A Knowledge-Based Approach

to Integration of Image Processing Procedures

Véronique Clément and Monique Thonnat

INRIA Sophia Antipolis

Running head: Integration of image processing procedures

Address:

Véronique Clément

INRIA Sophia Antipolis

2004, Route des Lucioles

F-06565 Valbonne Cedex France

Tel: (33) 93-65-78-57 Fax: (33) 93-65-77-66

e-mail: vclement@mirsa.inria.fr

Abstract

This paper deals with the integration of image processing procedures. Three kinds of
integration are distinguished: physical, syntactical, and semantic integration. The notion
of semantic integration of programs is developed here; in this kind of integration, the
function of the programs, and how to optimize their utilization are explicited. After a
short presentation of several recently developed systems performing semantic integration
of programs, we describe how we model knowledge and reasoning in our system named
OCAPI. Two examples of use of OCAPI are shown; the first example is the integration
of a stereovisual process, the second one is the integration of a system for the morpholog-
ical description of galaxies. Finally, the model and the mechanisms used in OCAPI are

compared to those of the previously presented systems.

List of Symbols

Only the usual arithmetical symbols are used: + — */% <

1 Introduction

The integration of a set of existing programs is a very important and difficult task. The
major difficulty of the integration phase is that most of the time modules are developed
independently, either by different specialists or at different periods of time. Knowledge of

use of these modules is not included in the code, but split into several brains or forgotten.

Although this domain is still young, three types of integration (physical, syntactical,

and semantic) can be distinguished. More precisely:

e usually integration of programs is understood as the adaptation of the algorithms to
a specialized hardware; this kind of integration is what we call physical integration

of software onto a given architecture;

e integration of a set of programs in a command language or an interface system
is what we call syntactical integration; it is the integration of the syntactical

information needed to run the programs;

e finally a third kind of integration is possible: the integration in a system of knowl-
edge of the goals of the programs, knowledge of conditions under which they are
applicable, and knowledge of relations between the programs; we speak of semantic

integration or intelligent integrated systems.

Usually, image processing systems are composed of a set of programs or subroutines
which can be used directly or through a command language. These systems only provide a
physical integration of the procedures or at best a syntactical integration; that is the use of
abstract commands instead of operating system or programming language syntax. If the
set of programs are semantically integrated, we may have an intelligent image processing
system with a certain degree of autonomy. Such intelligent image processing systems could
facilitate the developing of new image processing applications since certain tasks can be

automated (like the selection of the best programs to reach a goal or the initialization of

4

some parameters); moreover, if their knowledge is sufficiently developed, this can extend
the use of image processing systems: they can be directly used by non specialists in image
processing (like biologists, astronomers...) or integrated on autonomous systems working
in complex and variable environments (like mobile robots or flexible arms). Physical, and
syntactical integration of programs for robotics purposes only deals with the problem of
robustness of the processing (the processing is fixed, but the input data can be slightly
noisy); with semantic integration of programs it is also possible to deal with the problem

of flexibility of the processing (the processing can adapt itself to various conditions).

Various methodologies, generally based on artificial intelligence techniques, have been
investigated to develop intelligent image processing systems. So a clear distinction has
to be made to discriminate between those which are intelligent algorithms, intelligent
interpretation systems, or intelligent integrated systems. A classification can easily be

performed according to the nature of the knowledge these systems contain explicitly:

e intelligent algorithms express in detail how programs work, and describe explic-
itly the internal mechanisms of the algorithms. This kind of knowledge is interesting
for innovation, generalization or educational purpose. One can mention as exam-

ples of such intelligent algorithms some interesting work in segmentation (the system

developed by Nazif and Levine [1], LLVE [2], and VISIONS [3]).

e intelligent interpretation systems contain explicit knowledge on the modelling
of objects of the world. As examples of such intelligent interpretation systems, one
can mention ACRONYM [4] which uses a geometrical modelling of domain objects,
CLASSIC [5] which uses a semantic modelling of classes, and the system developed
by Ikeuchi [6] which generates an object recognition program from a 3D CAD model
of the object.

e intelligent integrated systems contain (or have to contain) all the knowledge
needed for the selection and the use of programs seen as black boxes. Some algo-

rithms in the library can of course perform object recognition, and they can even be

intelligent; but they are considered by the integration system like a black box. In
such intelligent integrated systems, what programs do (their goal) and when (under

which conditions) are expressed explicitly.

In this paper, we will focus on semantic integration of programs in image processing.
Work in this domain is very recent [7] [8] [9] [10] [11] [12]. So, in the next section, we
present some systems which are representative ones, either for their state of development
or their mechanisms. In section 3 we present the model of reasoning and knowledge used
in our system named OCAPI. Then in section 4 we describe two examples of integration of
image processing based on OCAPI: one for stereovision, and the other for morphological
description of galaxies. In the last section, we compare the models used in the systems

we have presented.

2 Recent work in semantic integration

Integration of image processing modules has been recently addressed using intelligent
systems. In this section, five such systems are presented; the goals of the authors are
quite different: interactive help versus fully automatic system, domain specific tool versus

general system, generation of programs or scripts versus execution of commands.

2.1 Expert assistant

In the field of astronomy, Johnston introduces the concept of an expert Data Analysis
Assistant. In fact, astronomers manipulate image analysis systems which offer numerous
functionalities. Depending on how and when the data have been obtained, astronomers
often have to use various image analysis systems. These systems are usually implemented
as command languages. So, Johnston has proposed Expert assistant [7], a system of
generation of commands, independent from the image analysis system. A prototype has

been developed using the commercial expert system shell KEE [13]; it addresses the

problem of CCD calibration as a simple test case for its methodology. Two different

image analysis systems are available (MIDAS and SDAS/IRAF).

Expert assistant allows the expert in image analysis to represent the knowledge of
different kinds of data, instrument modes, and data analysis operations expressed in term
of tasks. Tasks can be primitive or compound. Control is done by production rules, and
reasons about data properties, merges redundant tasks, and expands compound tasks,
but without accessing the image data. In a first step, a symbolic plan is generated. In
a second step, this plan is translated into commands for one of the two available image

analysis systems.

So this expert system simply generates optimized sequences of commands given a

symbolic description of the data.

2.2 Toriu’s system

Toriu et al. have been interested in the general domain of image processing, without
targeting any specific domain of application. They are concerned with improving the
productivity of beginners and non specialists who have to develop specific algorithms for
an application. So, an expert system [8], working on the FIVIS image processing system,
has been implemented in Lisp. This system provides functions that would help users
to construct their application, by automatically selecting and combining various image
processing modules. It is not just a prototype, but already a commercial tool; 120 image

processing modules are available, and 40 image attribute names are used.

Given a predefined goal (such as segmentation, image quality improvement or feature
extraction), and a symbolic description of the attributes of the image (image type, noise
level, texture...), this system selects a global processing (using inferences), and image
processing modules (by matching between the characteristics of the image and those of
the modules); it also runs them. So, selection and execution of the modules are done

in the same process: a module is selected and immediately executed. A distinction is

made between abstract goal, decomposition into subgoals, and programs. Programs are
explicitly described, using frames. Planning is performed by production rules (260) either
for the decomposition of the goal into subgoals, or for the selection of the programs. The
system can ask the user to qualify the input data (initial or intermediate images) in order
to process them; but there is nonevaluation on the quality of the results. This system is

highly dependent on the image processing system (FIVIS).

This system offers a conversational help to the user to perform image processing.

2.3 EXPLAIN

The work presented in [9] is also involved in the general domain of image processing, with-
out any specific application field. Tanaka and Sueda developed a system which assists the
non-expert in using a package of image processing algorithms to obtain a required image
from a given one. As special feature, a knowledge acquisition facility is incorporated;
it captures knowledge about image processing procedures through interaction with the
domain expert. EXPLAIN has subsystems for consultation, and image processing. They
are implemented as a set of PROLOG clauses.

The consultation subsystem interacts with the user to guide image processing, and
suggests an appropriate course of actions. The problem is specified using keywords (like
enhancement or segmentation), and some approximated properties of the image to be
processed (color/black and white, noise level, contrast). The process decomposes the
given requirement into a sequence of image processing algorithms, using production rules.
This decomposition into sequences, which is considered to be subgoaling, is done using the
depth first search strategy; when a subgoal corresponding directly to an actual algorithm,
is reached, the image processing subsystem is called. Then these algorithms are run, and
their results are displayed to the user; in case of unsatisfactory results, the values of the

parameters are modified, or another command is tried.

EXPLAIN is an image processing expert system; it runs the commands on the images,

and provides a trial-and-error mechanism to deliver satisfactory results.

2.4 DIA-ES

H.Tamura and K.Sakaue [14] proposed the DIA-ES system (Digital Image Analysis -
Expert System). It helps, in a semi automatic way, to design an algorithm for a specific
application. It has been used to design algorithms for a problem of pattern recognition
[10]. DIA-ES is composed of two subsystems, the semantics and the syntactic processor,

which are developed on a symbolics lisp machine (using Uranus prolog/KR).

Given an image and a problem, the semantics processor selects the appropriate pro-
cessing modules. This is done using knowledge about image processing methods, and
interactively with the application designer. An execution tree, built by production rules,
describes the processing being elaborated. These rules express the decomposition of the
goal into subgoals, at different levels of abstraction, or modifications in the structure of
the execution tree (suppression, insertion of new operations). Manipulating the execution
tree is a way to perform automatic adjustment of the processing. This tool is highly
interactive. Evaluation of results, and adjustment of parameters are performed by the

user.

The syntactic processor has been presented by K.Sakaue and H.Tamura in [15]; given
a sequence of abstract commands, it generates a program using knowledge of the data,
and the algorithm structures of the selected modules; each one is described with its name,

and informations concerning its arguments. An application has been developed with the

library SPIDER [16].

So, from an image, its characteristics, and a goal, DIA-ES generates sequences of

abstract commands (semantics processor), and optimized programs (syntactic processor).

2.5 Bailey’s system

Bailey is interested in making easier the development of image processing algorithms
for people who are specialists in some application domain but not in image processing.

A prototype presented in [11] has been developed, but not yet used for some specific

application. The system is composed of the algorithm generation subsystem implemented
in PROLOG, and of an image processing subsystem which is currently a command-based
system very similar to VIPS [17]. But the design has been done in such a way that any

other image processing could also be used.

In a first step, the system interacts with the user to determine precisely the type of
image processing task to perform; then recommendations are made on the way to obtain
a representative image to develop the algorithm on. In a second step, an architecture of
algorithm is selected among the architectures described in the knowledge base, according
to the type of task to perform; this is done using selection rules. FEach architecture
contains a decomposition of a main task into substeps. For each substep, an operation
which can be performed by the image processing subsystem is selected, and performed.
It is interesting to observe that initialization of parameters can be done through recursive
calls to the system. The results of an operator (not a goal) are evaluated by the user; if
they are not satisfactory, another operation or sequence of operations is tried; but there
is no loop mechanism to repeat executions of a same operator for the same task. When
all the results are satisfactory, the algorithm is provided to the user, and can be tested

on other images.

So, this prototype provides computer assisted generation of image processing algo-

rithms.

2.6 Conclusion

We can notice that all the presented systems, have the architecture of an expert system;
they are expert systems themselves or generator of expert systems, depending on their
generality. In fact, this methodology permits to separate particular knowledge about an
application domain and programs, and the control of the reasoning for integration; so the

development and the reutilization of such systems are facilitated.

10

3 The OCAPI system

3.1 Objective

In order to perform semantic integration of programs, we are concerned with the prob-
lems of modeling knowledge and reasoning which are used in the development of image
processing systems. Due to the necessity for generality, the model has to be independent
from any specific application or domain of application, and even from any image process-
ing system. First, we propose a model verifying these requirements; second, we describe
OCAPI, an implementation of this model which automates execution of image processing;
i.e., given data to be processed, a goal to reach, and eventual constraints on the results,
the system generates, performs, and optimizes the processing. Systems mentioned in the
previous section do not take into account the same constraints. For instance, Expert as-
sistant cannot run the script of commands that it has generated; Toriu’s system is heavily
depending on the FIVIS image processing system; and none of those systems procides a

fully automatic mode of utilization.

In this section, our model and its implementation are presented. First, a model of the
reasoning performed in semantic integration is described (the types of reasoning, and the
various techniques). Second, a model of knowledge involved in semantic integration of
programs is presented (typology of various concepts, and relations between them). Then,
we conclude on the implementation of the OCAPI system. Some examples of integration

using OCAPI are given in the following section.

3.2 Model of reasoning

[2] and [18] discuss how to reason during the development of an image processing appli-

cation. This can be summarized using examples as follows:

-1- selection of substeps or subgoals; for example: to reach a certain goal, one has first

to perform a segmentation, then to select the biggest region, then to describe its

11

shape;

selection of operators, algorithms or methods; for example: for image segmentation

three methods can exist while, in a particular context, we choose the operator segl;

initialization of the input arguments; for example: set threshold t=0.45 and input

image=im21;
effective execution of programs ; for example: run the command “ segl im21 -t 0.45”

test of the results (satisfactory or not); for example: if the size is below 30, the

segmentation is too fine;

new execution of programs with other values of parameters; for example: if the

segmentation is too fine, increase t by 10%;

if the results are still not correct, selection of other methods; for example: if the

operator segl fails then use the operator seg2.

Phases 1 and 2 correspond to a planning reasoning. In fact, planning is “to describe

a set of actions (or a plan) that can be expected to allow the system to reach a desired

goal”

[19]. Here, the actions are the programs; a plan is a chaining of programs, while

goals are functionalities to provide. Phases 3 to 6 execute the generated plan, and control

its quality; so these phases correspond to a control of execution reasoning. The last

phase corresponds to a replanning reasoning; i.e., execution of the plan is stopped, and

the plan has to be changed; this necessitates a new planning phase.

Two kinds of reasoning need to be developed: planning, and control of execution.

3.2.1

Planning for integration

In this paragraph, the question is: which planning technique is adequate for semantic

integration of programs?

12

In problem solving, planning is to find a plan for achieving a goal according to a given
state of the world. A plan is defined as an ordered list of actions to perform. Three main
techniques have been developed in planning: non hierarchical, hierarchical and skeletal
planning [20]. While the two first methods concentrate on the reduction of conflicts in
the plan steps, the last one emphasizes the expertise of the specific domain. The third
method, also called script-based planning, assumes that abstract or skeletal plans exist.
A skeletal plan contains the basic steps to solve a problem. First, the best skeleton is

selected, then refined.

In image processing, we have few sensitive conflicting subgoals; so the two first tech-
niques are not necessary. As we hold knowledge, at several levels of abstraction, of typical
processing methods, a skeletal technique providing a refinement mechanism is appropri-
ate. Another point is the handling of real world data; we have to deal with unreliable
or uncomplete information; the state of the world (initial, final or even intermediate) can
not be described exhaustively. So we have to use a technique based on the description of
the actions to be performed, and not on the different possible states of the world. Given
these prerequisites, a skeletal planning technique proves to be adequate for the planning
phase. A plan can eventually be modified during a replanning phase by replacements or

insertions of actions.

3.2.2 Control of execution for integration
We are interested, here, in defining the type of control of execution which is the best
adapted for the integration of programs.

Four main types of control of execution [19] have been developed:

e prediction of failures, and planning of additional actions which wait until the world

corresponds to what is expected (example: waiting for a light to turn green before

crossing a street);

e prediction of failures, and integration in the plan of tests and correcting actions;

13

e prediction of failures, and integration in the plan of tests and alternatives;

e integration of the planning process, and control of the execution process.

In our context, in image processing, we do not handle secure actions: predicting
exactly the behaviour of an image processing operator on an image is not possible. So,
a trial-and-error strategy is needed, as well as the interleaving of planning and control of

execution processes.

3.2.3 Reasoning for integration

In conclusion, two main tasks have to be performed (Figure 1).

First, a planning phase reasons about an appropriate plan to guide the processing of
the given images. This step determines the list of instructions to run according to the
request of the user: this is done using a progressive refinement strategy. Second, the
control of execution of the plan is done through trial-and-error experiments. The quality
of the results obtained from the input images is checked (evaluation of the results), and
in case of unsatisfactory results, a mechanism adapts the values of the parameters of the
image processing algorithms (adjustment of the parameters). The sequence of operators

can also be modified using a replanning mechanism if needed.

3.3 Model of knowledge

In this section, we describe in detail the model of knowledge we have defined for semantic
integration of programs. First we define a typology of the different kinds of knowledge we

need, then we describe how all these concepts are related and structured.

3.3.1 Typology of the various concepts

In order to model knowledge of integration, and to facilitate the building of knowledge

bases, the important concepts have to be found.

14

First of all, when we process an image, we always have in mind an objective or a goal
to reach. This notion of goal is close to that of task we need to serve. In the following

section, we use the term goal which is defined below:

a goal represents an image processing functionality. This functionality or objective
can be reached by a program or a complex processing. For instance, to smooth an

image is a goal; in the same way, to count objects in an image is another one.

We can note that programs in a library implement image processing functionalities
or tasks to perform, but they are not image processing functionalities. In fact, we

distinguish this abstract notion of goal from that of available operators:

operators are actions which can be performed. They contain specific knowledge to
solve a given goal. An operator can be a particular program (it will be referred to as
primitive operator) or a particular sequence of processings (it will be referred to
as complex operator). For instance, the primitive operator median3 is a program
implementing a median filter with window 3 x 3, while the complex operator count-
objects1 is a succession of several processings (smoothing, segmentation, sorting,

enumeration).

In addition to these concepts, two other notions must be introduced: notion of context
and that of request. First, in order to find the best sequences of programs, the context

has to be taken into account:

the context is a description of the input data, their conditions of acquisition, the
application domain, and even semantic information on the supposed contents of the
scene. For instance, a context can be: c-astro: the application domain is astronomy,
the optical instrument is a high quality telescope, the digitizer is a microdensitome-
ter, the scenes are extended sources scenes, and stars are present. Another example
would be c-robot-in: the application domain is robotics, the optical instrument is a

CCD camera, the digitizer is a standard one, scenes are indoor scenes.

Second, a problem in vision is expressed by its goal (or functionality), but also by the

data to be processed, and eventual constraints on the results to be obtained. On the same

15

way we can differentiate instances and classes, a request can be understood as a particular

case of a generic goal. The term of request will denote the following information:

a request states which goal has to be reached, the data of the particular case to
work on (for example, the name of the input image), the required quality for the
results, and the context. A request is thus a query to solve a goal for a specific case.
For instance, a request can be r-cont: contours detection of the image “viewl”
another one can be r-region: region segmentation of the image “view2”, the size of

the regions must be greater than 2500 pixels, and the context is “robot-in”.

Operators (primitive or complex), and goals work on a list of input and output argu-
ments as programs do. For instance, the goal smoothing has two arguments: one input
argument (the input image), and one output argument (the smoothed image); the prim-
itive operator median! implements a way to reach the goal smoothing, and has three
arguments: two input arguments (the input image, and the window size), and one output
argument (the smoothed image). We can distinguish two classes among the arguments,

data and parameters:

data arguments have fixed values, which are set (input data) or computed (re-
sults). In the previous example, input image and smoothed image were data argu-

ments. Often, operators performing the same goal have the same data arguments;

numerous image processing operators have tunable parameters. They will be re-
ferred to as parameters arguments; they have adjustable values and are always
input arguments. In the previous example, window size was a parameter argu-
ment. The description of these arguments is important in the knowledge base; in
order to optimize the processing, we not only need to know their value (e.g.: win-
dow size = 3) but also their range (minimum = 3, mazimum = 11), an eventual
default value (default = 3), and their type (integer or real). These arguments, and

their characteristics are specific to each operator.

We have seen in the previous section concerning the model of reasoning that we have

several phases in integration: how to choose among methods, how to initialize input argu-

16

ments, how to execute programs, how to evaluate results, and eventually how to modify
the processing with the determination of new input values for programs or selection of
other programs. From this description, we can distinguish four notions: choice of opera-

tors, evaluation of results, initialization of parameters, and adjustment of parameters:

by the notion of choice, we mean the knowledge of how to select, among all the
available operators, the operator(s) which is (are) the most pertinent, according to
the data, and the context. For example: if the images have a high contrast, use a

contour based segmentation operator.

by the notion of evaluation, we mean the knowledge of how to assess the results
provided by the selected operator after its execution, taking into account constraints
expressed in the request. For example: if the number of the segmented regions is

greater than 100, the segmentation is too fine.

by the notion of initialization, we mean the knowledge of how to initialize values of
input arguments. Various mechanisms are required, as default values or computation
method depending on the values of other arguments. For example: for the parameter

window size, the default value is 3 .

by the notion of adjustment, we mean the knowledge of how to modify values of
parameters after a negative evaluation. For example: if the segmentation is too fine,

increase the value of the threshold th-sigma.

3.3.2 Relationship between these concepts

In the previous paragraph, we have defined several concepts (goal, primitive or complex
operator, context, request, data or parameter arguments, choice, evaluation, initialization

and adjustment). These notions are not isolated, but are related together.

Relationship between goals, operators and requests: Operators are always re-

lated to a precise goal; but the level of abstraction of a goal (abstract notion), and of its

17

related operators (concrete executable actions) are different. A complex operator imple-
ments a set of processings, which is referred to as a decomposition. A decomposition is
not a set of programs, neither a set of goals, but is a set of requests. To be more precise:
a decomposition is not just a set of programs, because, for example, we can mention the
case of a particular operator for stereovision which can be decomposed into two steps:
extraction of primitives, and matching of primitives; but if several operators (complex or
primitive) are able to perform extraction of primitives, such a decomposition does not
impose which one to use. In the same way, a decomposition is not just a set of goals; in
fact, in a particular decomposition, data flow of input and output arguments have to be
managed; for example, the output of extraction of primitives is one input to the matching.
To dictate some constraints about the results of each step must also be possible: matching
of primitives will be performed only if the number of extracted primitives is significant
for the given problem. So, each step of a decomposition is a request to solve a goal in a

special context, with restrictions on the input, and eventual specifications on the results.

Relationship between the steps of a decomposition: The set of requests involved

in a decomposition can be seen as a tree where the leaves are the requests, and the full

nodes express the temporal link between the requests.
Two types of temporal links are used, representing:

o sequentiality: Request 1 THEN Request 2.
For example: filtering THEN contour detection THEN chaining.

o parallelism: Request 1 AND Request 2.
For example, in stereovision: extraction of primitives on the left image AND ex-

traction of primitives on the right image.

The example of Figure 2 corresponds to requests which are related on this way: first

Request 1 then Request 2 then | Request 3 and Request 3" and Request 3”] then Request 4.

Relationship between choice, evaluation and goals: We have seen that the avail-

able operators to perform a goal are related to it. But, the goal has to know how to select

among them, the operator which is the most suitable for a specific problem: the knowl-

18

edge of how to choose the operator is global to the goal, and not local to each operator.
Evaluation of the results is also a mechanism which has to be related to the goal. In fact,
the goal knows what results are required: it chooses the way to perform them, and then
has to verify their conformity to the requirements. The criteria of evaluation must be
common for the same goal, because the evaluation of the results has to be independent
from the operator which performs the processing. So a goal can be seen as an item able

to decide how to solve a given problem, and to validate the results.

Relationship between initialization, adjustment and operators: An operator

has to know how to initialize its parameters. In fact, each operator uses its input pa-
rameters in a specific way (meaning, format, range, sensitivity...). A fortiori, knowledge
about adjustment of the input parameters depends on the operator: for a given bad result,
the sensivity of the various parameters depends highly on the particular algorithm and
implementation for a program, and on the particular decomposition into subrequests for
a complex operator. So these mechanisms must be located on each operator. An operator

is an item able to manage its parameters.

3.3.3 Knowledge for integration

We can summarize the model as follows: the user submits a request which relates to a goal,
a set of input data, and a specific context. As a goal can be solved by several operators,
choice knowledge is used to select an operator among them. An operator can be a pro-
gram (primitive operator), or can have a proper decomposition into subrequests (complex
operator). Before the execution of the operator, initialization knowledge sets the values
of its parameters. The results of the execution are estimated by evaluation knowledge.
Adjustment knowledge modifies the values of the parameters in case of unsatisfactory

results.

19

3.4 Implementation

This model of reasoning and knowledge for semantic integration of programs has been im-
plemented within an expert system generator architecture. Figure 3 explains the relations
between the user, the knowledge base level, the data, and the programs. It shows also
the architecture of an expert system built with OCAPI: it is compound with a knowledge
base, a base of facts, and the control structures (OCAPI).

OCAPI has been developed in Le_Lisp, ! and its object oriented facilities.

3.4.1 Implementation of the knowledge model

We have seen that strong relations exist between the various concepts we have introduced.
These relations structure the knowledge base in order to facilitate the expression of the
knowledge and also its utilization. The static or descriptive knowledge is implemented
with frames, i.e. goals, operators, context, requests, and arguments. For heuristic criteria
concerning choice, evaluation, initialization, and adjustment, production rules are used.
Ref IA to systems with both frames and production rules. Both knowledge representation
schemes and mized control (production systems and frame-based systems). Such an archi-
tecture is efficient for specialized tasks with predefined role for frames and production rules.
Examples: CLASSIC for classification task... By opposition with general systems working
with rules (OPS5), frames (KRL?). Ce qui concerne Uefficacité dans les 2 paragraphes
suivants pourrait étre repris dans la conclusion de la partie Implementation. Frames:
Frames are a very interesting way of structuring the knowledge base; grouping in the same
location all the information about an algorithm or a method, is efficient (no inferences to
execute), clear (readable), easy to access, and secure (a local modification will not have
unwanted consequences as it happens when all the knowledge is expressed with rules).
Various types of frames (goals, primitive or complex operators) structure the knowledge
base into several levels of abstraction. So, incremental development of large knowledge
bases by several specialists becomes possible. For instance, knowledge about chaining can

be expressed by a specialist of this technique; then an expert on stereovision can build

20

a knowledge base which, if needed, refers to the goal chaining ; so, the goal stereovision

will be partly solved using the knowledge base developed by the specialist in chaining.

Rule bases: The knowledge base is also structured using several small bases of pro-
duction rules. Rules are grouped depending on their semantics (choice, evaluation, ini-
tialization and adjustment rules); in addition, these rules, which are typed, are attached
to the only frames they are concerned with. Structuring the base in this way greatly im-
proves the efficiency (only few rules are scanned at a given moment), and facilitates the
development of knowledge bases by several experts (the same vocabulary can be used for
different items: the same words threshold or input image can be used for the parameters

of several distinct goals).

Figure 4 shows the relations between the frames, and the rule bases. A request
(for instance Request-00) is related to a particular goal (here Goal-1); this goal can be
solved by several operators (Operator-1, Operator-2, and Operator-3 in this case). A
decomposition of a complex operator (Operator-2, or Operator-3) is a tree of requests to
other subgoals. Each goal, and each operator have two private rule bases: one rule base
on choice, and one on evaluation for a goal; one rule base on initialization, and one on

adjustment for an operator.

3.4.2 Implementation of the reasoning model

The control structures have five components : a pilot, a planner, a parameter set-
tler, a rule interpreter (a general one called by the previous components), and an
interface to activate external programs. The pilot has the role of a supervisor and
of a controller: it controls the execution of a tree of requests, and decides to call other
components for specific tasks. The algorithm presented in Figure 5 controls the execution
of a tree of requests. Of course, to process the initial request, this algorithm works on a

tree reduced to one request.

Step 1 (performed by the planner) is a global matching verifying that there exists
at least one operator to solve the goals of the requests. Step 2 (performed by the pilot)

21

selects one request to process (when the tree is reduced to one request, this step is imme-
diate). Step 3 (performed by the planner) eliminates invalid operators, and performs a
classification of the valid ones using the choice rules. Step 4 (performed by the pilot)
selects one operator among the valid ones. Before execution of a chosen operator (step
5), the parameter settler determines the values of its parameters: using initialization
rules for the first attempt, using adjustment rules for the next ones. If the operator is
a primitive one, the execution is done by the interface with programs; in the case of
a complex one, this algorithm is recursively called to control the execution of the tree of
requests of its decomposition. Then, according to the request, the evaluation of the results
(step 6) is achieved automatically using the evaluation rules, or by graphic presentation
of the results to the user who evaluates them interactively. In case of unsatisfactory
results, another execution is performed after adjustment of the input parameters of the

operator, or after choice of another operator.

3.4.3 Implementation: Conclusion

efficiency and bench marks 7 Petits SE dans les objets

4 Examples of integration using OCAPI

In this section, we present two examples of expert systems built with OCAPI. The first
example is the integration of a stereovisual process (including the extraction of the prim-
itives); we show in detail how the various kinds of knowledge are expressed in the knowl-
edge base. The second example is the description of a knowledge base developed for an

application in astronomy; the integrated processing is a complex one.

22

4.1 Integration of a stereovisual process

This example has been developed within the framework of the Eureka project Prometheus.
It deals with detection of obstacles in road scenes and urban scenes, using stereovision
data. The data are taken from two cameras which are fixed on the top of a moving car. A
pyramidal stereovision algorithm based on contour chain points [21] is used to reconstruct

the 3D environment in front of the vehicle.

Integration of the knowledge on the use of this stereovisual process is needed for
robustness, and above all to manage the great variety of the scenes. More precisely a
lot of contextual values in the scenes vary, like luminosity (depending on the weather
conditions and on the moment in the day), complexity of the scene (depending on the
number of objects in front of the car), and velocity (depending on the location of the
scene: highway, countryside road or urban street). Since the scenes may be quite various,

it is not possible to fix the values of the different parameters involved in the processing.

The initial request is thus the stereovisual processing of a pair of images taken by two

cameras. Figure 6 shows an example of such images in the case of an urban scene.

The pyramidal process works at several resolutions (to be precise, four resolutions); for
each resolution, first an extraction of the primitives, then a matching of these primitives
are performed; for each image (the left and the right one), extraction of primitives consists
of contour detection, thresholding by hysteresis, computation of precise orientation, and
contour chaining. Matching results obtained at a given resolution are interpolated, and

used to reduce the search at the immediately higher resolution.

The current knowledge base is composed of 15 goals, at which are attached 19 oper-
ators. Among these operators, 14 are primitive ones (programs) and 5 are complex ones
(with decomposition into steps). 50 production rules are attached to those frames: there
are 6 choice rules, and 10 evaluation rules attached to the goals; 14 adjustment rules,
and 20 initialization rules are attached to the operators. Thanks to 34 inferences rules
for initialization and adjustment of parameters, this knowledge base can process fully

automatically really different types of data. This knowledge base could be extended by

23

adding new alternative operators both for extraction of primitives and matching, with

their corresponding rules.

4.2 PROGAL: an integration in astronomy

The problem of integrating image processing modules arises also for the development of
specific applications. It is the case for applications which have to be flexible, i.e. the
processing must be adaptable according to changes in the environment or to the type of

data.

In this example, we are interested in automating the data processing of images con-
taining a galaxy. The goal of this application is to class the galaxies according to a
predefined classification. A synopsis of the global architecture of the system is shown in
Figure 7. The first phase computes, from the image, numerical parameters describing the
galaxy morphology. This phase is performed by PROGAL, an expert system using image
processing programs; this system has been built with OCAPI, the expert system shell
which has been previously presented. The second phase classes the galaxy described by
the numerical parameters computed in the first phase, by using a taxinomy defined by the
experts of the field. This phase provides as output the morphological type plus a detailed
symbolic description of the galaxy; it is performed by the expert system SYGAL [22] built
with CLASSIC [23], an expert system shell specialized in classification.

In this application the role of the image processing phase is to describe the morphol-
ogy of the galaxy in terms of numerical parameters. For example, Figure 8 shows the
input image mt671n17.fl containing in its center the galaxy ngc4523, and the numerical
description of the galaxy computed by the processing. These parameters correspond, for
instance, to measures of the orientation, the elongation, or the compactness of several
regions of the galaxy. For each image, the image processing is approximately the same;
it has five main stages: initialization (creation and initialization of the file containing
the numerical parameters), extraction in the image of the object of interest (the galaxy),

computing of global parameters describing the galaxy, building of iso-intensity contours

24

(corresponding to different regions of the galaxy), and for each of these contours, com-
puting of numerical parameters describing them. Among these stages, some of them are
relatively complex. For example, the isolation of the galaxy has three subparts: localiza-
tion of the object, effective isolation, and noise removal. The object localization starts
with a low resolution localization (by the research of an extended bright region and by
correlation of this region with a photometrical model of a bulge [galaxy center]), and is

refined at high resolution.

Because of the great variability in the images, which are taken by different observation
instruments (photographic plates or CCD cameras, high or low resolution telescopes...)
both the sequences of procedures, and the values of their parameters need to be adapted.

Some examples of images are shown in Figure 9.

In this application, the set of procedures to pilot is composed of specific procedures
(written in C and Fortran77), standard image processing procedures of a library (IN-
RIMAGE), and operating system commands (Unix). Some procedures such as histogram
computing, filterings (median, morphological), extraction of images, and convolutions are
standard ones. Specialized algorithms are, for example, computation of some thresholds,

isolation of the galaxy, or computation of morphological parameters.

4.2.1 The knowledge base

In this section, we present the knowledge base of PROGAL. The image processing pro-
cedures are detailed in [22]. The examples are expressed using the knowledge representa-
tion schemes of OCAPI: frames and production rules. As it has been shown, an OCAPI
knowledge base is structured by frames belonging to different classes. Now, we detail

some examples of the main frames in PROGAL.

Context frame : The frame context describes the possible values of the character-

istics of the input data; this information is important because it is used in the rules
(choice rules to decide pertinent operators in function of the context, initialization rules

to adapt initial values of the parameters to the current context...). Presently, we use in

25

the production rules two kinds of criteria : the criteria related to the type of observation
instrument as the level of noise in the input image, the nature of the image (density image
provided by the sensor or intensity image obtained after a photometrical calibration) and
the size of the objects which could partially occult the object of interest, and the criteria
related to the semantic contents of the image, as the position of the object of interest
in the image, the eventual presence of other objects (bright foreground stars) and their
distribution. So, in this application, the context of the knowledge base takes into account

these criteria, as it is shown in Table 1.

Goals frames: The knowledge base contains several goals such as: morphological-

description, object-extraction, global-param-computing, contour-building, contours-param-
computing, coarse-object-extraction, coarse-object-detection, thresholding, contour-chaining,

including-box, histogram, convolution, multiplication....

For instance, the goal coarse-object-extraction [Figure 10] has one input data argument
(the input image) and five output arguments (the x and y positions of the object, the
subimage containing the object, and the size of the subimage in the x and y directions).
Choice rules are attached to this goal (they are discussed in the next section); in this goal,

there are no evaluation rule.

Operators frames: Several operators have been defined in the knowledge base: they

correspond to a particular goal as shown in Table 2.

For instance, the operator O-coarse-object-detection! [Figure 11] which solves the goal
coarse-object-detection has the same input argument as its goal (the input image), and the
same output arguments (the x and y positions and sizes of the subimage containing the
detected object as well as the size of the object). To detect the area containing the galaxy,
this complex operator looks for a bright extended object; being a complex operator, it
is decomposed into several substeps (requests to other goals): first thresholding, then
filtering, then creation of the contour chain of the largest region, then computing of the
position and size of the including box of this region. This operator is used in the object

extraction phase in the case where there are no a priori information on the position of the

26

object in the image (the object is not centered in the image or its position is unknown).
Initialization and adjustment rules determine the value of the input parameter smuls for

each of the execution of this operator.

Request frames:

Each substep of the decomposition of the complex operator O-coarse-object-detectionl
is a request; Figure 12 shows the details of the first one which is a request to the goal
thresholding. Control of data flow of input and output data of the operator, and of the

subrequests is expressed directly in the requests and in the operator arguments.

We show in Figure 13 a request which specifies constraints on results; the constraints
express that the size of the detected object must be greater than a threshold expressed

in the context in order to discriminate it easily from eventual occulting objects.

Choice rules:

When several operators are available to solve the same goal, we have to express how
to select the pertinent operator according to the context. For example, as we have seen
in Table 2, two operators O-centered-object-ext! and O-general-object-ext can solve the
goal coarse-object-extraction. These two operators perform the extraction of a subimage
containing the object of interest; the first one, simply extracts a subimage in the center
of the input image, subsuming that the object is located in the center of the image;
the second operator in a first step looks for detecting the object before extracting the
subimage (it is for this detection phase that we will show initialization, evaluation and
adjustment rules). One choice rule attached to the goal coarse-object-extraction is shown
Figure 14; this rule handles the particular case where there is an a priori knowledge on
the location of the object. Other rules exist to adapt the choice of the operator to scenes
for which there is no a priori information on the location of the object or if the object is

not centered in the image.

Evaluation rules:

Most of the time, it is very difficult to express evaluation criteria to assess the results

of low level goals (like thresholding) since no interpretation of the results is performed at

27

this stage; when a goal provides high level data as results, it is possible to find a criterion
of evaluation based, for example on some measure. Two evaluation rules associated to
the goal coarse-object-detection are shown in Figure 15; the first one states that, if the
size of the detected object is too small w.r.t. the specifications expressed in the request
when occulting objects are present, this detection is ambiguous and a failure is decided;
this failure sets a loop mechanism which starts a new execution of the same operator with
modified input parameters. On the right part of the same figure (Figure 15) another kind
of evaluation rule is shown; this rule states that if the detection is not ambiguous but
if the size of the object is very close to the ambiguity threshold called min-specifs, this
detection is assessed as a limit case. This assessment will be used further in the reasoning

but will not start an immediate failure.

Initialization rules:

Initialization of the parameters of the operators depends highly on the context. For
instance, the operator O-isolate which performs the effective isolation of the galaxy by
computing the exact boundary of the object of interest, needs the initialization of two
input parameters: sfl and sf2. These parameters are two thresholds and their values
depend on the nature of the image (i.e. density or intensity image); we show on Figure 16
one rule among those initializing these parameters w.r.t. the context. In the same way,
the operator O-coarse-object-detection-1needs to initiate the value of the threshold smuls.
This input argument is defined as being a parameter with numerical values between 0
and 1 and no default value. Its value depends on several other variables (sm, saire! and
saire2). So, initialization rules are necessary to define this value w.r.t. the context of use
of the operator. One initialization rule of smuls is shown on Figure 17. If sm is lower
than saire2, smuls is computed using an expression depending of saire! and saire2. These
rules are triggered during the first execution of the operator, for a given request to the

goal coarse-object-detection.

Adjustment rules:

When an operator fails because the results are not satisfactory, we need to express how

28

to modify its parameters w.r.t. the type of failure. There are three types of adjustment
rules: the rules which select an adjustment method for a given parameter (dichotomy
method, percentage method...), the rules which determine the direction of the modifica-
tion of the value for the next execution (increase or decrease), and the rules which fix
imperatively a new value. All these adjustment rules test the assessments which have
been deduced by the evaluation rules which have concluded to the failure; so, based on
these diagnoses the best adjustment for a given parameter is selected. The rule presented
on the left side in Figure 18 selects an adjustment method for the parameter smuls of
the operator O-coarse-object-detection-1; the method is a percentage technique with a
coefficient of 5% and with saire2 as minimal bound. The rule presented on the right side
in Figure 18 expresses that when the detection is ambiguous, the threshold smuls has to
be decreased. The way to decrease this parameter will be done according to the method

previously selected.

4.2.2 Execution

In order to illustrate how the system works, we present an effective execution of a request
on an image of the galaxy ngc4523 in the Virgo cluster (see Figure 9). We ask to the system
to solve a request to the goal morphological-description: the input argument mt671n17.f1
is the name of an image file containing the galaxy ngc4523. In this particular case, the
location of the object in the image is unknown, the image is a density image, the image

is noisy, there are stars anywhere in the image, and their size is lower than 5 pixels.

During the reasoning, the system builds dynamically the tree of the subgoals it solves
(see Figure 19). The tree expresses the decomposition of the final processing into substeps
up to primitive operators (programs). The level of abstraction is represented on the
horizontal axis: from the most abstract on the left, to the least one (the concrete programs)
on the right. The temporal ordering is represented on the vertical axis: the lowest leaf
corresponds to the first step, the uppermost one to the last step. In this figure, nodes

are goals to be solved. After an initialization phase, there is a phase of extraction of the

29

object which begins by an object detection phase. In order to perform this detection, the
system computes some statistics on the density values, then it creates a low resolution
image (input image: 512x512, sampling factor: 4), then it starts a coarse extraction of
the object on this low resolution image. In order to perform a coarse extraction of the

object, there is a phase of coarse detection of the object.

The results of the first execution of the operator O-coarse-object-detection! to solve
the goal coarse-object-detection are shown in Figure 20. Note that the detected object is
the top left star and not the central galaxy; in fact, the position of the detected object is
given by the output arguments iz and iy, their values after this execution are respectively
32 and 16; the threshold image is a 128 x 128 image computed from the low resolution
one. The size of the detected object (size=5) being too small, the rule shown in Figure 15

is triggered and a looping starts.

Once the adjustment rules attached to the operator O-coarse-object-detectionl have
been triggered, the parameter smuls has been decreased, and its value becomes 0.2592023 .
The results of the second execution are displayed Figure 21. The size of the object is still
too small. However, this time it is the galaxy which has been detected: the position of
the detected object is given by the arguments iz and ¢y, and their values are respectively
64 and 62. It could be possible to stop the loop; but, without other evaluation criteria
for this goal than the size of the object, the system loops again.

A third trial is performed with the value 0.2509509 for smuls. The results of the third
execution are diplayed in Figure 22. It is still the galaxy which has been detected (position
62 and 61) and the size has increased. The parameter smuls having reached the minimal
value, beyond which too many background noise is detected, it is impossible to perform

a better object detection; so no more looping is required.

The reasoning continues as shown in Figure 19: the following phases of the coarse ob-
ject extraction are the extraction of the subimage and the multiplication of this subimage
with the binary thresholded image, then the bulge of galaxy is estimated by maximaz-

ing the correlation with a gaussian model and this estimation is refined based on this

30

estimation working at the highest resolution. The object extraction continues with the
isolation of the object by computing its limits using a model of phometrical variation of
the intensity from the bulge, and ends with a noise removal step. The other steps global-
param-computing, contours-building and contours-param-computing are the computing of
classical global shape parameters (area, orientation, ellipticity) and of two specific photo-
metrical parameters (profile and linear_err), the computing of local parameters describing
the shape and photmetry of the object more or less far from the center. For more details

see [24,25].

During this execution 49 programs are run; among them 4 programs are executed
3 times each, during the evaluation-adjustment phases. For the execution of this request,
choice rules and evaluation rules have used contextual information about the position of
the galaxy in the image (centered or not), the presence of noise, the presence of stars,
and the type of the images (density or intensity). As this information was not specified

to the system in the initial request, the user has been asked for during the execution.

4.2.3 Conclusion

The current knowledge base is composed of 44 goals, at which are attached 47 operators.
Among these operators, 28 are primitive ones (programs) and 19 are complex ones (de-
composition into steps). 21 rules are attached to those frames. This example shows that
it is possible to develop, with OCAPI, knowledge bases for specific applications, with a

complex structure and numerous steps.

The interest of such a knowledge-based system has two main aspects: first, once a
sequence of programs has been defined and tested on a set of data, it enables its utilization
within a more general context; the expliciteness of the various kinds of knowledge which
are usually implicit enhances the robustness of the method (versus other input data) or
its generality (versus other applications); second, as the image processing expertise is
included in the system, it enables the use of the software to user working at another level

of abstraction (here an astronomer).

31

4.3 Building knowledge bases in integration

From the two examples previously described, we can deduce several points concerning the
building of such knowledge bases in integration. In order to facilitate the building of a
knowledge base, generally we must begin with the description of the static knowledge:
first, this knowledge is the most stable; second, this knowledge is the support for dynamic
knowledge. In the case of integration, static knowledge consists in the context, the goals,
the operators, and the requests, and dynamic knowledge consists in the choice, evaluation,

initialization, and adjustment rules.

Static knowledge: Developing PROMETHEE and PROGAL presented in the pre-
vious sections, has shown the necessity of beginning with the description of all available
programs, which, in fact, are the basic building blocks of the knowledge. So frames de-
scribing the primitive operators are the first to be expressed. Next step is developing of
higher levels of abstraction operators; depending on applications, particular sequences of

processing can be expressed.

Dynamic knowledge: Developing of the dynamic knowledge is a more complex pro-
cess; it may imply developing new algorithms for, for example, initialization of parameters
or evaluation of results. It may also imply the extension of the knowledge base or modifi-
cations of some programs because, at this step, the expert usually will be conscious that
a great deal of knowledge is implicit inside the existing programs; so, he or she will try

to make them explicit in the knowledge base.

5 Discussion

We can notice some emerging concepts from the various works on integration of image
processing procedures. Four main topics are relevant: knowledge expression, planning
facilities, execution capabilities, and control of execution functionnalities. Table 3 sum-
marizes the main concepts in each topic for each of the systems presented in this article.

The symbol * denotes the presence of the concept in an explicit way in the system, while

32

the symbol — denotes its absence. The symbol x*x means that the system offers really
good functionnalities concerning the concept, usually offering various means to perform

the associated task.

As shown on the section 2, all these systems have the architecture of an expert system;

in fact, they offer quite good functionnalities to express the knowledge.

The planning facilities of the systems are based on the notion of hierarchical squeletton,
which can be raffined or extended. Two systems (Expert assistant and Toriu) don’t offer

replanning facilities, while DIA-ES has really good capabilities.

The effective execution of the image processing procedures is performed by five of the

systems ; each of them offer mechanisms to initialize the parameters.

Expert assistant and Toriu’s system have no facilities for the control of execution. In
the other systems, the evaluation and the adjustment of the parameters have usually to be
performed by the user. In addition, in OCAPI, when available, knowledge of evaluation
of results, and of adjustment of parameters is expressed using rules; so evaluation and

adjustment can be automatic.

6 Conclusion

We have introduced the notion of semantic integration of programs. Then, a model of
reasoning and knowledge involved in image processing has been proposed. An implemen-
tation of this model, OCAPI, which has the architecture of an expert system generator,

has been described.

Two examples of utilization of OCAPI have been shown: a knowledge base on a
stereovisual process, and another one for morphological description of galaxies. Currently,
several other knowledge bases are under development on various domains, such as on
stellar astrophysics (planning and control of execution of numerical algorithms), and on

remote sensing (an industrial application).

33

Various other tools performing semantic integration of programs have been discussed.
There is not yet a system including all these concepts. More particularly, OCAPI, which
includes most of them does not yet have facilities for dynamic modification of the skeleton,
as DIA-ES has. For instance, to perform such modification could be useful for facultative
operations as filtering for noise removal. On the other hand, OCAPI offers the most de-

veloped trial-and-error mechanisms (evaluation of results, and adjustment of parameters).

But : automatiser les traitements, faciliter 'expresison de la connaissance (expertise).
Mais pas construction automatique de nouveaux traiteemnts et/ou génération de code.

POur cela, il faut étdnre les facilités de planification. Par xemple :

e caractéristiques des opérateurs (choix)

e construction de décomposition / modifications

34

CONTEXT ITEM

POSSIBLE VALUES

COMMENTS

noise low tmportant noisy image or not
image-type intensity density image type
min-size [1,1000000] minimal size of the object expressed in pixels

(fonction of the observation instrumentation)

object-position

centered uncentered

position of the object in the image

other-objects

n-front-of-the-galazy
absent everywhere

outside-the-galazy

eventual presence of other objects such as

stars

- Table 1 - Definition of the context in the PROGAL base

35

goal operators

coarse-object-extraction | O-centered-object-extl, O-general-object-ext
coarse-object-detection | O-coarse-object-detectionl
object-isolation O-isolate

filtering O-morpho-f, O-median-f

- Table 2 - Some goals and their associated operators from the PROGAL base

36

\ Systems Expert | Toriu | EXPLAIN | DIA-ES | Bailey | OCAPI
Concepts \ assistant
Knowledge Expression
explicit description of operators * * — * *x Hok
levels of abstraction * ok Fok Fok * Hok
description of data and context * * * * — *
Planning Facilities
planning * * * Hok Hok Hok
replanning — — * Hok * *
Execution
effective execution — * * * * *
parameters initialization — — * * ok Hok
Control of Execution
results evaluation — — * * * ok
parameters adjustment — — * * — *k

- Table 3 - Concepts and systems in ...

37

? request /

EXPERT

SYSTEM

A

instructions
list

CONTROL OF EXECUTION

- Figure 1 -

38

PLANNING

Lo

e

Request 1 Request 2 @ Request 4
Request 3 || Request 3’ | |Request 3”
- Figure 2 -

39

user

user level
EXPERT
SYSTEM base of
facts
e ~ knowledge-based
OCAPI kngwledge level
ase
—— _ programsand
libraries images
data level
- Figure 3 -

40

~7| Operator-1
data: ...
parameters: ...
Request-00 .,"‘ syntax: prog-1...
input restrictions:... Initialization rules | Adjustment rules
output restrictions:...
Operator—2
..,o’ 7 data: ...
Goal-1 e parameters: ...
data: ... ""‘ decomposition:
parameters: ...
Choicerules |Evaluationrules | ™., d
Initialization rules | Adjustment rules
Operator—3
data: ...
parameters: ...
decomposition:

Initialization rules

Adjustment rules

- Figure 4 -

41

-1- global matching
while not all requests have been processed

-2- selection of the request to be processed

-3- classification of the operators (using choice rules)
while the request is not satisfied
-4- selection of the best operator

-5- execution of the operator (using initialization or adjustment rules)

-6- evaluation of the results (using evaluation rules)

- Figure 5 -

42

- Figure 6 -

43

i mage
cont ai ni ng
gal ax

PROGAL

i mage processing built with OCAPI

nunerical description
of the norphol ogy
of the gal axy

built with CLASSIC

SYGAL

classification

class and
synbol i ¢ description
of the gal axy

- Figure 7 -

44

galaxy :

ngc4523 :
area
ellipticity
linear_err
profile
orientation
contour cl :

contour ¢2 :

contour c3 :

contour c4 :

contour ¢b :

1 4536.5

2 0.76

2 0.469;

1 1.08;

1 537
centre_err
ellipse_err
compactness
angle
eccentricity
centre_err
ellipse_err
compactness
angle
eccentricity
centre_err
ellipse_err
compactness
angle
eccentricity
centre_err
ellipse_err
compactness
angle
eccentricity
centre_err
ellipse_err
compactness
angle
eccentricity

2 0.16
1.4

1 -10.1;
2 0.26 };
1 25
2 0.11
2.4

1 -25.1;
:-0.01 }
1345
047

1 13.8;

T 471

2 0.27 }
1 19
1 0.64
1 151

2 0.62 };

)

1 -88.1;
2 0.4 }.

- Figure 8 -

45

ngc4523 ngc4473

ngc7531 ngc6946

- Figure 9 -

46

Goal

input data :
output data :
choice rules :

evaluation rules :

coarse-object-extraction

image

X-pos, y-pos, subimage, x-size, y-size
{R1,R2 }

{1}

- Figure 10 -

47

Operator
goal

input data :
parameters :
output data :

decomposition :

initialization rules :

adjustment rules :

O-coarse-object-detectionl
coarse-object-detection
image ”initial image”
smuls
ix "z position”
iy 7y posttion”
x "z size”
y "y size”
size “object size”
request r-thresh
then request r-filt
then request r-contour-chain
then request r-including-box
{ RI-dzg-1, RI-dzg-2 }
{ RA-dzg-3, RA-dzg-4 }

- Figure 11 -

48

Request r-thresh goal : thresholding

constraints : input: ie = image OF OPERATOR O-coarse-object-detectionl
thresh = smuls OF OPERATOR O-coarse-object-detectionl
- Figure 12 -

49

Request r-cod goal coarse-object-detection
constraints : input : image = image OF OPERATOR O-general-object-ext
output : size > min-size

- Figure 13 -

50

IF object-position centered
THEN :use-operator O-centered-object-extl

- Figure 14 -

51

IF :assessed size too-small/specifs | IF :assessed detection not ambiguous

and no other-objects absent and size < min-specifs + 2
THEN :assess detection ambiguous THEN :assess detection limit
and sfailure

- Figure 15 -

52

IF image-type density
THEN :indtialize “sf1 0.1
and sinitialize sf2 1

- Figure 16 -

53

IF sm < saire2
THEN initialize ‘smuls (sairel 4 (saire2 — sairel)/3)

- Figure 17 -

54

IF IF :assessed detection ambiguous
THEN :adjust-using '% ’smuls | THEN :decrease smuls

and :%-coeff ‘smuls 0.05

and :%-min ‘smuls ‘saire2 ‘

- Figure 18 -

55

Left to right: from the initial request to concrete programs.

Bottom to top: from the first substep to the last substep.

- Figure 19 -

56

detected object

thresholded image
- Figure 20 -

57

detected object

thresholded image

- Figure 21 -

58

Quit I O-coarse-ohject-detectiond attenpt no 3

of Goal: coearse-ohject-detection
Hist I

-—» image @ mtETLini7.f1.5am

--» smuls : .2589583

-=» &m : (2728446

--» gh @ .3357878

. --» gairel @ .2454777
detected object --> sairez : .2549509
<-- oimage : mt671nl7.f1.san.boi
<-- ix% ! BZ
{--— iy 1 Bl
{-- % 115
{--—y 115

<-- size 1 7
limit detection 7 hest detection

thresholded image

- Figure 22 -

59

Figure captions

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Figure 9:

Figure 10:
Figure 11:

Figure 12:

detectionl

Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:

Figure 18:

Figure 19:

Figure 20:

Reasoning for integration
An example of a tree of requests
Use of an expert system built with OCAPI
Relations between the frames, and the rule bases in OCAPI
The algorithm for the execution of a tree of requests
Stereo images corresponding to an urban scene
Synopsis of the global processing of the images containing a galaxy
The input image mt671n17.fl, and the results of its processing
Some images of galaxies
The goal coarse-object-extraction from the PROGAL base
The complex operator O-coarse-object-detection! from the PROGAL base

The request r-thresh, first subrequest of the operator O-coarse-object-

A request to the goal coarse-object-detection

Choice rule attached to the goal coarse-object-extraction

Evaluation rules attached to the goal coarse-object-detection

One initialization rule of the operator O-isolate

One initialization rule of the operator O-coarse-object-detection-1
Adjustment rules of the operator O-coarse-object-detection-1

The complete tree structure of the executed processing (case of mt671n17.fl)

First execution of the goal coarse-object-detection

60

Figure 21: Second execution of the goal coarse-object-detection

Figure 22: Third execution of the goal coarse-object-detection

61

Footnotes

! Le_Lisp is a registered trademark of INRIA

62

References

1]

A.M.Nazif and M.D.Levine, Low Level Image Segmentation: An Expert System,
IEEE Transactions on Pattern Analysis and Machine Intelligence 6.5, 1984, 555-
577.

T.Matsuyama, Expert systems for image processing: Knowledged-based composition

of image analysis processes, Comput. Vision Graphics Image Process. 48, 1989, 22-49.

A.Hanson and E.Riseman, The VISIONS image-understanding system, in Advances
in Computer Vision, (C.M.Brown, Ed.), pp.1-114, Erlbaum Assoc, 1987.

R.A.Brooks, Symbolic Reasoning Among 3-D Models and 2-D Images, Artificial In-
telligence Journal 17, 1981, 285-348.

M.Thonnat and M.H.Gandelin, An expert system for the automatic classification and
description of zooplanktons from monocular images, in Proceedings, 9th Int. Conf.

on Pattern Recognition, Roma, 1988, pp.114-118.

K.Ikeuchi and T.Kanade, Automatic Generation of Object Recognition Programs, in

Proceedings of the IEEE 78.8, 1988, pp.1016-1035.

M.D.Johnston, An expert system approach to astronomical data analysis, in Pro-
ceedings, Goddard Conf. on Space Applications of Artificial Intelligence and Robotics,
1987, pp.1-1T7.

T.Toriu, H.Iwase and M.Yoshida, An Expert System for Image Processing, FUJITSU
Sci. Tech.J. 23.2, 1987, 111-118.

T.Tanaka and N.Sueda, Knowledge acquisition in image processing expert system
EXPLAIN, in Proceedings, Int. Workshop on Artificial Intelligence for Industrial
Applications, Hitachi City, 1988, pp.267-272.

63

[10]

[11]

[12]

[13]

[14]

[16]

[17]

H.Sato, Y.Kitamura and H.Tamura, A knowledge-based approach to vision algorithm
design for industrial parts feeder, in Proceedings, IAPR Workshop on Computer Vi-
sion - Special hardware and industrial applications, Tokyo, 1988, pp.413-416.

D.G.Bailey, Research on computer-assisted generation of image processing algo-
rithms, in Proceedings, IAPR Workshop on Computer Vision - Special Hardware
and Industrial Applications, Tokyo, 1988, pp.294-297.

V.Clément and M.Thonnat, Handling knowledge on image processing libraries to
build automatic systems, in Proceedings, Int. Workshop on Industrial Applications

of Machine Intelligence and Vision, Tokyo, 1989, pp.187-192.

Intellicorp, KEE System Manual, Menlo Park, CA, 1985.

H.Tamura and K.Sakaue, DIA (Digital Image Analysis) - Expert System : an ap-
proach to future vision system design, in Int. Symp. on Image Processing and its

Applications, Tokyo, 1984.

K.Sakaue and H.Tamura, Automatic generation of image processing programs by
knowledge-based verification, in Proceedings, IEEE on Computer Vision and Pattern

Recognition, San Francisco, 1985, pp.189-192.

H.Tamura et al., Design and implementation of SPIDER - a transportable image
processing software package, Comput. Vision Graphics Image Process. 23, 1983, 273-
294.

D.G.Bailey and R.M.Hodgson, VIPS - a digital image processing algorithm develop-
ment environment, Image and Vision Computing 6.3, 176-184, Butterworth and Co.

(Publishers) Ltd, 1988.

R.C.Vogt, Formalized Approaches to Image Algorithm Development Using Mathe-
matical Morphology, in Proceedings, VISION’86, Detroit, 1986.

64

[19]

[20]

[21]

[22]

J.Hendler, A.Tate and M.Drummond, AI Planning: Systems and Techniques, Al

Magazine Summer 1990, pp.61-77.

A.Barr, P.R.Cohen and E.A.Feigenbaum, Handbook of Artificial Intelligence, Pitman,
1982.

A. Meygret, M. Thonnat and M. Berthod, A pyramidal stereovision algorithm based
on contour chain points, in Computer Vision - ECCV 90, Lecture Notes in Computer

Science 427, (O.D.Faugeras, Ed.), pp.83-88, Springer-Verlag, 1990.

M.Thonnat and A.Bijaoui, Knowledge-Based Classification of Galaxies, in
Knowledge-Based Systems in Astronomy, Lecture Notes in Physics 329, (F.Murtagh
and A.Heck Eds), pp.121-159, Springer-Verlag, 1989.

ILOG, CLASSIC Manuel de I'utilisateur, Paris, 1987.

M.Thonnat, Automatic Morphological Description of Galaxies and Classification by
an Fzpert System, Research Report INRIA No 387, March 1985.

M.Thonnat, Toward an Automatic Classification of Galaxy, in The world of galaxies,

Springer Verlag, pp. 53-74, 1989.

65

