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Abstract

This article presents a methodology to build ef�cient
real-time semantic video understanding systems addressing
real world problems. In our case, semantic video under-
standing consists in the recognition of prede�ned scenario
models in a given application domain starting from a pixel
analysis up to a symbolic description of what is happening
in the scene viewed by cameras. This methodology proposes
to use evaluation to acquire knowledge of programs and
to represent this knowledge with appropriate formalisms.
First, to obtain ef�ciency, a formalism enables to model
video processing programs and their associated parameter
adaptation rules. These rules are written by experts after
performing a technical evaluation. Second, a scenario for-
malism enables experts to model their needs and to easily
re�ne their scenario models to adapt them to real-life situa-
tions. This re�nement is performed with an end-user evalu-
ation. This second part ensures that systems match end-user
expectations. Results are reported for scenario recognition
performances on real video sequences taken from a bank
agency monitoring application.

1. Introduction

Many video understanding systems have already been
developed in the computer vision community. Haritaoglu et
al. [6] use shape analysis and tracking to locate people and
their parts (e.g., head, feet) in image sequences. Oliver et al.
[9] use Bayesian analysis to identify human interactions us-
ing trajectories obtained from a monocular image. Johnson
and Hogg [7] have de�ned an ef�cient people tracker based
on B-spline corresponding to people shape models. Nev-
ertheless, few video understanding systems have been suc-
cessfully applied to real world applications due to a large

variety of video understanding issues. First, typical im-
age processing problems come from shadows, illumination
changes, over-segmentations or mis-detections. Second, the
tracking process remains a major issue since the loss of a
tracked object prevents the analysis of its behaviour. In ad-
dition, few systems provide a true semantic video under-
standing. [12] is part of the few examples able to perform
complex reasoning (i.e., spatio-temporal reasoning) and to
understand people interactions in real world applications.
Finally, systems usually performwell on a small set of video
sequences or in a well-constrained environment but results
worsen in real conditions. Despite these facts, there is an
increasing number of installed video surveillance systems
being run 24 hours a day in varying conditions. Therefore,
there is a strong need for highly reliable and adaptive sys-
tems with more and more reasoning capabilities. The re-
cent creation of PETS (Performance Evaluation of Track-
ing and Surveillance) workshops [5] shows the concern of
the vision community to address this issue. It enforces the
idea that evaluation techniques are needed to assess the re-
liability of algorithms. On the system architecture level,
recent works address software engineering issues. In [3],
[10] and [1] authors propose generic and modular architec-
tures for video surveillance systems. For example, experts
can easily add and test new algorithms through a plug-and-
play property and several interactive tools which display
results and assess qualitative performances. Nevertheless,
such architectures lack a mean to formalize the knowledge
acquired by experts and do not have high-level reasoning
capabilities. In [8], the architecture is endowed with a con-
trol strategy through a rule-based supervisor expressed in
Clips or Prolog languages. This dynamic con�guration abil-
ity is demonstrated on a smart of�ce application. This ap-
proach does not use intensively 3D knowledge or contex-
tual information though and there is no formalism to rep-
resent the knowledge. To obtain a robust system, we need



of course a modular software architecture but above all a
methodology to structure, represent and ef�ciently use all
the knowledge which is needed to obtain ef�cient systems.
The proposed methodology combines knowledge represen-
tation formalisms with an evaluation framework to reach
this goal. First, a formalism which relies on the concept of
video processing operators enables to represent the knowl-
edge of video processing programs such as parameter ini-
tialization rules or evaluation rules. These rules are formal-
ized by a video processing expert and given to a system as
a priori knowledge. A technical evaluation helps experts
to acquire this knowledge. Second, a scenario formalism
enables end-users to express their needs. This formalism
also enables to easily re�ne these scenarios during an end-
user evaluation. This evaluation is an interactive process
which is intended to acquire knowledge of the application
domain and which ensures that recognized scenarios cor-
respond to end-user expectations. The paper is organized
as follows. Section 2 describes the proposed methodology
to build adaptive and ef�cient video understanding systems.
Section 3 describes the formalism used to represent video
processing programs and the associated technical evalua-
tion. Section 4 presents the scenario representation formal-
ism and explains the end-user evaluation which enables a
scenario model re�nement and which ensures that recog-
nized scenarios correspond to real needs. Finally section 5
concludes and indicates future work.

2. Video understanding

2.1. Video understanding modelling

Before presenting the methodology, we describe a model
of a typical video understanding process which is illustrated
in Fig. 1. This model is useful to guide experts in their
formalization of knowledge of video processing programs
(e.g., how to group different techniques under the same ab-
stract functionality). First, colour input images are digitized
with a variable frame rate provided by one or several cam-
eras. For each camera, a procedure detects moving regions
by subtracting the current image from a reference image and
classi�es them according to a semantic class (e.g., person,
vehicle) of mobile objects. Then, a F2F (Frame to Frame)
tracking process links mobile objects over time and gener-
ates a graph of mobile objects for each camera. Nodes of
this graph represent mobile objects while edges are tempo-
ral links over time. The various sequences of edges in this
graph represent the various possible trajectories a mobile
object may have. Second, a multi-camera procedure com-
bines the graphs coming from the different cameras with
overlapped �eld of view in order to obtain a unique 3D rep-
resentation of mobile objects. Then, this global graph is
processed by a long term tracking process which computes

a set of paths representing the possible trajectories on a large
time window, typically several seconds. Its purpose is to ro-
bustly track actors evolving in the scene by comparing the
evolution of the various paths which can be followed and
choosing the best path to update the mobile object track.
Finally, scenario recognition is performed for all tracked
actors. So, the output is a semantic description of the recog-
nized scenarios. In addition, 3D scene models are used as a
priori contextual knowledge of the observed scene. For in-
stance, a scene model contains 3D positions and dimensions
of static scene objects (e.g., a ticket vending machine, a
chair) and zones of interest (e.g., an entrance zone). Seman-
tic attributes (e.g., fragile) are associated to objects or zones
to be used in the scenario recognition process. Application
domain knowledge (scenario model library) and video pro-
cessing knowledge (video processing operators) are also fed
into the system. The challenge is how to organize the video
processing programs and optimize this knowledge to obtain
an ef�cient processing.

2.2. Formalism utilization methodology

Despite the large amount of existing libraries of video
processing programs and sophisticated architectures, it is
dif�cult to obtain a deep knowledge of these programs (e.g.,
which technique is more suitable on which data under which
environmental conditions). These systems lack adaptivity
to changing environmental conditions and reusability from
one application to another one. We want to insist on the
fact that we have a large amount of knowledge available [2]
to help us to build ef�cient systems but we need to struc-
ture, capitalize and use this knowledge ef�ciently. In other
words, we would like to have the same good software engi-
neering properties at the knowledge engineering level. The
proposed methodology takes place within the paradigm of
knowledge-based techniques. We propose to use knowledge
representation formalisms in order to obtain three proper-
ties:

� Isolated knowledge: knowledge is extracted and sepa-
rated away from the code and represented in a knowl-
edge base with formalisms. This way, knowledge is
both human and machine readable. We can thus pro-
gressively capitalize human experience and expertise.
This separation between code and knowledge also al-
lows to better control the tasks at hand.

� Modular knowledge: knowledge is structured in small
parts corresponding to clearly identi�ed video process-
ing functionalities. For instance, a piece of knowledge
can be dedicated to adapt a program parameter to an
environmental condition, thus contributing to the adap-
tivity property.



Figure 1. A typical video understanding process composed of four main tasks.

� Upgradable knowledge: once the expert discover a
new piece of knowledge (e.g., how to tune a segmen-
tation parameter when passing from indoor to outdoor
scenes), he/she can add it easily while keeping a good
knowledge structure. Knowledge is easily maintained
and/or extended.

Moreover, based on our experience in dealing with com-
plex problems such as video understanding, knowledge ac-
quisition is a challenging objective. Indeed, the variability
of input data is tremendous. It is thus dif�cult to under-
stand the impact of each variation (e.g., in the scene con-
�guration) on program performances. We must be sure that
adding a piece of knowledge at a given level of processing
will not cause new problems elsewhere in the process, due
to dependencies. That is why we propose to combine the
use of knowledge representation formalisms with an auto-
matic evaluation framework. First, the evaluation can be
run on a large set of test video sequences. An expert can
thus thoroughly understand a problem and verify that the
proposed piece of knowledge effectively solve the problem.
Second, the evaluation is performed automatically for each
functionality or subfunctionality in the system, thus pro-
viding the knowledge modularity property. This automatic
evaluation framework is a key element to build an opera-
tional knowledge base. We now present the operator for-
malism which enables to de�ne properly the video under-
standing process in order to perform a pertinent evaluation
and to optimize programs.

3. Video processing knowledge representation

3.1. Operator formalism

The proposed formalism to model video processing pro-
grams is inspired by a formalism previously introduced for
image processing [11]. The main concept is the notion of
operator which represents a video processing program as

illustrated in Fig. 2. An operator can either be primitive
or composite (hierarchy of operators). It contains several
information to guide the reasoning process: functionality,
data types, pre and post-conditions, tunable parameters, and
a list of rules. There are four types of rules: parameter ini-
tialization, operator selection, result evaluation, repair rules.
An initialization rule ensures a correct value for an opera-
tor parameter when this operator is selected for execution.
For instance, a 3D distance threshold for a tracking opera-
tor can be set knowing the usual walking speed of a human
being. An evaluation rule assesses whether obtained results
are satisfactory or not. A repair stage can be triggered in
two ways: a bad performance evaluation or a detection of
an environmental change. Repair may consist in adjusting
dynamically a parameter or in selecting a new operator. The
repair can be done at the primitive or composite operator
level. The scope of repair is either global (valid for all data
and for the future until the next change) or local (valid for
a subset of data and the current frame only, i.e., data are re-
processed). For instance, given an environmental change, a
repair rule may decide to switch from an individual tracker
operator to a crowd tracker operator when people get out
of a train in a subway. A bad performance evaluation may
dynamically trigger a decrease of a segmentation operator
threshold in order to detect mobile objects with low con-
trast with respect to background. All these rules are used
by a reasoning engine which controls all programs (i.e., the
control is external to programs). This is the focus of an-
other paper [11]. Nevertheless, two main problems arise
from knowledge-based approaches: 1) knowledge acquisi-
tion is tedious, 2) resulting systems are often complex and
with poor performances. Therefore, we focus now on show-
ing that a technical evaluation may help to ease knowledge
acquisition.



Figure 2. Operator general description (on the left) and an example for the F2F tracking process (on
the right).

Figure 3. Example of images coming from a bank monitoring application.

3.2. Technical evaluation

In order to obtain a pertinent evaluation, we must study
exhaustively all testing conditions. The goal is to classify
video sequences according to several dif�culty criteria (e.g.,
level of clutter, amount of illumination changes) and to se-
lect a representative set of test video sequences containing
these dif�culties ranging from easy to hard. This method
enables to establish relations between a dif�culty and its
impact on performances. An example of processed images
is presented in Fig. 3. The most dif�cult video sequences
selected for the technical evaluation in a bank monitoring
application were containing 4 people crossing each other (2

bank employees, 1 robber and 1 customer) and 3 contex-
tual objects (movable chair, counter and safe gate) during
400 frames. These videos were interesting since they high-
lighted a chair displacement problem for the mobile object
detection operator, frequent people crossings for the track-
ing operator and complex composite scenarios for the sce-
nario recognition operator. In addition, the system has been
evaluated on hours of live and recorded video sequences
without ground truth. Supervised evaluation is the most
accurate evaluation we can obtain and thus the main way
to acquire knowledge of a video processing operator be-
haviour (which performances in which conditions). There
are two supervised evaluation types. First, the evaluation



is performed using directly user-interaction. For example,
the user can globally indicate the number of people in the
scene, which thus gives a direct feedback to the long-term
tracking operator. Secondly, the evaluation is performed us-
ing ground truth. In this case, ground truth data must be
de�ned as objectively as possible as discussed in [4]. For
each mobile object, stored attributes are the 2D width and
height, the 2D position and an identi�er. Once ground truth
data have been acquired, we are able to perform an auto-
matic evaluation on a large set of test video sequences.

3.3. results

We report here the improvement of results we have ob-
tained for a F2F tracking operator by adding the appropri-
ate knowledge. A true positive link is a link created by the
tracking process combining two bounding boxes that both
suf�ciently cover a ground truth object at times t and t+1.
All links made by the tracking process which are not true
positives are classi�ed as false positives. A false negative
link is a link missed by the tracking process. For easy se-
quences, we measured 100% of true positives and 1% of
false positives using the supervised evaluation. For the most
challenging data previously mentioned, we report 88% of
true positives, 12% of false negatives and 2% of false posi-
tives as opposed to 75%, 25% and 8% respectively before.
Nevertheless, we have to point out that it can be dif�cult
even for a video processing expert to �nd the correct piece
of knowledge to add. Each improvement requires a deep
understanding of the problem and sometimes several itera-
tions on the problem are needed.

4. Scenario modelling knowledge representa-

tion

In the previous section, we have presented the operator
formalism combined to a technical evaluation to improve
results. At this point, the video understanding process is
robust enough. Nevertheless, we must ensure that this solu-
tion is useful and that it addresses a real-life problem. This
is the topic of this section.

4.1. Domain expert knowledge and end-
user interaction

In order to clearly understand end-user needs and to ac-
quire knowledge on a target application domain, we have
conducted an interactive process for knowledge acquisition.
It is an incremental process composed of three main steps:

� User need description: users explain their concrete
need and they give us details on the target application
domain: what to recognize and why it is important

for them. We can distinguish end-users and experts.
End-users are typically video surveillance human oper-
ators who bring us details about a scenario (e.g., what
are important actions, how to detect it visually). Ex-
perts bring us other types of details and specify �nal
goals (e.g., consequences or impact on customers, cost
caused by robberies, typical robber pro�les).

� Representation of these needs into scenario models:
this step is of prime importance since it is a way of
capitalizing the knowledge expressed by experts and
to have a common representation which serves as a
base for discussions. We try to determine visual in-
variants which will guide the recognition process and
link video processing operators to end-user needs.

� Validation with end-users: veri�cation that recognized
scenarios correspond to what has been described in the
description step. If it is not suf�cient or adequate, the
process is reiterated and a more precise description is
given. The whole process is reiterated until the valida-
tion step gives good results.

For instance, we list hereunder knowledge samples given
by bank experts. Today, classical bank agencies gradually
evolve towards agencies with one or several counters with-
out money, ATM (Automatic Teller Machine), safe room,
and of�ces for commercial employees. The safe room is
then the most signi�cant zone since all the money is stored
inside. As a consequence, all irregular behaviours or bank
protocol infringement (involving either robbers or mainte-
nance and cleaning employees) must be detected nearby the
safe entrance. This protocol can be different for each bank.
For instance, a rule speci�es that only one person can enter
the safe room at a time. We can distinguish different attack
types:

� Counter attack: frequent, often stealthy, rapid and
hardly observable even for human beings. The bank
employee is threatened but it is generally dif�cult to
see the difference with a classical customer request.

� Safe attack: not frequent. Bank employees and cus-
tomers are threatened. People are traumatised and
things can take a bad turn.

� Aggressive attack: bank employees and customers are
threatened. The robber has lost his/her self control,
money is not the main motivation and the robbery usu-
ally leads to a drama.

4.2. Scenario representation formalism

To represent this application domain knowledge, we
have used the formalism of [12] which includes a language



to describe scenarios. A scenario can be of different types
and composed of states and events. A state is a spatio-
temporal property de�ned at one time instant or on a time
interval. An event is one or several change(s) of states at
two successive time instants or on a time interval. Scenar-
ios can be either primitive (single state change) or compos-
ite (combination of states and events). They are described
by three parts: physical objects (real world objects present
in the scene), components (list of states and events involved
in the scenario) and constraints (relations between physical
objects and/or components). For instance, for a bank mon-
itoring application, physical objects can be of two different
types:

� Mobile objects as people or group of people (rob-
ber, customer, kid, director or cleaning employee) and
portable objects (suitcase, stroller or gun).

� Contextual objects as prede�ned zones (entrance,
back counter, infront counter, safe, safe entrance) and
equipment (counter, chair, desk, ATM, safe gate).

When constructing the scenario model library, we �rst
select a set of primitive states and events. Composite events
are then de�ned using this primitive set. An example of
each one is given in Fig. 4. In a second time, we can build
more complex scenarios, which are a combination of prim-
itive and/or composite events. Currently, we have de�ned
the following scenarios containing 1 to 3 persons (robber,
bank employee, customer). These persons move relativley
to �ve zone types and interact with the safe gate equipment:

� 1 person: the bank employee is behind or in front of
the counter and goes to the safe. Then, the safe gate is
opened.

� 2 persons: the employee is behind the counter. The
robber enters the bank, goes to the counter and stays in
front of it. Both people go to the safe.

� 3 persons: the bank employee is behind the counter. A
customer enters the bank agency, goes to the counter
and stays in front of it. After, a robber joins the cus-
tomer. The employee and the robber go to the safe and
the safe gate is opened. The customer stays behind the
counter or leaves the agency.

4.3. End-user evaluation

There are two end-user evaluation types: based on
recorded video sequences (several hours annotated by end-
users) and on live video streams (two live evaluations per-
formed inside a bank agency during one hour with end-
users). The �rst evaluation produced average results and

some scenarios were not recognized. This was due to un-
clear speci�cations and to the fact that end-users have re-
�ned their objectives when viewing a demonstration of the
system. Using the description language, we thus re�ned
scenario models together with experts and we identi�ed two
parts in a bank scenario: the attack precursor (i.e., the rob-
ber approach) and the attack. For bank experts, the attack
(number of people inside the safe) must be recognized with
a very high con�dence. The attack precursor is facultative
for bank attack detection but important in order to anticipate
potential actions and prevent any drama. The second evalu-
ation produced good results. A true positive is an alert raise
when a real attack happens (simulated by actors), a false
negative is the miss of an alert and a false positive is an
alert raise for no real attack. The bank attack scenario with
3 persons was played 16 times. We obtained 93.75% of true
positives, 6.25% of false negatives and 0% of false positives
when 2 people enter the safe room. The scenario with 2 per-
sons was played more than 10 times and we obtained 100%
of true positives. Such results has been reached thanks to
the underlying methodology of interaction with domain ex-
perts. In addition, it is important for application purpose to
reach such a false alarm rate. Most end-users would actu-
ally switch off a system which raises too many false alarms
and would not trust it anymore.

5. Conclusion and future work

In this paper, we have presented a methodology to con-
ceive ef�cient real-world semantic video understanding sys-
tems. This methodology combines knowledge representa-
tion formalisms with an evaluation framework to acquire
and make the best use of all the available knowledge. We
have insisted on the importance of having three proper-
ties for knowledge representation: isolated, modular and
upgradable. For video processing programs, the operator
formalism and an automatic technical evaluation enable a
video processing expert to add the missing knowledge. Al-
though this methodology requires a complete understanding
of the processing, we report interesting improvement of re-
sults. A second formalism for scenario modelling combined
with an end-user evaluation has shown to be an adequate
way to understand end-user needs and address real-world
problems. The scenario formalism serves as a shared lan-
guage when discussing with experts and as a repository of
the application domain knowledge. An evaluation of a bank
monitoring application was carried out in live conditions
with the presence of experts. First, end-users were able to
play all scenarios in live and check directly the recognition
results. Second, experts were able to easily re�ne scenario
models and better express their expectations thanks to the
scenario formalism. The evaluation has thus formally vali-
dated the global approach especially through the back and



Figure 4. Upper left: primitive state model, A person p is inside zone z. Bottom left: primitive event
model, A person p goes from zone z1 to zone z2. Right: composite event with 2 persons using
primitives on the left. It corresponds to the scenario with 2 persons.

forth interaction with experts. Future work will investigate
how we can further automate improvements especially by
the use of learning techniques.
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