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ABSTRACT

The acoustic to articulatory inversion is a difficult problem mainly because of the

non-linearity between the articulatory and acoustic spaces and the non-uniqueness

of this relationship. To resolve this problem, we have developed an inversion method

that provides a complete description of the possible solutions without excessive con-

straints and which retrieves realistic temporal dynamics of the vocal tract shapes.

We present an adaptive sampling algorithm to ensure that the acoustical resolution

is almost independent of the region under consideration in the articulatory space.

This leads to a codebook that is organized in the form of a hierarchy of hypercubes,

and ensures that, within each hypercube, the articulatory-to-acoustic mapping can

be approximated by means of a linear transform. The inversion procedure retrieves

articulatory vectors corresponding to acoustic entries from the hypercube codebook.

A non-linear smoothing algorithm together with a regularization technique is then

used to recover the best articulatory trajectory. The inversion ensures that inverse ar-

ticulatory parameters generate original formant trajectories with high precision and

a realistic sequence of the vocal tract shapes.

PACS numbers: 43.70.Bk, 43.70.Aj
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I. INTRODUCTION

Estimating vocal tract shape from speech signal has received considerable attention because

it offers new perspectives for speech processing. Indeed, recovering the vocal tract shape would

enable knowing how a speech signal has been articulated. This potential knowledge could give

rise to a number of breakthroughs in automatic speech processing. For speech coding, this would

allow spectral parameters to be replaced by a small number of articulatory parameters39 that vary

slowly with time. In the case of automatic speech recognition the location of critical articulators

could be exploited36 to discard some acoustic hypotheses. For language acquisition and second

language learning this could offer articulatory feedbacks. Lastly, in the domain of phonetics,

inversion would enable knowing how sounds were articulated without requiring medical imaging

or other measurement techniques.

Most of the acoustic-to-articulatory methods rest on an analysis-by-synthesis approach. Indeed,

among the variety of acoustic signals the ear is exposed to, speech is one of the few for which a

sufficiently good numerical simulation (including the deformations of the vocal tract geometry

together with the resolution of the acoustical equations) is available. One of the essential issues is

to evaluate the precision required by this numerical model to guarantee that sufficiently accurate

and relevant information is recovered so that it can be interpreted from a phonetic point of view.

The precision issue concerns both the geometric measures giving the vocal tract shape and the

dynamic commands that control the vocal tract shape over time.

An inversion method as neutral as possible with respect to the articulatory behavior of the

vocal tract should be devised. That is to say the inversion method should not provide particular

solutions and omit other solutions. We will then study how modeling errors and with external

constraints provided by either phonetic, physiological knowledge, X-ray data or the tracking of

visible articulators influence results.

Using an analysis-by-synthesis approach means that the articulatory-to-acoustic mapping is

used directly or indirectly in the inversion. Generally, the mapping is used indirectly, either ex-

plicitly, in the form of a table giving acoustic parameters (in general formants frequencies) for

well chosen articulatory points (see Larar et al.22 for instance), or implicitly, in the form of neural

networks40. An articulatory synthesizer built on an articulatory model is generally used to generate

a table (also called codebook) or to provide the training data for the neural network. The quality of

the table construction strongly influences inverse solutions recovered since these trajectories use

3



S. Ouni & Y. Laprie, JASA

vectors of articulatory parameters of the table.

In our work, we want to develop an inversion method that easily enables the evaluation of con-

straints that can be added to reduce the under determination of the problem, independdently of

the inversion algorithm itself. The evaluation comprises both the acoustical distance between re-

synthesized and measured acoustic parameters together with the realism of the temporal dynamics

of the vocal tract shapes recovered. This thus requires that a complete description of the possible

inverse solutions is potentially easily available. For these reasons, we have developed an adap-

tive sampling algorithm to ensure that the acoustic resolution is almost independent of the region

under consideration in the articulatory space. The adaptive sampling leads to a codebook that is

organized in the form of a hierarchy of hypercubes, and ensures that, within each hypercube, the

articulatory-to-acoustic mapping can be approximated by means of a linear transform. During the

inversion, all the articulatory points that produce measured formants have to be found. Then, the

best articulatory trajectories, including one of these points at each time of the utterance to be in-

verted have to be constructed. This amounts to finding the best paths given the articulatory points

recovered at the first step.

In this paper, we present the difficulties of the inversion and how the problems are usually

resolved. Then, we present our inversion method in detail: we start by presenting the hypercube

codebook generation method, the inversion using this codebook and the variational method to

retrieve the temporal dynamics of the vocal tract shapes along time.

II. THE INVERSION PROBLEM

The articulatory-to-acoustic mapping can be defined as

A(x) = b (1)

where x is an articulatory vector which gives the vocal tract shape and b is an acoustic vector,

here the first three formants. A : X �→ B is a non-linear and many-to-one mapping from X ,

the articulatory domain, into B the acoustic domain. The inverse mapping consists of retrieving x

from b. b is evaluated from the speech signal, and therefore is only an approximation of the real

formants. Indeed, formants are obtained by a formant tracking algorithm (see Laprie and Berger20

for instance) that searches for the best interpretation of the spectral peaks in terms of formants.

In addition, the articulatory synthesizer represented by A is based on a 2D articulatory model,

which is an approximation of the mid-sagittal section of the vocal tract, and the reconstruction of
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the 3D vocal tract is made by an approximate transformation 5,18,32. It should be also noted that,

the articulatory model does not fit exactly the geometry of the particular speaker to be analyzed.

Existing adaptation methods are based either on the determination of factor scales applied to the

global length of the vocal tract or to mouth and pharynx sizes16,28. More precise adaptation meth-

ods (for instance in Mathieu and Laprie25 that adjusts the motionless contour of the vocal tract)

can be applied only when images of the vocal tract are available. This means that it is nearly

impossible to obtain an articulatory model that exactly represents speaker’s vocal tract since this

kind of adaptation only concerns the static and not the dynamic characteristics of the articulatory

model.

Moreover, the measurement space, i.e. frequencies of the first three formants, is fairly under

dimensioned compared to the object space since the number of articulatory parameters is greater

than that of acoustic parameters. Therefore, there is an infinite number of solutions for one 3-tuple

of formant frequencies as shown by Atal et al.1.

These reasons explain why there does not exist any direct inversion method and why optimiza-

tion methods are often used to tackle this problem as they enable the exploration of the solution

space. The optimization based methods act on articulatory parameters or area functions to mini-

mize an acoustic or spectral distance between generated and measured acoustic parameters. Gen-

erally, one considers that a solution, or at least a local optimum, is found when the gradient of the

cost function vanishes. Usually, optimization methods rely on some iterative scheme that requires

the knowledge of initial solutions. In the case of acoustic-to-articulatory inversion, the initial so-

lutions are obtained by searching a codebook, or by means of a artificial neural network trained on

selected articulatory and acoustic data.

As the solution space is potentially vast and solutions possibly not realistic from a phonetic

point of view, constraints can be incorporated to focus the exploration in articulatory regions of

interest. Schoentgen and Ciocea38 introduced a local constraint based on either kinematic or po-

tential energy to select one solution at each step of the inversion. More generally, a common

solution used to address ill posed problems is to add a regularizing term. Sorokin et al.43 chose a

regularizing term that prevent inverse solutions to deviate too much from the neutral position of ar-

ticulators. They particularly studied how to set-up the compromise between the discrepancy term,

i.e. the acoustical distance with respect to original formants, and the regularizing term accord-

ing to the error on formants measured and articulatory model. However, despite its interest with

respect to the reduction of under determination this regularizing term may prevent correct vocal
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tract shapes to be retrieved simply because they present high values for some articulatory parame-

ters. Shapes close to those expected for /i/, /y/, /a/ or /u/ could thus be penalized. We therefore

advocate for a dynamic regularizing term (see section VII A) that involves the evolution of artic-

ulatory parameters along time. The expected advantage is that this give rise to more natural and

efficient constraints imposed onto the regularity of articulatory parameters, and not directly onto

the values of these parameters. Furthermore, it provides and efficient manner to jointly improve

the acoustical proximity with original acoustical data and the regularity of articulatory trajectories.

Neural network methods have also become very popular to address the inverse prob-

lem2,19,31,33,41,42 because they propose an efficient way of exploring the solution space. However, it

should be noted that these methods rely on an implicit sampling of the articulatory space for the

training stage. Therefore, their main advantage lies instead in their ability to represent articulatory

knowledge in a compact form rather than in their coverage of the articulatory space. The closer the

training examples are to the solution the more accurate the result. For all the inverse methods, and

particularly for neural based methods, because the sampling is implicit, the corpus of data used for

training should be representative of the non-linearities of the articulatory-to-acoustic mapping. For

these reasons, special attention must be paid to generating codebooks, or more generally, sampling

of the articulatory space.

Once allowable inverse solutions have been found at every time of the utterance some minimum

path algorithm must be applied to recover trajectories for every articulatory parameter. This search

can be carried out by using dynamic programming35,39 or neural networks34 that were trained

to identify dynamic patterns of the articulators. In many cases, the trajectories found can be

optimized after choosing the startup solutions by means of genetic algorithms combined with a

dynamic articulatory model 26 or more generally a gradient method44.

III. WHICH ARTICULATORY MODEL FOR INVERSION?

The choice of the vocal tract representation is crucial since it determines the number of para-

meters to recover. As the acoustic data are generally the frequencies of the first three formants, an

as-concise-as-possible description must be adopted to reduce the indeterminacy of the problem.

However, the phonetic exploitation of articulatory models goes against models that describe the

vocal tract with a very small number of parameters, e.g. some area function models, even if they

enable an excellent frequency precision as that used by Schoentgen and Ciocea38.
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For this reason we accepted Maeda’s model that approximates the sagittal slice of the vocal

tract instead of an area function model7,12–14,47 whose faithfulness with respect to the human vocal

tract cannot be guaranteed. This model, as others, rely on the processing of vocal tract images

(either X-ray images for Maeda23 and Gabioud15 or MRI for Badin3 and Engwall10). Unlike purely

geometric models, articulatory parameters correspond to deformations of the vocal tract produced

by true speakers. Consequently, these models cover well the domain of vocal tract shapes that a

human speaker can produce with a relatively small number of parameters - between 7 and 9. Note

that the third dimension (section areas) must be approximated from the knowledge of the sagittal

slice which is only 2D information which would not be the case with true 3D models (those of

Badin and Engwall3,10 for instance). However, we accepted Maeda’s model because it derives

from a sufficiently large number of sagittal slices, and consequently provides a good coverage of

possible articulatory configurations, which is not the case for true 3D models that exploit only a

small number of MRI images. Another strong point of Maeda’s model is the possibility to adapt it

to a new speaker easily by modifying pharynx and mouth sizes.

Maeda’s model was constructed by applying a factor analysis method derived from principal

component analysis to vocal tract contours23,24. These contours were extracted by hand from X-ray

images of vowels and projected onto a semi-polar coordinate system that enables a 1D parameteri-

zation of contours. These measures were then centered and normalized before deformation modes

were extracted by the factor analysis in the form of linear components. Each of the seven parame-

ters of Maeda’s articulatory model is allowed to vary over a range of ±3σ (where σ is the standard

deviation of that parameter). For convenience each parameter is normalized by dividing it by its

standard deviation. Thus the normalized parameters all vary between -3 and 3. Seven factors (see

Fig. 1) are used to describe vocal tract deformations because they cover more than 98% of the

total variance. This means that the inverse transformation has to be applied to get the vocal tract

shape from articulatory parameters. This inverse transformation involves the multiplication by the

standard deviation of each articulatory parameter, the summation of the linear components, then

the multiplication by the standard deviation of each geometrical measure of the sagittal slice and

finally the addition of the average value of these geometrical measures.
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IV. METHODS FOR GENERATING ARTICULATORY CODEBOOKS

A codebook is a collection of a vast number of vocal tract shapes given by articulatory or

area function parameters indexed by their acoustic parameters. The acoustic parameters, generally

the first three formants, are obtained by using an articulatory synthesizer. The articulatory space

should be spanned so that the codebook represents all of the possible geometric configurations of

the vocal tract.

We experimented three existing methods to generate a codebook. The first method is ran-

dom sampling6,22. In this method, the codebook is generated by sampling articulatory parameters

randomly. The inconvenience is that it does not respect the non-linearities of the articulatory-to-

acoustic mapping. Therefore, the codebook does not reliably represent the actual density of the

articulatory space. The second method for generating codebooks is the root-shape interpolation22

. This method consists of sampling the articulatory space in a non-uniform manner by sampling

the most probable regions, i.e. those corresponding to the most often observed vocal tract shapes.

To do this, two root-shapes are chosen among predefined shapes corresponding to vowels. The

intermediate shapes produced by moving from one root shape to another linearly in the articu-

latory space are then added to the codebook. Sorokin and Trushkin44 used the same approach

that allowed them to drastically reduce the size of the codebook to only 1900 nodes in the one-

dimensional space of minimal cross-sectional area although their articulatory model comprise 17

parameters. The expected advantage of this method is that only realistic vocal tract shapes are

taken into account. Preliminary experiments we carried out by using a similar approach applied

to Maeda’s model shown that this method suffers from two important weaknesses. The first is

that there exists a possibly vast number of root shapes for each vowel or consonant. This results

from the compensatory properties of the vocal tract geometry that probably are essential in the

speech production process. In fact, in most, if not all cases, there is not a one-to-one relationship

between an uttered sound and a particular vocal tract configuration. Therefore, it is difficult to

guarantee that root shapes accepted to derive the articulatory sampling are the most appropriate

ones. It means that realistic vocal tract shapes may be “missed” by this sampling method. A sec-

ond inconvenience is that moving from one shape to another by varying articulatory parameters

linearly does not give rise to linear transitions of formant frequencies. This explains why parts

of the acoustic space are sparsely covered. In Fig. 2, the acoustic space (F1-F2, F1-F3 and F2-

F3 planes) is plotted for random sampling and root-shape codebooks. It appears clearly that the
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acoustic space produced with the root-shape method does not cover the whole possible acoustic

space.

The third method for generating a codebook is the regular sampling of the articulatory space.

The obvious weakness lies in the huge number of shapes generated even when the discretization is

relatively rough. For instance, let us consider Maeda’s model23 that describes the vocal tract with

seven parameters between −3σ and 3σ (σ is the standard deviation of the articulatory parameters).

Using only 10 steps to describe each articulatory parameter leads to about 8.000.000 shapes af-

ter unrealistic shapes have been eliminated. And to obtain a fine regular sampling of the seven

parameters with a relatively rough sampling step equal to 1/3σ would lead to 197 ≈ 900 million

vocal tract shapes, which becomes unrealistic from the point of view of both construction time and

the codebook size required. Linear or polynomial interpolation could be used to reduce the size

of a regularly sampling method4,9. However, this would require further processing to evaluate the

precision of this interpolation.

The examination of the acoustic spreading of these three codebooks (see Fig.2) together with

preliminary inversion experiments have shown that, they do not present accurate coverage of both

the articulatory space and the acoustic space.

V. HYPERCUBE CODEBOOK

A. Introduction

The difficulty of generating codebooks lies in the fact that the relations between articulator

positions and acoustics are non-linear8,11,45,46. In fact, there are articulatory regions where a small

variation in articulatory parameters produces a large variation of acoustic parameters. And con-

versely, there are some regions where a large variation in articulatory parameters does not produce

any significant acoustic changes.

Our approach aims at densely discretizing the articulatory space only in the regions where

the mapping is highly non-linear. For this purpose we use a hypercube structure to organize the

codebook. In the next paragraphs, we describe how the codebook is generated.
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B. Articulatory hypercubes

A hypercube of order N (N-hypercube) is a generalization in the N-dimensional space of a

square in 2-dimensional space and cube in the 3-dimensional space. An N-hypercube is an N-

dimensional convex polytope (N-polytope). An N-hypercube Hc is defined by its origin vertex

U0 ∈ IRN (i.e. the vertex with the lowest coordinates) and the length � ∈ IR of one edge. We

denote this hypercube by Hc(U0, �):

Hc(U0, �)=

N∏
j=1

[uj
0, �] (2)

where
∏

is the Cartesian product, � the hypercube edge length and uj
0 ∈ IR is the jth component of

U0. We represent a hypercube by its vertices. Let Vi be one of these vertices. The jth component

vj
i of Vi is calculated as follows:

vj
i = uj

0 + ϕij� (3)

Where ϕij is the jth digit of the number i written in binary form including leading zeroes (see Fig.

3). As we can note in (3), the hypercube is defined simply in terms of the origin coordinates and

the edge length.

C. The hypercube generation method

Regardless of the articulatory or area function model used, the parameters vary within a limited

range. As mentioned above, the articulatory parameters of Maeda’s model vary between −3 and

3. Therefore the codebook is inscribed within a root hypercube denoted by H 1
c (U0, �). Sampling

the articulatory space amounts to finding reference points that limit linear regions. However, as

the articulatory-to-acoustic mapping is not represented in a closed form some heuristic exploration

and linearity evaluation have to be designed. Charpentier faced the same problem to sample pa-

rameters of the area function proposed by Ishizaka et al.14 and proposed choosing these points by

calculating the curvature of formant trajectories along articulatory trajectories obtained by vary-

ing one parameter at a time8. Reference points were chosen at regularly spaced intervals along

the curvature. This solution cannot be used in the case of Maeda’s model because there are more

parameters and, above all, articulatory parameters do not control almost independent regions of

the vocal tract as in the case of an area function model. The four jaw and tongue parameters,
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for instance, control the same region in the vocal tract and there are two levels of potential non-

linearities (from articulatory parameters to the area function, and from the area function to the

acoustic parameters).

Therefore we devised a heuristic linearity test and evaluate its figure of merit by measuring

the deviation between formants obtained by synthesis and those obtained by interpolation from

codebook points (see section V D). One of the issues is the choice of articulatory points where

the deviation has to be calculated. Points can be chosen in each hypercube randomly, regularly

with respect to each of the articulatory parameter or distributed according to another geometric

strategy. This choice is important because most of the time spent for the codebook construction

will be dedicated to evaluating linearity. Indeed, using only three, resp. four, steps to sample

each articulatory parameter gives resp. 37 = 2187 and 16384 tests. As the later solution would

have led to an excessive construction time we accepted three regularly spaced samples for each

articulatory parameter. In addition to hypercube vertices that are not considered, this corresponds

to middle points of segments formed by any two vertices (Fig. 3). For each segment the middle

point interpolation takes into account only the two vertices and no other vertex of the hypercube.

This means the linearity was assessed more than once for the midpoints, depending how the two

vertices are placed with respect to each other: one time for two contiguous vertices and 26 times

for two vertices on the main diagonal, which correspond to the hypercube center. In all this gives

27 × (27 − 1) = 8128 linearity tests.

The test for linearity is carried out as follows: acoustic values, i.e. the first three formant

frequencies, are linearly interpolated at the middle point between two vertices from the acoustic

values calculated at these vertices and the result is compared against that directly given by the

articulatory synthesizer, i.e.:

abs(
F i

a + F i
b

2
− f(

pa + pb

2
) ) ≤ ∆εi 1 ≤ i ≤ 3

where i is the formant number, pa, pb are the two vertices, f represents the articulatory-to-acoustic

mapping (the synthesizer), Fa and Fb the vector of the first three formants at the articulatory points

pa and pb ( f(pa) = Fa and f(pb) = Fb), and ∆εi the predefined linearity threshold for formant

i. The test succeeds if the three inequalities hold, and then, the articulatory-to-acoustic mapping

is considered to be linear in the hypercube. Otherwise this hypercube is split into 27 equal sub-

hypercubes and the linearity test is repeated for every new hypercube. This procedure is repeated

recursively until the hypercube edge becomes smaller than a predefined value or no non-linearity
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higher than the predefined threshold exists anymore. ∆εi can be set experimentally for the

first three formants. An articulatory region represented by a hypercube is considered linear (i.e.

the articulatory-to-acoustic mapping is linear), if the 8128 tests succeed, otherwise, this region is

considered non-linear.

As the allowable articulatory space, i.e. the space where articulatory parameters yield an open

vocal tract, does not fit exactly in the hypercube, there are vertices for which acoustic parameters

cannot be calculated because they correspond to a vocal tract shape with a complete constriction.

These vertices thus belong to forbidden regions (the term used by Atal et al.1). When forbidden

vertices are found in a hypercube, the hypercube is decomposed in order to obtain hypercubes

where all the vertices are allowable. Boundaries of forbidden regions are thus well defined (Fig. 3).

Nevertheless, the risk is to create a huge number of small hypercubes to get a very precise boundary

whereas this articulatory region is probably of little interest because it is not often reached by a

human speaker. We accepted therefore not too small a hypercube lowest edge size below which

the decomposition stops.

The result of these successive recursive decompositions is a hierarchical structure composed of

hypercubes of different sizes; the bigger the hypercube, the more linear the articulatory-to-acoustic

mapping within this articulatory region. We save in the codebook only the origin of the hypercube

(in the articulatory space), the length of one edge and the acoustic values of the vertices. The

advantage of the hierarchical structure is to accelerate the search procedure in the codebook.

D. Experimental evaluation of the hypercube codebook

We generated a first hypercube codebook (CB1), using the linearity test with threshold values

as follows: ∆ε = 50Hz for F1, 75Hz for F2 and 100Hz for F3. This hypercube hierarchy is

composed of 390000 hypercubes. Then, we generated another codebook (CB2) using the linearity

test threshold ∆ε = 0.3 Bark. The number of the hypercubes is 128000. The average time spent

for each linearity test, i.e. the calculation and comparison of 8128 middle points, thus represents

a non negligible time. It turns out that large size hypercubes at initial stages of the hypercube

construction are eliminated because several vertices are outside the allowable articulatory space.

To evaluate the quality of sampling we used the codebook to calculate acoustic values by inter-

polating them from codebook entries. The interpolation was applied with respect to the hypercube
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center P0:

Fx = F0 + JF(P0).(Px − P0) (4)

where Px is the articulatory vector we calculate its acoustic image Fx for and JF(P0) is the

Jacobian matrix of F calculated at P0 by taking first differences. P0 can be chosen as the center or

the nearest vertex of the hypercube Px belongs to. We randomly chose 4000 articulatory vectors,

1850 of them representing valid area functions, then used the codebook CB1 to interpolate the

acoustic values corresponding to the valid articulatory vectors. The mean error, i.e. the difference

between formant frequencies calculated by the articulatory synthesizer and those interpolated from

the codebook, does not exceed 10Hz for F1 and F2, and 20Hz for F3. Compared to the margin

of error accepted for the codebook test linearity (50Hz for F1, 75Hz for F2 and 100Hz for F3),

it is clear that we have a good acoustic precision. For the second codebook CB2, that we used in

the inversion experiments reported in section VIII, we evaluated the acoustic precision on a much

larger number of articulatory points. We randomly chose 1,000,000 articulatory vectors, 641,846

of them representing valid area functions. As shown in Table I the accuracy is very good since the

overall mean error is less than 8Hz. The precision obtained is better than that imposed during the

codebook construction because, unlike the interpolation using the Jacobian matrix, the linearity

test involves two vertices only to predict the unknown formant values. As it can be noticed there

is no significant precision difference between formants despite the Bark scale that was used for

linearity tests and should lead to a lower precision for F2 and F3. This is probably due to a certain

redundancy between the linearity test applied to the three formants with different precisions. The

most rigorous test is that for F1. Since the magnitude of formant frequency variations is roughly

the same for the three formants the precision imposed on F1 gives the overall precision.

Tests reported above confirm the expected properties of our codebook. Its main characteristic is

that it offers a quasi-uniform acoustic resolution because of the adaptive sampling. Therefore, the

complete acoustic behavior of the articulatory model is accurately represented by this codebook.

VI. THE INVERSION METHOD EXPLORING THE SOLUTION SPACE

Our inversion method exploits the codebook by recovering the possible articulatory vectors for

each acoustic entry of the signal to be inverted, i.e. the first three formants extracted at each time

frame of the utterance by automatic formant tracking20. The second stage, i.e. the recovery of

articulatory trajectories is described in § VII. For each acoustic entry, all the hypercubes whose
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acoustic image contains the acoustic entry are considered. The acoustic image is overestimated as

the rectangular parallelepiped defined by minimal and maximal values of F1, F2 and F3. As the

inclusion in the considered hypercube is checked for each inverse solution (see §VI B) this weaker

assumption does not introduce any solution outside the hypercube.

A. The inversion method

The hypercube codebook is used to retrieve the articulatory parameters corresponding to the

acoustic entry. All the hypercubes whose acoustic image contains the acoustic entry are examined.

From now on, we only consider one hypercube to describe the inversion process. Let F be the

acoustic vector (represented by the first three formants) to be inverted. Let Hc be the hypercube

which contains articulatory vectors giving the acoustic vector F. Let P be an articulatory vector

(represented by the seven parameters of Maeda’s articulatory model) that we are looking for. Using

the Jacobian calculated at a particular point P0 in the hypercube (the center for instance) we

approximate F by:

F = F0 + JF(P0).(P −P0) (5)

where JF(P0) is the Jacobian matrix of F calculated at P0 and F0 is the acoustic vector corre-

sponding to P0·
Thus, to perform the inversion, we have to solve the following equation:

F− F0 = JF(P0).(P −P0) (6)

The matrix form is: ⎡
⎢⎢⎢⎢⎣

F 1 − F 1
0

F 2 − F 2
0

F 3 − F 3
0

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

∂F 1

∂α1

∂F 1

∂α2
. . . ∂F 1

∂α7

∂F 2

∂α1

∂F 2

∂α2
. . . ∂F 2

∂α7

∂F 3

∂α1

∂F 3

∂α2
. . . ∂F 3

∂α7

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P 1 − P 1
0

P 2 − P 2
0

...

P 7 − P 7
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7)

where F i, F i
0 are the components of F and F0, i.e. the ith formant and P i, P i

0 the components of

P and P0. We chose the center of the hypercube as P0 because this guarantees that the underlying

assumption of linearity is approximately verified everywhere in the hypercube with respect to this

point. Equation (7) has the form:

A · x = b (8)
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where A is the (M ×N) Jacobian matrix, b and x are the acoustic and articulatory vectors. When

M is less than N , A is singular and the N − M dimensional space where vectors are transformed

into zero is the null space. The general solution of Eq. (8) is given by a particular solution plus

any vector from the null space. This means that adding a linear combination of the base vectors

of the null space does not change formants. The SVD (singular value decomposition) method as

described in Golub and Van Loan17 gives one particular solution set, i.e. the one with the smallest

norm |x|2. Besides, SVD constructs an orthonormal base of the null space. The particular solution

together with the base of the null space completely describes the solution space. In our case, as

M = 3 (3 formants) and N = 7 (7 articulatory parameters), the null space dimension is generally

4. To retrieve all the solutions for a given articulatory precision, the null space must be determined

and sampled.

B. Sampling the null space

Let Psvd be the particular solution given by the SVD method. A general solution is:

Ps = Psvd +
4∑

j=1

βjvj (9)

where {vj}j=1..4 is an orthonormal base of the null space and βj=1..4 the coordinates in this space.

Furthermore, this solution must belong to the hypercube where the linearity assumption holds.

Therefore this solution is acceptable if:

Ps ∈ Hc (10)

Let αi
inf and αi

sup define the maximum and minimum values of the i-th articulatory parameter in

Hc (i.e., Hc is the Cartesian product Hc =
∏7

i=1[α
i
inf , α

i
sup]). Then we have:

αi
inf ≤ P i

svd +
4∑

j=1

βjv
i
j ≤ αi

sup i = 1..7 (11)

where vi
j is the projection of the j th basis vector of the null space onto the ith articulatory parame-

ter. The matrix form of Ineq.(11) is:
⎡
⎢⎢⎢⎢⎢⎢⎣

α1
inf

α2
inf

...

α7
inf

⎤
⎥⎥⎥⎥⎥⎥⎦
≤

⎡
⎢⎢⎢⎢⎢⎢⎣

P 1
svd

P 2
svd

...

P 7
svd

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

v1
1 v1

2 v1
3 v1

4

v2
1 v2

2 v2
3 v2

4

...
...

...
...

v7
1 v7

2 v7
3 v7

4

⎤
⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎣

β1

β2

β3

β4

⎤
⎥⎥⎥⎥⎥⎦
≤

⎡
⎢⎢⎢⎢⎢⎢⎣

α1
sup

α2
sup

...

α7
sup

⎤
⎥⎥⎥⎥⎥⎥⎦

(12)
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This system defines a 4-polytope, i.e. a bounded intersection of 4 half-spaces. To completely

define this 4-polytope, we need to find all the extreme points of this domain, since the polytope

solution is the convex hull of these points and determine the space contained in the polytope. As far

as we know, this problem, which is simple in dimension 2 (i.e. finding the intersection of a square

with a line) has not received any close form solution in the general case yet. This explains why we

have developed this two step algorithm to approximate the intersection. In the first step the smallest

4-dimensional hypercube which contains the polytope is determined by linear programming. The

second step consists in sampling this 4-dimensional hypercube and keeping samples that belong

to Hc. The 4-dimensional hypercube is defined by its vertices which are given by the minimum

and maximum values of βi which satisfy inequalities of (12). The values of the βi can be found by

resolving the following eight linear programs:

(1) four linear programs defined by the inequalities of (12) to maximize βi (i = 1..4), the

objective function being the maximization of βi.

(2) four linear programs defined by the inequalities of (12) to minimize βi (i = 1..4), the

objective function being the minimization of βi.

By finding all the βi, we can easily calculate the vertices of the 4-hypercube by replacing the βi

in Eq. (9). Then, this 4-dimensional domain is sampled and solutions that do not belong to the

hypercube Hc, i.e. Eq. (10) are eliminated (see Fig.5).

For a given 3-tuple of formants and a hypercube whose image contains this 3-tuple of formants

the number of inverse solutions directly depends on the sampling step of the null space. The

smaller the sampling step, the smoother the trajectories recovered. We accepted 3 steps for each

of the 4 dimensions of the null space which keeps the potential number of points at a reasonable

value of 34 = 81 while guaranteeing a sufficient smoothness of articulatory trajectories. Together

with the hierarchical representation of the articulatory space, this null space exploration method

provides a quasi-complete description of the inversion solution set.

We evaluated the acoustic precision of the inversion for 489 random 3-tuples of formants F1,

F2 and F3 synthesized with the articulatory synthesizer. This yielded approximatively 4 million

solutions. After resynthesis with the articulatory synthesizer, the acoustic values were compared

with the original data. As shown in Table II, the accuracy is very good since the overall mean

error is less than 11Hz. It should be noted that this error is appreciably smaller than the frequency

threshold of the linearity test used to decompose hypercubes. This indicates that even if the lin-

earity test is potentially incomplete it is relatively strict. It is important to note that during the
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whole inversion process, as presented above, we did not use the articulatory synthesizer and all

the inversion solutions were obtained by interpolation and sampling.

As shown above, this inversion method provides a quasi-exhaustive description of all the pos-

sible vocal tract shapes that give a 3-tuple of formants, and with a very little error on formant

frequencies. This method thus enables the investigation of articulatory constraints that can be

added to guide inversion and to recover realistic articulatory trajectories. The key point is that this

inversion method enables a clear separation between the representation of the articulatory space

and the incorporation of constraints or knowledge to guide inversion. Moreover, this inversion

method provides potential tools to investigate articulatory variability of speech production and

compensatory effects a speaker can exploit.

Fig. 6 and Fig. 7 give inversion results of two speech sequences [au] and [ui] in the articulatory

space for one articulatory parameter only (jaw parameter) for sake of clarity. For each sequence,

the left graph presents the solution without sampling the null space, i.e. particular solutions given

by the SVD method, and the right graph presents the solutions obtained by applying SVD and

sampling the null space. Clearly, the solutions obtained after sampling the null space more finely

cover the articulatory space.

VII. RECOVERING ARTICULATORY TRAJECTORIES

Recovering articulatory trajectories consists of choosing at each time an articulatory vector

among those obtained by the inversion presented above. This amounts to finding an ”articulatory

path” expressing the temporal sequence of the vocal tract shapes during the utterance to be

inverted. The resulting articulatory trajectory should vary “slowly” (variations of articulatory

parameters are small during an average pitch period, i.e. approximately 10 ms) and generates

spectra as close as possible to those of the original speech. This corresponds to the satisfaction of

two criteria: proximity to acoustic data and smoothness of articulatory trajectories. In this section,

we present the overall inversion algorithm that combines these two criteria and works as follows:

(1) The first step of the inversion consists of recovering all of the inverse articulatory solutions at

each point in time of the utterance to be processed by exploring the codebook.

(2) In the second step a non-linear smoothing algorithm described below finds smooth articulatory

trajectories from the knowledge of the sets of inverse points recovered at each point in time.

(3) The third step consists of regularizing the trajectories built by using the non-linear smoothing
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algorithm. This regularization is achieved through a variational method.

The non-linear smoothing algorithm used in the second step is derived from a non-linear

smoothing algorithm initially proposed by Ney29 for post-processing results of F0 determination.

Let s(i) be the set of inverse points retrieved at time frame i, and S = (s(i)), 1 ≤ i ≤ N the

sequence of these sets over the utterance to be inverted. The construction of a trajectory gives rise

to a double selection (see Fig. 8):

(i) the choice of time frames at which the trajectory is defined, i.e. the choice of a subsequence of

S defined by a function j: S = (s(j(0)) . . . s(j(k)) . . . s(j(K))) where K < N (N is the number

of time frames) and j is a monotonic function: 0 ≤ j(k) < j(k + 1) ≤ N .

(ii) the choice of one inverse point in each of the sets selected s(j(0)) . . . s(j(k)) . . . s(j(K)).

The point chosen out of the set s(j(k)) is denoted α(j(k)) (α(j(k)) ∈ IR7) and the articulatory

trajectory is therefore A = (α(j(0)) . . . α(j(k)) . . . α(j(K))).

Let fj(t) be the jth formant frequency extracted from speech a time frame t, and Fj(α(j(k)))

that computed by the acoustical simulation for the inverse point α(j(k)). The cost of choosing

α(j(k)) after α(j(k − 1)) incorporates the acoustical distance together with the articulatory dis-

tance:

C(α(j(k)), α(j(k − 1))) =
3∑

j=1

(fj(t) − Fj(α(j(k))))2 + λ
7∑

i=1

mi(αi(j(k)) − αi(j(k − 1)))2 (13)

where λ is the weight of the articulatory distance with respect to the acoustical distance. Based

on this local cost, the overall cost function to be minimized is D =
∑K

j=1(C(α(j(k)), α(j(k −
1))) − B) where B is a positive bonus (as proposed by Ney) that prevents the minimization of

returning an empty trajectory. This bonus has been set to a constant value but it could render the

probability that this inverse point can be articulated by the target subject. The minimization is

solved by dynamic programming and returns the best articulatory trajectory.

The local smoothness depends on the quality of the inverse solutions, and particularly the step

used to sample the null space. Furthermore, as mentioned above, trajectories may be incomplete.

For these reasons, the best solution provided by the non-linear smoothing algorithm is regularized

through a variational method.
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A. Variational regularization method

Any inversion method must lead to slowly changing parameters which generate spectra as

close as possible to those of the original speech. This corresponds to satisfying two criteria:

proximity to acoustic data and smoothness of articulatory trajectories. Generally, existing methods

cannot allow for the two criteria at the same level, or at least must favor one criterion to the

detriment of the other. Indeed, methods using dynamic programming often impose constraints

upon the articulatory parameters dynamics. Then, a local optimization improves the acoustic

proximity with the input signal at each time of the utterance analyzed. In contrast, our regularizing

method combines both local and global aspects. This method utilizes the well known theory of

variational calculus37 which gives rise to an iterative process. This process starts with an initial

solution (obtained by the non-linear smoothing algorithm) and generates a sequence of articulatory

trajectories which optimizes a cost function that combines acoustic distance and changing rate of

articulatory parameters.

There are two major advantages of this method compared to many other existing methods.

Firstly, it involves the continuous nature of articulatory trajectories and the global acoustic and

articulatory consistency without further optimization. Secondly, it incorporates the acoustic be-

havior of the articulatory model by means of sensitivity functions of formants, with respect to

articulatory parameters.

The seven parameters of the articulatory model are time functions α(t) =

(α1(t) . . . αi(t) . . . α7(t)), t ∈ [ti, tf ]. Formant trajectories extracted from speech fj(t),

1 ≤ j ≤ 3 are the input data. Those generated by the acoustic simulation are Fj(α(t))

(1 ≤ j ≤ 3). A cost function for evaluating acoustic-to-articulatory mapping incorporates two

components:

(1)
∑3

j=1(fj(t) − Fj(α(t)))2 which expresses the proximity between observed acoustic data, i.e.

formants trajectories fj(t), and those generated by the articulatory model Fj(α(t)).

(2)
∑7

i=1 miα
′
i(t)

2 which expresses the changing rate of articulatory parameters. In order to

penalize large articulatory efforts and prevent the vocal tract from reaching positions too far from

equilibrium, a potential energy term
∑7

i=1 kiα
2
i (t) is added.

The cost function to be minimized has the following form

I =
∫ tf

ti

∑3
j=1(fj(t) − Fj(α(t)))2dt

+λ
∫ tf

ti

∑7
i=1 miα

′
i(t)

2dt + β
∫ tf

ti

∑7
i=1 kiα

2
i (t)dt

(14)
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where ti and tf define the time interval over which the inversion is carried out, λ and β express the

compromise between the changing rate of articulatory parameters, their distance from equilibrium

and the acoustic distance. mi is the pseudo mass of the ith articulator, and ki is its spring constant.

Equation (14) can be written as

I =

∫ tf

ti

Φ(α(t), α′(t), t)dt

Variational calculus37 can be used to minimize I . Euler-Lagrange equations express the vanish-

ing of the derivative of I with respect to each of the αi. These equations are a necessary condition

to ensure a minimum of I and can be written

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂Φ
∂α1

− d
dt

∂Φ
∂α′

1
= 0

. . .

∂Φ
∂α7

− d
dt

∂Φ
∂α′

7
= 0

(15)

Considering the definition of Φ, each of the Euler-Lagrange equations becomes:

∑3
j=1(fj(t) − Fj(α(t))

∂Fj

∂αi
+ βkiαi(t) − λmiα

′′
i (t) = 0

i = 1 . . . 7
(16)

where α′′
i (t) is the second time derivative of αi(t). From now on we only consider one of the

equations of the system (15) for sake of clarity. We can define an iterative process ατ
i (t) such that

lim
τ→∞

ατ
i (t) = αi(t)

(where ατ=0
i (t) is the startup solution) using the associated evolution equation

γ
∂ατ

i

∂τ
+ βkiα

τ
i − λmiα

τ
i
′′ = −

3∑
j=1

(fj(t) − Fj(α
τ (t)))

∂Fj

∂ατ
i

(17)

where ∂ατ
i

∂τ
represents the evolution of parameter αi during the iteration process and γ a parameter

for controlling the evolution rate. A solution to the static equation (16) is found when the term γ
∂ατ

i

∂τ

vanishes. For sake of convenience we set m and k to 1. Let ατ = (ατ
i,0, . . . α

τ
i,k, . . . α

τ
i,N) denote

the discrete representation of αi(t), ατ
i,k represents the value of ατ

i at discrete time t = ti + k
tf−ti

N

in the iteration τ . Since solving (17) for αi is independent of other articulatory trajectories, ατ
i,k

is noted ατ
k for sake of clarity. Let (f0, . . . fk, . . . fN ) denote the observed formant trajectory and

(F0, . . . Fk, . . . FN) the formant trajectory generated by the acoustic simulation. Finite difference
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approximation of the derivative α′′(t) leads to the following equation

γ(ατ
k − ατ−1

k ) + βατ
k − λ(ατ

k+1 − 2ατ
k + ατ

k−1)

= −∑3
j=1(fj,k − Fj,k)

∂Fj

∂α

∣∣∣
ατ

1,k ...ατ
7,k

(18)

where τ represents the iteration under process and k the discrete time. The derivative term
∂Fj

∂α

∣∣∣
ατ

1,k ...ατ
7,k

is calculated for the parameter αi at point (ατ
1,k . . . ατ

7,k) and incorporates the be-

havior of the acoustic modeling with respect to the evolution of articulatory parameters. Boundary

conditions are needed to ensure that (18) has a unique solution. Since we do not impose any

constraint on the positions of the extremities of α(t)

α′′(0) = α′′(N) = 0

are the boundary conditions. Let B be an (N + 1) × (N + 1) matrix

B =

⎡
⎢⎢⎣

γ + β + λ −λ 0 · · · 0

−λ γ + β + 2λ −λ · · · 0

.

.

.
. . .

. . .
. . .

.

.

.

0 . . . −λ γ + β + 2λ −λ

0 · · · 0 −λ γ + β + λ

⎤
⎥⎥⎦

ατ = (ατ
0 , . . . α

τ
k, . . . α

τ
N)T

cτ =

⎡
⎢⎢⎢⎢⎢⎣

γατ−1
0 − ∑3

j=1(fj,0 − Fj,0)
∂Fj

∂α

γατ−1
1 − ∑3

j=1(fj,1 − Fj,1)
∂Fj

∂α

· · ·
γατ−1

N − ∑3
j=1(fj,N − Fj,N)

∂Fj

∂α

⎤
⎥⎥⎥⎥⎥⎦

Equation (18) can be put in matrix form

Bατ = cτ

Solving (15) may be carried out as an iterative process. At each iteration ατ is calculated for

each of the seven articulatory parameters αi. In order to ensure that a minimal solution of (14) is

reached, one needs to choose a good startup solution that provided by the non-linear smoothing

method. The startup solution is then iteratively transformed so that (14) is minimized.

VIII. EXPERIMENTS

Mouth and pharynx sizes of Maeda’s model can be adjusted to take into account the morphol-

ogy of the target speaker. We used the method proposed in Galván-Rdz16 and also in Naito et al.28
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to adapt the articulatory model to our subject. Two vocal tract scale factors were sampled in a

reasonable domain to allow at most ± 20% size variations. For each sample of this grid the first

three formants of five extreme vowels /i e a o u/ were calculated from their reference articulatory

parameters. The points given by the 5 × 3 formant frequencies build the surface of acoustical

points that can be reached by deforming Maeda’s model for these five extreme vowels. The point

measured (three formant frequencies for the five vowels) for the target speaker from speech is

thus projected orthogonally onto this surface. The orthogonal projection minimizes the distance

between the surface and formants realized by the subject. The two scale factors corresponding to

this point give the best adaptation of the articulatory model. The hypercube codebook was built

for these scale factors. Therefore it cannot be used without further adaptation for another speaker.

The evaluation of an acoustic-to-articulatory inversion procedure comprises two aspects. The

first is the acoustical faithfulness and ensures that inverted articulatory parameters are able to re-

produce a speech signal as closely as possible to the original. Here the closeness is evaluated

by measuring the distance between original and synthetic formants. It should be noted that the

average distance is lower than 15 Hz and thus very good. The second aspect is that of the ar-

ticulatory faithfulness, which requires that the synthetic vocal tract shape, i.e. the output of the

articulatory model using inverted articulatory parameters, is compared to vocal tract images of the

speaker uttering the same speech segment. This is thus tightly connected to the avaibility of artic-

ulatory databases that associate the description of the vocal tract shape together with the speech

signal. Despite their potential interest there are almost no dynamic data available to perform this

evaluation because either they do not provide the whole vocal tract (for instance cineradiographic

databases recorded in the Seventies and recovered by Munhall et al.),27 furthermore with a poor

image and sound quality, or describe the vocal tract for a very small number of points in a limited

region of the vocal tract (for instance the microbeam database)48. Therefore, the evaluation con-

sists of a qualitative analysis of results in terms of the evolution of the place of articulation and

the main phonetic characteristics. These two characteristics enable the goodness of realism to be

evaluated easily and, more importantly, independently of speaker’s variablity.

To evaluate our inversion method, we inverted several vowel-vowel and vowel-vowel-vowel

sequences. The evaluation criteria used in these experiments are the smoothness and slow vari-

ation in time of the articulatory trajectories. This is the general behavior of the vocal tract of a

real speaker. We also examined the animation of the vocal tract frame by frame to see whether

there are any unnatural movement of any articulator. More advanced evaluation technique might
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be consider as discussed in section IX. The trajectories of the first three formants were extracted

from spectrograms of the utterances produced by the subject. The first step of the inversion (i.e.

the recovery of articulatory points that produce the 3-tuple of formants extracted from speech)

gave between 500 and 8000 solutions for each 3-tuple depending on the number of the steps used

to sample the null space. For these experiments, the number of steps was set to 3 for each of the

four dimensions, and therefore the number of samples was less than 81 = 34 (see section VI B).

The non-linear smoothing algorithm was then applied to get regular and realistic articulatory tra-

jectories. Finally, the variational regularization was applied to the best articulatory trajectories

so that the trajectories are simultaneously smooth and produce formant trajectories close to those

extracted from speech.

Fig. 9 and Fig. 10 present inversion results for the sequence [iui]. In Fig 9, the original

spectrogram of the utterance together with original and resynthesized formants are presented. As

we can clearly see, all the solutions present a good acoustic proximity to the original formants.

In Fig. 10, we present the result in the articulatory space for each of the seven parameters of

Maeda’s model. Each graph shows the trajectory obtained by the non-linear smoothing and the

same trajectory optimized by applying the variational regularization (the smoothest trajectories are

those obtained by the variational method). The obtained trajectories are smooth and vary slowly in

time, which is the behavior of the vocal tract of a real speaker. In Fig. 11, we present for the same

sequence [iui] the temporal dynamics of the vocal tract shapes (the mid-sagittal section), frame

by frame. This “animation” clearly shows that the vocal tract goes from one shape to the other

smoothly and does not present any unrealistic transition.

We carried out a large number of vowel-vowel and vowel-consonant-vowel inversion experi-

ments30. The results are quite similar as those presented for the sequence [iui]. In Fig. 12, we

present the inversion result of the transition [ua] (only final inversion results are displayed). Here

again, all the articulatory parameters vary smoothly while guaranteeing a very good proximity to

original data. Furthermore, inverse solutions recovered preserve main phonetic cues (main con-

striction position and vocal tract opening) as it can be seen in Fig. 13.

As presented above the inversion method is the baseline system that we will use for further

inversion studies. One first stake will be the recovery of finer phonetic and articulatory cues which

are very important for some phonemes. In Laprie and Ouni21 we studied the solution space for the

/yi/ transition because the main articulatory difference between /y/ and /i/ is the protrusion which

is very strong for the French /y/. All the solutions recovered provide a very good fitting between
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original and resynthesized formants and the main constriction and opening are correct. However,

the best solution, in the sense of the criterion used for optimization in Ney’s algorithm, does not

present strong protrusion (see Fig. 14). In order to explore the solution space, we added a simple

constraint on the lip protrusion (supplemented by a secondary constraint on jaw position). This

constraint is implemented in the form of a strong bonus, attached to the first point of the inversion.

Fig. 15 shows that this simple constraint enables the recovery of a more conform protrusion. We

thus will investigate how constraints can be derived from phonetic knowledge.

IX. CONCLUDING REMARKS

Most of the existing acoustic-to-articulatory inversion methods introduce biases in the solution

obtained because they exploit codebooks that do not cover the whole articulatory space. Con-

sequently, there exist articulatory trajectories not found by the inversion although they are quite

relevant from an articulatory point of view. On the contrary, one of the advantages of our method

is that it ensures that all the possible inversion solutions can be explored, given an articulatory

model and the frequency precision set for the formants being recovered, and does not implicitly

favor any particular articulatory solution. To the best of our knowledge, this is the only inversion

method based on an articulatory model that may guarantee that all the trajectories allowed by the

model are explored. Furthermore, the regularization applied to startup solutions allows a global

optimization over whole trajectories to be applied and not an optimization that processes points

independently from each other. Experiments carried out validate our approach in terms of acoustic

precision with respect to original data and smoothness of trajectory recovered.

In some sense the main characteristic of our inversion method is its ”neutrality” with respect to

the articulatory trajectories recovered. However, early language acquisition leads human speakers

to prefer some articulatory strategies. These preferences can be linked to a particular speaker, but

the existence of phonetically invariant features argue for deeper reasons stemming from biome-

chanical and acoustic efficiency. The neutrality of our inversion method will enable us to evaluate

several strategies for guiding the inversion process. The first strategy is the incorporation of con-

straints stemming either from phonetic knowledge (for instance, the fact that lips must be protruded

for rounded vowels like /y/ and /u/ in French) or from facial information extracted by computer

vision when a speaker’s face is visible. The second strategy is to incorporate preferences into the

articulatory codebook through a learning stage that can exploit EMG, X-Ray or MRI data, or, on
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the other hand, phonetic knowledge on articulatory features.

Other future work will concern the study of the precision required to adapt the articulatory

model. Indeed, the acoustic space covered by the model depends on its geometric dimensions.

Therefore, the model must be adapted before inversion. The adaptation, in our case that of Galván-

Rdz16, often necessitates the knowledge of the articulatory configurations for several vowels. This

prior knowledge is only approximate because of speaker variability and compensatory properties

of the articulatory model. If the adaptation mismatch is too great there is a risk that the inversion

may fail or, the inversion may improperly exploit compensatory properties of the model to com-

pensate for the adaptation mismatch. Therefore, we will investigate the acoustic precision required

to guarantee the relevancy of the articulatory information recovered from speech together with the

precision required for the model adaptation.
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Bateson, and Y. Tohkura. Un modèle articulatoire tridimensionnel du conduit vocal basé sur
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TABLE I. Acoustic precision of the interpolation (the precision is measured by comparing

formant values interpolated from codebook points with those calculated by the articulatory

synthesizer directly)

mean error standard deviation

F1 6.47Hz 6.93Hz

F2 7.90Hz 9.96Hz

F3 6.92Hz 9.43Hz
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TABLE II. Acoustic precision of the inversion

�F1 �F2 �F3

Mean error 8.39Hz 10.86Hz 10.45Hz

Standard deviation 10.03Hz 12.11Hz 12.53Hz
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FIGURE CAPTIONS

FIG. 1. Parameters of Maeda’s articulatory model: P1 (jaw position, vertical movement) P2

(tongue dorsum position that can move roughly horizontally from the front to the back of the

mouth cavity) P3 (tongue dorsum shape, i.e. rounded or unrounded) P4 (apex position ; this

parameter only deforms the apex part of the tongue by moving it up or down) P5 (lip height) P6

(lip protrusion) P7 (larynx height)

FIG. 2. Comparison of the first three formants of the root-shape and the random codebooks.

We do not present the regular sampling codebook as it has almost the same covering space as the

random codebook. The regions in light gray (resp. dark gray) represent the acoustic space of the

root-shape (resp. random sampling) codebook. The random sampling codebook covers a space

larger than that covered by the root-shape codebook.

FIG. 3. For sake of clarity we represent a 3D hypercube. Note that the edge length is � and

U0 is the origin of the hypercube. Vi (i = 0..7) are the vertices of the hypercubes. The linearity

test is performed on the segments [Vi, Vj] where i �= j. If the test fails the hypercube is split into

8 sub-hypercubes (8 is the number of the vertices in 3D). These sub-hypercubes are represented

with dashed lines. The upper table gives the values of the parameter ϕij for the 8 vertices indexed

from 0 to 7.

FIG. 4. A 2D partial representation of the hypercube codebook. For sake of clarity, we only

present jaw and tongue (α1, α2). We clearly see that there are different regions more or less linear

(i.e. the corresponding hypercubes are more or less big). Shaded regions are the forbidden

FIG. 5. The 4-dimensional hypercube (for illustration, represented here by the square) is the

smallest hypercube containing the 4-polytope (represented by the polygon). It is defined by the

vertices A, B, C, D. The 4-dimensional hypercube is discretized (the points represent the possible

solutions) and the solutions that do not verify Eq. (10) are eliminated (the points lying outside the

polygon).

FIG. 6. Representation of the inversion solutions for the utterance [au] in the articulatory space
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(jaw parameter). The horizontal axis represents the time (in milliseconds)and the vertical axis

represents the variation of one parameter expressed in standard deviations. The left graph presents

all the solutions obtained by SVD without sampling the null space. The right graph presents

solutions obtained by sampling the null space.

FIG. 7. Representation of the inversion solutions for the utterance [ui] in the articulatory space

(jaw parameter). The horizontal axis represents the time (in milliseconds) and the vertical axis

represents the variation of one parameter expressed in standard deviation. The left graph presents

all the solutions obtained by SVD without sampling the null space. The second presents solutions

obtained by sampling the null space.

FIG. 8. Double selection achieved by the non smoothing algorithm: time frames and articula-

tory candidates. For clarity sake articulatory candidates are 1-dimensional points. The articulatory

candidates are given for each time frame (each vertical dotted line). The best trajectory is the solid

line and contains some gaps (time frames 3, 6, 7 and 13) because the incorporation of outliers

would decrease the quality of the whole trajectory.

FIG. 9. Inversion result for the sequence [iui]. The horizontal axis represents the time (in mil-

liseconds)and the vertical axis represents formants (in Hertz). From top down: (a) spectrogram, (b)

original formants trajectories and all the formants solutions resynthesized from articulatory points

retrieved from the hypercube codebook, and finally, (c) formants trajectories resynthesized from

results of the nonlinear smoothing before and after variational regularization (smooth trajectories).

FIG. 10. Inversion results for the sequence [iui]. The first graph presents the formant tra-

jectories and each of the other graphs shows the trajectory of one articulatory parameter. The

horizontal axis represents the time (in milliseconds) and the vertical axis represents formants (in

Hertz). In each graph the trajectory obtained by non-linear smoothing and that obtained by using

the variational regularization method are plotted (the smoothest trajectories are those obtained by

the variational regularization).

FIG. 11. Temporal dynamics of the vocal tract shapes for the sequence[iui].
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FIG. 12. Inversion results for the transition [ua]. The first graph presents the formant trajecto-

ries and each of the other graphs shows the trajectory of one articulatory parameter.

FIG. 13. Temporal dynamics of the vocal tract shapes for the transition [ua].

FIG. 14. Temporal evolution of three articulatory parameters (jaw, tongue position and protru-

sion) without any constraint imposed.

FIG. 15. Temporal evolution of three articulatory parameters (jaw, tongue position and pro-

trusion) when imposing the protrusion to be near to 2.7 and the jaw position to 1.5 for the first

point.
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Jaw
Tongue body position

Shape of the tongue

Tongue apex

Lip opening

Lip Protrusion

Larynx height

FIG. 1. Parameters of Maeda’s articulatory model: P1 (jaw position, vertical movement) P2 (tongue dorsum

position that can move roughly horizontally from the front to the back of the mouth cavity) P3 (tongue

dorsum shape, i.e. rounded or unrounded) P4 (apex position ; this parameter only deforms the apex part of

the tongue by moving it up or down) P5 (lip height) P6 (lip protrusion) P7 (larynx height)
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FIG. 2. Comparison of the first three formants of the root-shape and the random codebooks. We do not

present the regular sampling codebook as it has almost the same covering space as the random codebook.

The regions in light gray (resp. dark gray) represent the acoustic space of the root-shape (resp. random

sampling) codebook. The random sampling codebook covers a space larger than that covered by the root-

shape codebook.
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FIG. 3. For sake of clarity we represent a 3D hypercube. Note that the edge length is � and U0 is the origin

of the hypercube. Vi (i = 0..7) are the vertices of the hypercubes. The linearity test is performed on the

segments [Vi, Vj ] where i �= j. If the test fails the hypercube is split into 8 sub-hypercubes (8 is the number

of the vertices in 3D). These sub-hypercubes are represented with dashed lines. The upper table gives the

values of the parameter ϕij for the 8 vertices indexed from 0 to 7.
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FIG. 4. A 2D partial representation of the hypercube codebook. For sake of clarity, we only present jaw and

tongue (α1, α2). We clearly see that there are different regions more or less linear (i.e. the corresponding

hypercubes are more or less big). Shaded regions are the forbidden.
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p2

p1

A B

C D

FIG. 5. The 4-dimensional hypercube (for illustration, represented here by the square) is the smallest

hypercube containing the 4-polytope (represented by the polygon). It is defined by the vertices A, B, C, D.

The 4-dimensional hypercube is discretized (the points represent the possible solutions) and the solutions

that do not verify Eq. (10) are eliminated (the points lying outside the polygon).
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FIG. 6. Representation of the inversion solutions for the utterance [au] in the articulatory space (jaw para-

meter). The horizontal axis represents the time (in milliseconds)and the vertical axis represents the variation

of one parameter expressed in standard deviations. The left graph presents all the solutions obtained by SVD

without sampling the null space. The right graph presents solutions obtained by sampling the null space.
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FIG. 7. Representation of the inversion solutions for the utterance [ui] in the articulatory space (jaw parame-

ter). The horizontal axis represents the time (in milliseconds) and the vertical axis represents the variation

of one parameter expressed in standard deviation. The left graph presents all the solutions obtained by SVD

without sampling the null space. The second presents solutions obtained by sampling the null space.
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FIG. 8. Double selection achieved by the non smoothing algorithm: time frames and articulatory candidates.

For clarity sake articulatory candidates are 1-dimensional points. The articulatory candidates are given for

each time frame (each vertical dotted line). The best trajectory is the solid line and contains some gaps

(time frames 3, 6, 7 and 13) because the incorporation of outliers would decrease the quality of the whole

trajectory.
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FIG. 9. Inversion result for the sequence [iui]. The horizontal axis represents the time (in milliseconds)and

the vertical axis represents formants (in Hertz). From top down: (a) spectrogram, (b) original formants

trajectories and all the formants solutions resynthesized from articulatory points retrieved from the hyper-

cube codebook, and finally, (c) formants trajectories resynthesized from results of the nonlinear smoothing

before and after variational regularization (smooth trajectories).
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FIG. 10. Inversion results for the sequence [iui]. The first graph presents the formant trajectories and each of

the other graphs shows the trajectory of one articulatory parameter. The horizontal axis represents the time

(in milliseconds) and the vertical axis represents formants (in Hertz). In each graph the trajectory obtained

by non-linear smoothing and that obtained by using the variational regularization method are plotted (the

smoothest trajectories are those obtained by the variational regularization).
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FIG. 11. Temporal dynamics of the vocal tract shapes for the sequence[iui].
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FIG. 12. Inversion results for the transition [ua]. The first graph presents the formant trajectories and each

of the other graphs shows the trajectory of one articulatory parameter.
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FIG. 13. Temporal dynamics of the vocal tract shapes for the transition [ua].
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FIG. 14. Temporal evolution of three articulatory parameters (jaw, tongue position and protrusion) without

any constraint imposed.
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FIG. 15. Temporal evolution of three articulatory parameters (jaw, tongue position and protrusion) when

imposing the protrusion to be near to 2.7 and the jaw position to 1.5 for the first point.
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TABLE I. Acoustic precision of the interpolation (the precision is measured by comparing formant values

interpolated from codebook points with those calculated by the articulatory synthesizer directly)

mean error standard deviation

F1 6.47Hz 6.93Hz

F2 7.90Hz 9.96Hz

F3 6.92Hz 9.43Hz
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TABLE II. Acoustic precision of the inversion

�F1 �F2 �F3

Mean error 8.39Hz 10.86Hz 10.45Hz

Standard deviation 10.03Hz 12.11Hz 12.53Hz
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