The 4 descriptors are: position, size, speed and shape. More precisely:
position(o;,;) applied to a person gives access to (pxsp, pysp), size(o;, ;) ap-
plied to a person or to an equipment enables us to recover its size, speed(o;,;)
applied to a person returns the speed vector (vzs3p, vysp) and shape(o; ;)
applied to an equipment or an area returns its associated polygon.

The 4 operators are: distance the euclidean distance, norm the norm of a
vector, angle the angle between two vectors in degrees and constr an operator
which constructs a 2D vector with its scalar components.

We have defined 8 classifiers which compute 8 states:
posture, direction, velocity, location, proximity, relative location, relative posture
and relative walk. For instance we have defined (see figure 44) the state
relative walk(Operson,i; Operson,j) by measuring the angle between the speed
vectors of Operson,: and Operson,; and the distance between these two persons.
If the speed vectors have a similar orientation (an angle below 45 degrees or
greater than 315 degrees) and if the distance is small (below 200cm) then
these persons are considered as having a coupled relative walk.

Event recognition

Event recognition is now straight forward: for each image frame the object
states are computed with the current objects detected in the scene at that
time. If for a detected object and for a state model, there is a change in its
symbolic value a new event is created at that time.

The 8 predefined state models enable us to define 18 types of event.
Posture changes create the events Operson,; falls down or crouches down
or stands up.

Direction changes create the events operson,; goes right side or goes left side,

or goes away or arrives. Velocity changes create the events operson,; stops

or walks or starts runing.

Location changes create the events operson,: leaves or enters o0greq,;-

Proximity changes create the events opcrson,: moves close to or moves away from
Ocquipment,j -

Relative location changes create the events Operson,; moves close to or
moves away from operson,;-

Relative posture changes create the event operson,s Sits on o0qquipment, ; -

Relative walk changes create the event operson,; and operson,; walk together.

Scenario recognition The final problem is to incrementally recognize
predefined scenarios representing behaviors. A scenario is an interdependent
set of events. To recognize a scenario implies to recognize all the events which
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compose it and to verify their dependencies. The constraints can be temporal,
spatial, logical or algebraic.

We will now give details of the scenario model we use. A scenario s; .,
where ¢ is the scenario identifier and ¢ the current time of recognition, is
composed of four parts: Events, Constraints, Conditions, and Success. Ex-
amples of scenario are shown in next section (see Fig. 45, 46, 50 and 51).

Events. They are the events {ey, ..., €;, ..., e, } requested by the scenario.
Each event e; is associated with the variable ¢; which represents the time when
e; occured. There are two categories of events in this part: positive events
and negative events. Positive events must occur for the total recognition and
negative events must not occur during scenario recognition.

Constraints. They are temporal constraints {cy, ..., ¢;, ..., ¢ }. Those con-
straints are described as first degree linear inequations on ty,...,t;, ..., t, -

Conditions. They are non-temporal constraints {ki, ..., k;,...,kp} on the
objects involved in the events. It forces an event object attribute to a pre-
defined value. This attribute can be symbolic (name, function, etc...) or nu-
merical (height, size, velocity, etc...).

Success. They are keywords { f1, ..., fi, ..., fq}, which indicate the kind of
feedback associated with the scenario. This part is used when the scenario is
totally instantiated. There are two kinds of feedback: external and internal.
External feedback is used to trigger an alarm to the security operators and
internal feedback is used to generate an event to signify that the scenario has
been totally recognized.

A scenario can be totally recognized, when all the events are recognized
and all the constraints are verified; it can be partially recognized, when a
subset S of all events are recognized and the constraints involving events of
S are verified; when no event of a scenario are recognized, this scenario is
called a blank scenario. The principle of the scenario recognition algorithm
[17] consists of two points: as previously described, we generate, image after
image, interesting events which happened in the scene, then with those events
we instantiate in parallee predefined scenario models. It means that scenario
recognition corresponds to updating a set of partially recognized scenarios.
This scenario recognition method is an extension of the work on chronicles
explained in [24].

In short, given a set of scenarios {s1,4—1, ... Si,t—1, Si+1,0, .-, Sk,0 } composed
of partially recognized at t—1 scenarios and blank scenarios and a set of events
{e1,4, ..., €n,+} recognized at t, the principle of scenario recognition is based
on two points.

For each s; € {S1,6—1,--,8i,t—1,5i4+1,0,--» Sk,0 }, for each event of s; if the
event matches an event ej,...,e,; and verifies the temporal constraints
Cly .-+ Ciy .-y Cyy and the non-temporal constraints ki, ..., k;, ..., kp, We create
;¢ It results a new set {s1,4,...,81,1} of scenarios. In this context, an event
of s; matches e; ; means that e; ; is an instance of this event.
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We remove invalid scenarios s;; from {s1 4, ..., $1,+}, if:
-one negative event ej, of s;; has been instantiated,
-one of the ¢y, ..., ¢;, ..., ¢, implies that s; ; will not be instantiated.

Results of metro station applications In this part, we will describe the
results obtained on real visual surveillance applications for metro stations.
The videos come from the CCTV networks of the metro operators partners
of the AVS-PV european project. We have formalized the expertise of three
security engineers in a knowledge base containing currently 15 scenarios.
Metro Station in Brussels. In the following, we detail how two sce-
narios described in figures 45 and 46 are recognized. These scenarios belong
to the knowledge base built for AVS-PV european project and videos have
been recorded in a STIB Metro Station in Brussels. The camera observes the
platform of a metro station. The aims of those two scenarios are: to prevent
vandalism against equipment and to ensure the safety of passengers.

Scenario
Name = “forbidden access to area”,
Events = (t1, enters(pi : Person, a1 : Area)),
not(ts, leaves(pi : Person, ai: Area)),
Constraints = t1 < ta2, t2 < t1 + 1.0,
Conditions = function(a1, “forbidden access”),
Success = alarm(p1, “has entered area”,a1)

Fig.45. AVS-PV scenario model:“forbidden access to area”

Scenario

Name = “graffiti on wall”,
Events =
(t1, moves close to (p1 : Person, ei : Equipment)),

not(t2, moves away from (p1 : Person, ei : Equipment)),
Constraints = t1 < ta,

ta2 < t1 + normal presence time(e1),
Conditions = function(e1, "wall”),
Success = alarm(p1, “doing graffiti onto”,e1)

Fig.46. AVS-PV scenario model: “graffiti on wall”

At t1, a detected person (named Person 1 in the folllowing) goes inside
the tracks area. The event “person 1 enters tracks area is triggered. This area
is labelled as a forbbiden area, so the first event of “forbidden access to area”
scenario is recognized. Several frames later, at to (see Fig. 47), Person 1 is
still inside the “tracks” area, so the event "Person 1 exits the “tracks” area”
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has not been triggered. The non-occurence of the event matches the second
event (negative event) of the scenario “forbidden access to area”. An alarm is
sent to the security operator.

Fig. 47. Left: Metro platform in Brussels at t». Right: 3D position of the detected
person (represented by a cylinder) w.r.t the 3D scene model. An alarm ‘forbidden
access to area” is sent to the security operator.

Further at t3 (see Fig. 48), Person 1 is close to the equipment “wall”, so
the event “person 1 moves close to equipment wall” is triggered. This event
instantiates the first event of the scenario “graffiti on wall”.

Fig. 48. Left: Metro platform in Brussels at ts. Right: an event “person 1
moves close to equipment wall” is detected.

Further at 4 (see Fig.49), Person 1 is still close to the equipment “wall”,
so the event “person 1 moves of f equipment wall” has not been triggered.
The non-occurence of the event matches the second event (negative event) of
the scenario “graffiti on wall”. An alarm is sent to the security operator.

Metro Station in Nuremberg. In the following, we detail how two
other scenarios described in figures 50 and 51 are recognized. These scenarios
also belong to the knowledge base built for AVS-PV european project and
videos have been taken in a VAG Metro Station in Nuremberg (Germany). In
this example, the camera observes the entrance of a metro station. The aim of
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NEELT ON WALL

Fig. 49. Left: Metro platform in Brussels at 4. Right: an alarm ‘graffiti on wall” is
sent to the security operator.

those two scenarios is to prevent vandalism against ticket vending machines.
These machines have been defined in the 3D scene model (see Section 42) as
fragile equipment.

Scenario
Name = “Presence period near fragile equipment”,
Events =
(t1, moves close to (p1 : Person, e1 : Equipment)),
not(t2, moves away from (p1 : Person, ei1: Equipment)),
(ts, stops(p1: Person)),
Constraints =
tpy < to, t1 < i3,
ta < t; + normal_presence_time(ey),
Conditions = function(e, "fragile”),
Success =
alarm (“Presence period near equipment”,e1),
loopback(t2, presence period near fragile, e1, p1)

Fig. 50. AVS-PV scenario model: “Presence period near fragile equipment”

At t1, a detected person (named Person 1 in the folllowing) is far from
an equipment labeled as “fragile”. Further at ¢, (see Fig. 52), person 1 is
close to equipment labeled as “fragile”, so the event “person 1 moves close to
an equipment” is triggered. The first event of scenario “Period near fragile
equipment” is instanciated.

Further at t3 Person 1 is still close to the machine, so the negative event
of scenario “Period near fragile equipment” is instanciated. Secondly, the fact
that Person 1 stops triggers the event “Person 1 stops”. The three events of the
scenario “Period near fragile equipment” are recognized and an alarm is sent
to the security operator. The complete recognition of this scenario triggers the
specific loopback event: presence mear fragile” equipment. This specific
event matches the first event of the scenario “Repeated Presence period near
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Scenario
Name = “Repeated period near fragile equipment”,
Events =
(t1, presence_period near_fragile, e1, p1),
(t2, moves close to (p1 : Person, ei1: Equipment)),
not(t3, moves away from (p1 : Person, e : Equipment)),
(ts, stop(pi: Person))
Constraints —
t1 < i, ta < i3, t2 < 4,
ts < to + normal presence time(e1),
Conditions = function(e, "fragile”),
Success = alarm(“Vandalism on ”,e;)

Fig. 51. AVS-PV scenario model: “Repeated Presence period near fragile equip-
ment”

Fig. 52. Left: Metro entrance in Nuremberg at t». Right: an event “person 1
moves close to an equipment” is detected.

fragile equipment”. Then at ¢4 (see Fig. 53) an other event is detected because
the Person 1 moves away in the direction of the corridor to check is anybody
is arriving.

At t5 (see Fig. 54), the event “Person 1 moves close to equipment” is
triggered. This equipment is the same equipment that the one at ty. The
scenario “Repeated Presence period near fragile equipment” is now totally
recognized. An alarm is sent to the security operator.

The results of these applications were considered very satifactory by the
metro operators. The richness of the formalism for scenario description allows
us to specify a set of constraints (temporal as well as atemporal) which reduce
false alarms. The formalism we have proposed for scenario description has
enabled us to represent the expertise for these applications. The knowledge
modeling is still difficult. The main reason is that we need to manage the gap
between vague security concepts (such as “abnormal behavior”) to rigorous
scenario models.
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Fig. 53. Left: Metro entrance in Nuremberg at t4. Right: an event ‘person 1
moves away from an equipment” is detected

Fig. 54. Left: Metro entrance in Nuremberg at ¢5. Right: a “Vandalism’ ’alarm is
sent to the security operator.

Conclusion In this section we have shown that high-level video understand-
ing can be performed based on images taken from a single static camera and
with simple perception methods working almost in real-time. This has been
possible by using two sets of a priori information: first, 3D scene model de-
scribing the 3D geometry of the observed scene and semantic information on
the static objects and interesting areas, second, general knowledge of prede-
fined scenarios valid for an application domain. We have proposed a formal-
ism to represent these two types of a priori information and explained how
to use them for video understanding. We have also proposed a formalism for
event recognition based on object state models. This formalism is indepen-
dent of a particular application domain and includes a transformation from
the perception data to the scenario models. The current video understanding
framework we propose has several limitations. One type of problem is the
imprecision and uncertainty in the detection and location of mobile objects;
most of these low-level detection errors are due either to reflections, shadows
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or occlusions. A solution to cope with these problems is to relax our second
hypothesis and not to restrict ourselves to the use of a single camera. An-
other more general problem is that as every vision system, this framework
needs, for each perception method and for each interpretation method, to set
the values of numerical parameters in a configuration phase. One solution to
solve this problem is to use learning techniques to find the best parameter
values for an application if they exist.

5 Conclusion

In this chapter we have seen how knowledge-base techniques can help solving
complex image processing problems. First we have addressed the problem of
using an image processing library and proposed program supervision tech-
niques to encapsulate the knowledge of planning and repair of programs.
Then we have shown how these techniques have been applied in astronomy
for the automatic description of images containing a galaxy. Second we have
addressed the problem of image understanding. Two different subproblems
have been considered: the automatic recognition of a complex natural object
and the recognition of scenario in video sequences. The recognition of com-
plex natural object has been modeled as a classification problem with the
hypothesis that a hierarchy of predefined classes are available. This method
has been described through an example in micropaleontology for foraminefera
identification. Two kinds of a priori knowledge have been modeled: 3D scene
model describing the static environment and predefined scenarios describing
possible interesting events. The recognition of scenario in video sequences has
been detailed in the context of visualsurveillance applications.
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