
Virtual Retina - tutorial

Adrien Wohrer

May 14, 2008

This tutorial provides an introduction to the Virtual Retina software. The
goal of this document is not to provide explanations for the underlying retinal
model; these can be found in the related article [1], available at https://hal.inria.fr/inria-
00160716/en/. It rather describes the architecture of the package, the command
lines to be used, and how to configure an xml definition file for the program.

Contents

1 General architecture of the package 2
1.1 Goals, scope of use . 2
1.2 Requirements . 2
1.3 Installation . 3
1.4 Now what’s in there? . 4

2 The executables 4
2.1 The Retina executable . 4
2.2 The TestGanglionCell executable 6
2.3 The ReconstructRetina executable 6
2.4 Other executables . 7

3 Writing a retina definition file in xml 8
3.1 General architecture of a file . 8
3.2 Log-polar scheme . 9
3.3 Outer Plexiform Layer . 9

3.3.1 Linear Version . 10
3.3.2 Undershoot version . 11
3.3.3 Luminance gain control version 12

3.4 Contrast gain control in bipolar cells 12
3.5 Ganglion layers and spike generation 13

3.5.1 Further signal processing in ganglion cells 14
3.5.2 Spike generation in ganglion cells 15

3.6 Microsaccade generation . 16

4 Customization with species and pathway 17

5 Examples of use 18
5.1 Spikeless, linear retina . 18
5.2 Single spiking cell . 19
5.3 Spiking retina with contrast gain control 20

1

1 General architecture of the package

1.1 Goals, scope of use

These programs were written to simulate retinal processing on an input video
sequence, in a -hopefully- customizable fashion ranking from simple spatio-
temporal linear filtering on the input sequence to a precise ’biologically-inspired’
model that can include:

1. emission of spike trains by arrays of up to (at least) 100,000 ganglion cells.
But... you might as well ask for a single, spiking ganglion cell to reproduce
physiological recordings. Or for no spiking cell at all, but rather analogic
retinal outputs.

2. modeling of parvocellular and/or magnocellular ganglion cells.

3. a dynamical model of contrast gain control, carried by a shunting inhibi-
tion from conductances in the membranes of bipolar cells. The model can
also be applied as a luminance gain control between light receptors and
horizontal cells.

4. a radial non-homogeneity of the whole retina, with a uniform fovea and
a periphery with increasing blur and inversely decreasing ganglion cell
density.

5. microsaccadic movements on the input sequence.

1.2 Requirements

Our programs make use of other C++ libraries, whose sources are also present
in the repository.

• CImg, an image processing toolbox.

• MvaSpike, an event-driven spike simulator.

• libxml++, a C++ wrapper for libxml2, the GNU C interface to deal with
xml files.

• xmlParameters++, a helper library I wrote to load/save parameters
from an xml file in a flexible way.

Furthermore, xmlParameters++ and VirtualRetina are compiled and in-
stalled thanks to CMake, a multi-platform Make tool.

Finally, a compilation option allows to save the emitted spikes in a special
binary format called hdf5. The hdf5 library, due to its size, is not included in
the package. Only the wrapper library mvaspike hdf5 is included, that allows
MvaSpike tools to save output spikes in hdf5 format.

2

1.3 Installation

Automatic installation

File Retina Package is the root of the package. It contains a shell code
download build all.sh which proceeds to an automatic, LOCAL, installation
of Virtual Retina and all its required external libraries, for Linux. Typing

sh download build all.sh
succesively performs the following operations:

1. Download software CMake (required for installation of Virtual Retina)
and install it locally in

Retina Package/External Libraries/CMake

2. Download, compile and install locally the external libraries MvaSpike,
libxml++ and xmlParameters++, in

Retina Package/VirtualRetina/local/lib/

3. Compile Virtual Retina, install its libraries in the same lib directory, and
the executables in

Retina Package/VirtualRetina/local/bin/

Manual installation

You may wish to perform a ROOT installation of the libraries on your machine,
or only a partial installation of some of the external libraries. A look at the
content of script download build all.sh might be helpful. In particular, the
script contains web addresses of the libraries, and the version numbers used by
Virtual Retina. In short:

1. Library CImg consists of a single header CImg.h, and requires no precom-
piled library.

2. Libraries MvaSpike and libxml++ are compiled and installed thanks to
Autoconf/Automake, with the classical

configure
make
(make install)

3. The Makefiles for libraries xmlParameters++ and VirtualRetina are con-
figured thanks to program cmake, with compilation options defined in a
set of CMakeLists.txt files. Compilation options (e.g. paths for external
libraries) can also be changed through a visual interface with program
ccmake.

Using hdf5

If you wish to save the output retinal spikes under the binary hdf5 format:

1. You must have installed the hdf5 library on your machine.

3

2. Compile the mvaspike hdf5/ library, included in the retina package. You
must modify the first line of the Makefile (variable HDF5) so that $(HDF5)/bin/h5cc
be the correct path to the binary executable h5cc. Then type make.

3. In directory VirtualRetina/, before launching the cmake/make process,
type
ccmake CMakeLists.txt
and set the CMake variable USE HDF5 to ON.

After compilation, an new option -hdf5 will be present in executable Retina
(and derived executables), allowing to save the spike trains to hdf5 format when
desired.

Portability

The software has been tested only under Linux, with g++ compiler 3.4 or more.
It has not been tested for VisualC++, so we cannot guarantee that it can compile
under Windows. At least, we know that the external libraries required by the
software are portable, and the CMake commands for compilation of Virtual
Retina are also portable.

1.4 Now what’s in there?

The root directory for Virtual Retina is Retina Package/VirtualRetina/.
Here are its sub-directories:

• local/bin contains the compiled executables.

• src/ contains code sources for the virtual retina library, a library of
general tools, and for the executables.

• test/sequences/ contains (two) test sequences. (wow!)

• test/retina files/ contains three sample retina definition files written
in xml.

• tmp/ is the default output directory of all executables.

• experiments/ contains some experiments on single cells, to validate the
underlying retina model.

2 The executables

All executables have a -h command that provides the list of options for the
executable. In this Section we only present the most important things to know
to run the programs.

2.1 The Retina executable

This is the main simulation executable. Input is a 3-dimensional sequence (space
and time). Output is sets of spike trains or, if you did not ask for spikes, analogic
spatio-temporal sequences corresponding to the ’activities’ of ganglion cells. It
is typically called by:

4

Retina path/to/my/test sequence*.pgm -ret path/to/my/retina.xml
-r 10 -outD path/to/my/saving directory

with possible options:

• input sequences can be passed as a series of 2d frames under any usual
format (as here), or directly as a .inr 3d file.

• -ret gives the path to the retina definition file in xml format. This is the
file containing the definition of the whole retinal architecture and param-
eters. Some customized files are already provided in the package, but for
a deeper understanding we refer to Section 3 of this tutorial. Amongst
other parameters, it fixes the retinal time step (say, here, 5 ms).

• -r 10 asks that each input frame be presented to the retina for a duration
of 10*(retinal time step) = 50 ms in this case.

• -outD gives the path to the directory where all simulation files will be
saved. By default, this directory is VirtualRetina/tmp/.

• Full list of options by typing -h when calling the executable. They in-
clude: position of the retina in the input sequence, saving options, display
options, etc.

The executable has several output files:

simulation.txt is the main output file of the simulation, which can be used as
input to executables who need to load an already existing simulation. It con-
tains general information such as: input sequence, location of the spikes.spk
file (see below), of the retina.xml file (see below), center of the retina in the
input image, etc.

retina.xml is the file containing all characteristics of the retina used for the
simulation. It has the same format as the input definition file (also in xml, see
Section 3), except that it also contains the positions and indexes of all ganglion
cells created in the retina, a necessary information to exploit the output spikes.

spikes.spk is an ASCII file containing all spikes emitted during the simulation,
as emitted by library MvaSpike. All spikes emitted by the retina are saved in a
single file, ranked according to their emission time:

9128 0.0153717
9272 0.015372
7900 0.0153743
9332 0.015375
7692 0.0153755
etc.

The first number is an absolute index for the cell that emitted the spike. It can
be linked to a spatial position thanks to the retina.xml file. Second number is
the time of the spike. Alternatively, the emitted spikes can be retrieved in the
binary hdf5 format, by using option -hdf5 when calling the executable.

5

Other output files are produced only if extra saving options are activated.
Option -savemap saves all maps for intermediate signals (OPL current, bipo-
lar cells, amacrine feedback, etc.), in specific directories termed oplFrames/,
bipolarFrames/, etc. Option -saveCP only saves temporal courses for these
signals at Center Pixel of the retina, in the form of 1-dimensional .inr images:
oplCP.inr, etc. For both saving procedures, option -nS fixes the temporal
frequency of saves, every -nS retinal time step.

2.2 The TestGanglionCell executable

This is a wrapper for program Retina, in the particular case where you want
to test a single, spiking ganglion cell with noise in its spike generation, and
reconstruct an averaged firing rate. This program can serve as a basis for
simulating ’physiological’ recordings on our model ganglion cells. Examples of
use for this program can be found in directory VirtualRetina/experiments/

Most important options:

• -tr fixes the number of trials used to reproduce a firing rate for the cell.
It is meaningful only if you defined some intrinsic noise in the spike gen-
eration process for the cell, in the retina definition file. If you set -tr 0,
the cell does not fire spikes at all (only produces an analogical output).

• -nodisp if you want no display (useful when automatically testing the
program over many cells and/or stimuli). By default, the program dis-
plays the average firing rate over the trials (output of the program), and
also displays two intermediate signals: OPL current and ganglion input
current. See Section 3, or better yet report [1], for significance of these
intermediate signals.

• -p and -lat allow you to change the linear kernel used to reconstruct the
average firing rate from the trains of spikes.

• etc. Full list of options by typing -h when calling the executable. In partic-
ular, most options for program Retina also work for program TestGanglionCell.

2.3 The ReconstructRetina executable

It allows to visualize the spiking output of the retina, by reconstructing a video
sequence based on the spike trains emitted by program Retina. The reconstruc-
tion process is a simple linear summation:

Each emitted spike linearly contributes to the reconstruction by adding a
spot, at the location of the emitting cell, for a particular length of time, ex-
pressed as a number of frames by option -lat. Spatially, the spot is a circle
whose radius follows the log-polar scheme of the retina. Radius of a spot in the
fovea, in pixels, is fixed with option -w. This defines the size of spots everywhere
else, according to the log-polar scheme of the retina.

So, in three dimensions, the spot has a certain volume VolSpot expressed in
voxels (that depends on the radial position of the emitting cell). The intensity
of the spot in each voxel is then chosen as

(VolSpot.d(r)2)−1,

6

where d(r)2 is the local 2d density of cells in the region around the emitting cell
(see equations (1) and (18) further on). It is important to normalize our spot by
d(r), so that in the end, the number stocked in each pixel of the reconstructed
sequence has the dimension of an average firing rate per spiking cell.

If you do not want the intensity of spots to be divided by cell density d(r)2,
write option -nodn. In which case the number stocked in each pixel of the re-
constructed sequence has the dimension of an average firing rate per pixel, and
you see nothing in peripheral regions where there are less cells. . .

Other important options:

• -i path/to/simulation.txt gives the path to the simulation file emitted
by program Retina, that you want to reconstruct from.

• -ch fixes which layers of ganglion cells you want to represent (all ON
channels, for example). It is used as follows: -ch 2 0 3 means that you
want to represent two channels, namely channels number 0 and 3. So if
you had a single layer in your retina (most of the time!), you still have to
write -ch 1 0. Sorry. . .

• etc. Full list of options by typing -h when calling the executable.

2.4 Other executables

These are other executables (mostly, small utilities) I wrote for my work, in-
cluded here in case they could help someone. Use -h on each of them for more
precisions.

viewVideo is a simple video viewer; useful to watch input sequences, or recon-
structed sequences. You might also want to use inrcast, a much more complete
application included in the CImg library, that is included in VirtualRetina/local/bin.
But unlike inrcast, viewVideo allows you to play the video (and at any speed
you like, by using option -s).

lumImage allows you to change the mean luminosity and contrast of a sequence
before feeding it to the retina.

Grating creates a moving bar stimulus. Ah! Ah! I’m so funny! Okay: it creates
a grating stimulus, and nothing more.

shapleyVictor is a more experimental program, to test the responses of a single
ganglion cell, with contrast-gain-control, to Shapley-Victor multi-sinus stimuli
at different contrasts (reproduction of the first experiment of article ’Shapley-
Victor 78’). See example of use in ../experiments/multi-sinus shapley-victor78/.

7

3 Writing a retina definition file in xml

All retinal parameters, for a given simulation, are given to program Retina
in the form of a single retina definition file, hierarchically ordered in an xml
structure. Some customized files are provided, and described in Section 5; but
for full usage of the software, the structure of the xml file must be understood,
as well as the underlying retinal model decribed in [1].

3.1 General architecture of a file

The retina is described through a hierarchical xml structure, whose father el-
ement is simply termed <retina/>. As in every xml tree, an element has
children attributes in the form param-name="value", as well as children ele-
ments. The attributes correspond to numerical parameters of the model. The
children elements allow to hierarchically define sub-structures, which themselves
possess parameters in the form of attributes. This allows:

1. clearer organisation of parameters for the retina, according to their loca-
tion in the retinal model.

2. extended modularity of the retina, because sub-elements of node <retina/>
are bricks that can be present or not in the architecture, making the re-
sulting retinal model more or less complex.

Here is the general structure of the retina file, when only element <retina/>
and its direct children are represented:

<retina temporal-step__sec ="0.005"
input-luminosity-range="255"
pixels-per-degree="10.0">

<log-polar-scheme/>
<outer-plexiform-layer/>
<contrast-gain-control/>
<ganglion-layer/>
. . .
<ganglion-layer/>

</retina>

The three first lines show attributes to element <retina/>. They are gen-
eral parameters that concern the whole retinal scheme:

temporal-step sec is the (simulated) time length of one discretization step
for the retina. Note that this is not the precision of emitted spike trains! Rather,
the spike trains are generated from a current that is constant within each bin
of 5 ms (in this case).

input-luminosity-range is the intensity corresponding to color white in
the input sequences fed to the retina. This allows not to change all subsequent
amplitude parameters whenever the retina is fed images with another luminosity
encoding.

pixels-per-degree is, in the same spirit, a conversion factor allowing to
express all subsequent spatial scales of the retina in terms of visual degrees,

8

rather than pixels. Which allows to change a single parameter (this one) when
one wants to change how close the input image is to the simulated eye.

Note that, whenever a parameter is expressed in a unit that is not trivial,
this unit is expressed in the xml name for the parameter, after a double under-
score.

The following lines correspond to specific, independent sub-elements of the
underlying retina model, as detailed in [1]. Most of them are optional features
of the retina: only element <outer-plexiform-layer/> is always necessary.
We detail these elements in the sequel, but here is a rapid overview of their
signification:

<log-polar-scheme/> deals with the spatially non-uniform structure of
the retina. If this node is absent, then the retina is taken to have a uniform
density of cells. If this node is present, its parameters define a central fovea
with uniform density of cells, and then a radially decreasing density.

<outer-plexiform-layer/> is where the center-surround architecture of
the retina is defined. It is the only block that must always be present in our
retinal definition file. However, this stage is available in different versions with
more or less parameters, as detailed in the sequel.

<contrast-gain-control/> defines parameters for an optional contrast
gain control feedback, as modeled in [1].

<ganglion-layer/> models one layer of ganglion cells, that can be X-type
or Y-type, and have ON or OFF polarity. There can be as many of these layers
as one desires, plausibly with different filtering properties.

Let us now review these elements more in detail. All the associated mathe-
matical formulas are explained more thoroughly in [1].

3.2 Log-polar scheme

When this element is present, it writes:

<log-polar-scheme fovea-radius__deg="1.0"
scaling-factor-outside-fovea__inv-deg="1.0"/>

These two parameters, let’s term them respectively R0 and K, define a scaling
function throughout the whole retina by:

s(r) =

{
1 if r < R0,(
1 + K(r −R0)

)−1 if r > R0,
(1)

where r is the eccentricity from the center of the retina, measured in retinal
degrees. At a given eccentricity r, all spatial scales of filtering in the model
are proportional to s(r)−1. Similarly, the local density of ganglion cells at this
location is proportional to s(r)2. If no <log-polar-scheme/> is present, then
s(r) is taken as constant in the whole retina (uniform retina).

3.3 Outer Plexiform Layer

This stage is the basis of retinal processing; it is where the center-surround ar-
chitecture of the retina arises. Element <outer-plexiform-layer/> is always
present, but it can exist in different versions.

9

3.3.1 Linear Version

The so-called ’linear version’ of the OPL stage writes:

<outer-plexiform-layer>
<linear-version

center-sigma__deg="0.03"
surround-sigma__deg="0.1"
center-tau__sec="0.01"
surround-tau__sec="0.01"
opl-amplification="10"
opl-relative-weight="1"
leaky-heat-equation="1" />

</outer-plexiform-layer>

It implements the following linear filtering on the input image:

ICS(x, y, t) = λOPL

(
C(x, y, t)− wS(x, y, t)

)
, (2)

with

C(x, y, t) = KσC ,τC
∗ L (x, y, t), (3)

S(x, y, t) = KσS ,τS
∗ C (x, y, t), (4)

where C denotes center signal, and S denotes surround signal. Sign ∗ repre-
sents spatio-temporal convolution. As explained in [1], this filter is a band-pass
filter that enhances spatial edges and temporal changes. It arises due to the
interaction of light receptors and horizontal cells in the retina.

L(x, y, t) is the input luminosity profile, divided by its maximum possible
value input-luminosity-range (see Section 3.1).

λOPL is the overall gain of the center-surround filter, fixed by attribute
opl-amplification. It is chosen so that ICS(x, y, t) (or IOPL(x, y, t), when one
uses the adapting version of the OPL presented afterward) be a dimensionless
signal, with magnitudes of the order of unity.

w in equation (2) is the relative weight of center and surround signals. The
number is between 0 and 1, physiologically close to 1. For w = 1, the OPL filter
is totally band-pass. It is fixed by attribute opl-relative-weight.

Kσ,τ is a positive spatio-temporal low-pass filter, of integral one, defined by

Kσ,τ (x, y, t) = Gσ(x, y) exp(−t/τ)/τ, (5)

if t > 0, and zero otherwise. Gσ(x, y) is the two-dimensional normalized Gaus-
sian distribution of standard deviation σ.

Parameters σC and τC are fixed by respective attributes center-sigma deg
and center-tau sec. Parameters σS and τS are fixed by respective attributes
surround-sigma deg and suround-tau sec.

For both σC and σS , values are fixed in the fovea. Outside of the fovea, at
eccentricity r, the scales of filtering are given by the scaling factor s(r) in (1),
and the formula

σ(r) = s(r)−1σfovea. (6)

This is also true for other spatial scales of filtering in the sequel.

10

NOTA: If attribute leaky-heat-equation is set to 1 rather than 0, the expression for
filters Kσ,τ becomes slightly different. One has:

Kσ,τ (x, y, t) = G
σ

p
t/τ

(x, y) exp(−t/τ)/τ, (7)

where Gσ(x, y) is again a normalized Gaussian. This filter is slightly more plausible

biologically and slightly faster, but the overall difference with (5) is slight. See [1] for

details on this equation.

3.3.2 Undershoot version

The so-called ’undershoot version’ of the OPL is also a linear filter, but with
an additional temporal high-pass stage that models slow transient properties of
retinal filtering. The undershoot version writes:

<outer-plexiform-layer>
<undershoot-version

center-sigma__deg="0.03"
surround-sigma__deg="0.1"
center-tau__sec="0.01"
surround-tau__sec="0.01"
opl-amplification="10"
opl-relative-weight="1"
leaky-heat-equation="1"

undershoot-relative-weight="0.5"
undershoot-tau__sec="0.2"
/>

</outer-plexiform-layer>

The supplementary transient writes:

IOPL(x, y, t) = KU
t∗ ICS (x, y, t), (8)

where ICS(x, y, t) is obtained as before (equation (2)).
t∗ denotes temporal

convolution, and Kadap(t) is a partially high-pass temporal filter defined by

KU (t) = δ0(t)− wU exp(−t/τU)/τU , (9)

where δ0(t) is a Dirac function, representing the original signal. wU is a constant
between 0 and 1 giving the relative strength of the adaptation effect, fixed by
xml attribute undershoot-relative-weight. It was chosen to fit experimental
data, with typical values of around 0.7, a value compatible with measurements
of light-evoked responses in retinal cones. τU is the temporal scale of the cellular
adaptation, fixed by attribute undershoot-tau sec, typically around 100 ms.

The OPL filter proposed in [1] is precisely this adaptation-version. The
adaptation scheme allows better reproduction of experimental curves; however,
using the linear-version instead is probably sufficient for most applications.

11

3.3.3 Luminance gain control version

One last version for the OPL has been impemented, modeling the shunting
(divisive) influence of horizontal cells on light receptors. This is an equivalent,
in the OPL, of the contrast gain control scheme proposed for the IPL in [1],
which is explained afterwards in this tutorial.

This version is yet very experimental, so we will not detail it for the moment;
just note that it exists, and will probably be studied and ’officialised’ in a close
future. For the moment, the luminance-gain-control-version is defined as:

<outer-plexiform-layer>
<luminance-gain-control-version

input-amplification-phototransduction="100"

sigma-receptors__deg="0.03"
sigma-horizontal-cells__deg="0.1"
tau-phototransduction__sec="0.01"
additional-tau-horizontal-cells__sec="0.01"

inert-leak-in-receptors="10"
horizontal-feedback-amplification="100"
horizontal-feedback-nernst-potential="0"
relative-weight-surround-center="1"
/>

</outer-plexiform-layer>

3.4 Contrast gain control in bipolar cells

Contrast gain control is the stage of Virtual Retina that aims at reproducing
the non-linear changes in retinal filtering due to the ambient contrast in the
scene. We model it as a shunting feedback from a certain type of membrane
conductances onto bipolar cells. In our retina definition file, the associated xml
element writes:

<contrast-gain-control
opl-amplification__Hz="150"
bipolar-inert-leaks__Hz="5"
adaptation-sigma__deg="0.5"
adaptation-tau__sec="0.03"
adaptation-feedback-amplification__Hz="100"/>

The underlying equations are the following:

dVBip

dt
(x, y, t) = λ′OPLIOPL(x, y, t)− gA(x, y, t)VBip(x, y, t) (10)

gA(x, y, t) = KσA,τA ∗Q(VBip) (x, y, t). (11)

Here gA(x, y, t) represents the summed effects of all leak conductances in the
bipolar cell layer (including inert leaks). In our model, this total leak depends
on recepnt values of bipolar cells, through a feedback. KσA,τA(x, y, t) is a cou-
pling low-pass filter as in (5), corresponding to spatio-temporal diffusion of the

12

contrast signal, and Q(VBip(x, y, t)) is the synaptic current induced by bipolar
cells in amacrine cells, chosen to be a quadratic function (see [1]):

Q(VBip) = g0
A + λAV 2

Bip. (12)

Attribute opl-amplification Hz fixes λ′OPL in (10), turning the dimension-
less signal IOPL(x, y, t) in (8) into a signal with the dimension of a frequency.
Parameter g0

A is fixed by bipolar-inert-leaks Hz, while λA is fixed by
adaptation-feedback-amplification Hz. Other attributes have explicit names.
Spatial filtering scale σA is defined in the fovea. Elsewhere it follows the scaling
function, as in (6).

NOTA: Amplification factor λ′
OPL can appear useless, since it is applied right after

another linear factor, that is λOPL in (2). We split the ’opl to bipolar’ amplification

factor in two numbers, to keep the brick-like organization of the software: the output

of the OPL stage must have magnitudes the order of unity, the output of the control

gain control stage as well. This way, the contrast gain control stage can be removed

or added without having to significantly change other parameters of the model.

3.5 Ganglion layers and spike generation

Ganglion cells are the last stage in Virtual Retina. By opposition with the
preceding stages, this layer can be multiplied in different versions, according to
the type of output cells desired: one can ask at the same time for ON and OFF
cells, for primate parasol or midget cells, or for cat X or Y cells, without having
to do several times the preceding retinal processing (OPL and contrast gain
control). One layer of ganglion cells is associated to the general xml structure:

<ganglion-layer

sign="-1"
transient-tau__sec="0.03"
transient-relative-weight="0.75"
bipolar-linear-threshold="0"
value-at-linear-threshold__Hz="100"
bipolar-amplification__Hz="300"
sigma-pool__deg="0" >

<spiking-channel>
<circular-spiking-channel

diameter__deg="10" fovea-density__inv-deg="1"
g-leak__Hz="50" sigma-V="0.0" refr-mean__sec="0.003"
refr-stdev__sec="0" random-init="1"/>

</spiking-channel>

</ganglion-layer>

The attributes of element <ganglion-layer/> deal with further signal pro-
cessing at the level of ganglion cells, still modeled as continuous maps. By oppo-
sition, subelement <spiking-channel/> explicitly defines an array of spiking
cells, with its own set of parameters. If this spiking element is present, the

13

output of the retina is the set of emitted spike trains. If it is absent, the output
of the retina is the continuous signal IGang(x, y, t) (equation (15)), that would
otherwise be used to generate the spike trains, and can be considered as an
average firing rate.

3.5.1 Further signal processing in ganglion cells

Attribute sign gives the polarity of the layer. 1 for ON cells, and -1 for OFF
cells.

The two following attributes, transient-tau sec and
transient-relative-weight, define parameters for a linear high-pass stage
modeling fast transients in the IPL (mostly due to amacrine cells):

V trs
Bip (x, y, t) = Ktrs t∗ VBip (x, y, t), (13)

where
t∗ denotes temporal convolution, and Ktrs(t) (trs standing for transient)

is a partially high-pass temporal filter, defined exactly as the OPL adaptation
filter KU in (9):

Ktrs(t) = δ0(t)− wG exp(−t/τG)/τG, (14)

where δ0(t) is a Dirac function, representing the original signal, and wG is a
constant between 0 and 1.

This high-pass stage can be seen as modeling the inhibitory reciprocal con-
nections onto bipolar cells from specific amacrine cells, at the level of bipolar
cells’ synaptic terminals in the IPL. It was found mandatory to reproduce the
outputs of all types of ganglion cells. However the precise values of the param-
eters depend on the type of cell modeled (see Section 4 and [1]).

The next three attributes define the synaptic pooling and rectification from
bipolar cells to ganglion cells.

IGang(x, y, t) = N(V trs
Bip) (x, y, t), (15)

where transmission function N in (15) is a smooth synaptic rectification defined
by

N(v) =

T 2

0
T0 − λBG(v − VBG) if v < VBG,

T0 + λBG(v − VBG) if v > VBG.

(16)

VBG is the ’linearity threshold’ of the cell, i.e. the value after which transmis-
sion becomes linear. It is fixed by bipolar-linear-threshold. Note that
N(VBG) = T0. T0 is fixed by value-at-linear-threshold Hz, and λBG by
bipolar-amplification Hz.

Finally, parameter sigma-pool deg defines a possible post-synaptic pooling,
necessary to model primate parasol cells and cat Y cells (see Section 4 and [1]).
The given value is for the fovea. Else, the width of the pooling follows the
scaling function, as in (6).

14

3.5.2 Spike generation in ganglion cells

The spiking array associated to the layer of ganglion cells, when it is present,
can be in two versions.

Square, uniform array of cells

<spiking-channel>
<square-spiking-channel

size-x__deg="10" size-y__deg="7.5" uniform-density__inv-deg="10"
g-leak__Hz="50" sigma-V="0" refr-mean__sec="0.003"
refr-stdev__sec="0" random-init="1" />

</spiking-channel>

size-x deg and size-y deg are the size of the array (in retinal degrees).
Similarly, uniform-density inv-deg sets the number of cells per retinal de-
gree (1-dimensional density).

The four parameters on the following line are the spiking parameters. Each
cell in the array is modelled as a simple LIF neuron, with possibly a realistic
additional noise in the spike generation process. If Cn is a cell located at position
(xn, yn) in the array, we generate its spiking output by:

dV

dt
= IGang(xn, yn, t)− gLV (t) + ηv(t), (17)

Spike when threshold is reached: V (tspk) = 1,

Refractory period: V (t) = 0 while t < tspk + ηrefr,

and (17) again,

where ηv(t) and ηrefr are the two noise sources that can be added to the process.
ηv(t) is taken as a Brownian movement that has the dimension of a current.
Integration of this current through equation (17) is equivalent to adding to V (t)
a Gaussian auto-correlated process with time constant 1/gL (typically, 20 ms),
and variance σv (fixed by parameter sigma-V). The amplitude of ηv(t) is chosen
for σv to be around 0.1. ηrefr is a stochastic absolute refractory period that is
randomly chosen after each spike, following a normal law, typically N (3 ms,1
ms).

Finally, parameter random-init decides whether the cells’ potentials should
be randomly initialized at the beginning of the simulation (to avoid artificial
synchronies at image onset).
NOTA: Do not use this square array when you wish to simulate a single spiking cell,

because the single constructed cell will not be at the very center of the image. Rather

use the circular array of cells (next paragraph).

Circular array of cells

In case a log-polar scheme has been chosen for the retina (Section 3.2), one might
prefer an array of spiking cells whose density respects the log-polar scheme. The
circular array of cells is designed for this purpose:

15

<spiking-channel>
<circular-spiking-channel

diameter__deg="30" fovea-density__inv-deg="5"
g-leak__Hz="50" sigma-V="0" refr-mean__sec="0.003"
refr-stdev__sec="0" random-init="1" />

</spiking-channel>

The spiking procedure is similar to the uniform case. Only difference is that
the size of the array is now fixed by a single number diameter deg (in retinal
degrees), while the one-dimensional density of cells is given in the fovea through
attribute fovea-density inv-deg.

Outside of the fovea, the one-dimensional density of cells d(r) is given by
the scaling factor s(r) in (1), and the formula

d(r) = dfoveas(r). (18)

This concludes the xml definition of the retina model per se. One last com-
ponent can be present in the retina definition file, that is a basic microsaccade
generator.

3.6 Microsaccade generation

Simulation of the retina can possibly include a simple reproduction of fixational
microsaccades, applied to the input image before it is passed to retinal treat-
ment. If one wishes to use this functionality, one must include the saccade
generator in the definition file, outside of the <retina/> node:

<retina-description-file>

<basic-microsaccade-generator
pixels-per-degree="10.0"
temporal-step__sec ="0.005"

angular-noise__pi-radians="0.3"
period-mean__sec="1"
period-stdev__sec="0.3"
amplitude-mean__deg="0.3"
amplitude-stdev__deg="0.1"
saccade-duration-mean__sec="0.03"
saccade-duration-stdev__sec="0.01"/>

<retina. . ./>

</retina-description-file>

It implements straight microsaccades around the fixation point, with random
amplitude, duration, and inter-saccadic interval. For conveniency, this object
also expresses temporal scales in seconds and spatial scales in retinal degrees,
with two conversion factors pixels-per-degree and temporal-step sec. Make
sure they are the same as for your retina!

16

4 Customization with species and pathway

Some parameters of the model vary according to the type of ganglion cell mod-
eled. For example, the sizes of receptive fields, and the global density of retinal
cells, are very different in cat or rabbit retinas and in primates, that have a
much greater density of cells in their foveas, with smaller (more precise) recep-
tive fields.

Similarly, some ganglion cells, such as cat Y cells, or primate Parasol cells,
are reknown to display a spatial non-linearity, probably due to their wide den-
dritic tree, as well to possess responses that are more transient temporally.

Finally, primate Midget cells, which possess very small receptive fields, do
not display contrast gain control like most retinal cells do. Table 1 sums up the
most important parameters of the model that will vary according to the type of
species and pathway modeled.

Parameter Cat X Cat Y Parasol Midget

OPL stage

center-sigma deg 0.5 0.5 0.05 (fov) 0.05 (fov)
surround-sigma deg 1.5 1.5 0.15 (fov) 0.15 (fov)

contrast gain control

adaptation-sigma deg 1.5 1.5 0.15 (fov) 0.15 (fov)
adaptation-feedback-amplification Hz 100 100 100 0
bipolar-inert-leaks Hz 5 5 5 50

ganglion layer

transient-relative-weight 0.7 1 0.7-1 0.7
bipolar-amplification Hz 100 400 100-400 100
sigma-pool deg 0 1.5 0-0.15 (fov) 0 (fov)

Table 1: Model parameters that vary according to species and pathway.

17

5 Examples of use

We now propose examples of use of Virtual Retina. All command lines are
written for execution from Retina Package/VirtualRetina. We will test the
program on the input sequences already proposed in the package: video se-
quence walking finland and static image rocks 2contrasts.pgm. Both these
sequences can be viewed thanks to the viewVideo executable. For instance

local/bin/viewVideo test/sequences/walking finland/finland.10* -s 100

allows to watch sequence walking finland at a rate of 100 ms per frame. If
option -s 0 is chosen, then the sequence can be viewed frame per frame, using
PageUp and PageDown buttons. We start off with the simplest linear retina
model available.

5.1 Spikeless, linear retina

File EXAMPLE linear noSpikes.xml, included in directory test/retina files,
contains the xml definition of a simple center-surround retinal filter:

<retina-description-file>
<retina temporal-step__sec="0.04"

input-luminosity-range="255"
pixels-per-degree="10.0">

<outer-plexiform-layer>
<linear-version

center-sigma__deg="0.03"
surround-sigma__deg="0.1"
center-tau__sec="0.01"
surround-tau__sec="0.01"
opl-amplification="10"
opl-relative-weight="1"
leaky-heat-equation="1" />

</outer-plexiform-layer>
</retina>

</retina-description-file>

Only the OPL filter is present, in its simplest version. The two spatial
parameters of filtering are tuned to a rough approximation of a primate fovea.
The conversion to image pixels is done through parameter pixels-per-degree.
Since this linear model does not display feedbacks, the retinal time step can be
chosen quite large: here, 40 ms.

This linear retina can be tested with:

local/bin/Retina -ret test/retina files/EXAMPLE linear noSpikes.xml
test/sequences/walking finland/finland.10* -r 1 -nS 1

Option -r 1 asks that each input last for one retinal time step (hence, 40 ms).
The output of this spikeless model is the map signal of the last layer present
in the retina. Here, it happens to be current ICS(x, y, t) (equation (2)), which

18

should have normalized values within the order of unity. By default, it is saved
in directory tmp/, under the names oplFrames/opl signal xxxxxx.inr. One
can check that this signal has indeed been saved (use PageUp and PageDown):

local/bin/viewVideo tmp/oplFrames/opl signal*.inr -s 0

It displays an enhancement of image edges, and especially temporal edges: a
strong activation is produced by the edges of the moving characters.

5.2 Single spiking cell

Another approach is to test the response of one precisely modeled ganglion cell,
under classical physiological stimulations. File test/retina files/EXAMPLE cat X cell.xml
defines the code for a single, spiking cat X ganglion cell, with contrast gain con-
trol:

<retina-description-file>

<retina temporal-step__sec="0.005"
input-luminosity-range="255"
pixels-per-degree="2.0">

<outer-plexiform-layer>
<undershoot-version

center-sigma__deg="0.88"
surround-sigma__deg="2.35"
center-tau__sec="0.01"
surround-tau__sec="0.01"
opl-amplification="10"
opl-relative-weight="1"
leaky-heat-equation="1"
adap-relative-weight="0.5"
adap-tau__sec="0.2"
adap-type="0" />

</outer-plexiform-layer>

<contrast-gain-control
opl-amplification__Hz="150"
bipolar-inert-leaks__Hz="5"
adaptation-sigma__deg="2.5"
adaptation-tau__sec="0.01"
adaptation-feedback-amplification__Hz="100"/>

<ganglion-layer
sign = "1"
transient-tau__sec="0.03"
transient-relative-weight="0.7"
bipolar-linear-threshold="0"
value-at-linear-threshold__Hz="80"
bipolar-input-amplification__Hz="100">

19

<spiking-channel>
<circular-spiking-channel
diameter__deg="1" fovea-density__inv-deg="1"
g-leak__Hz="50" sigma-V="0.1" refr-mean__sec="0.003"
refr-stdev__sec="0.001" random-init="1" />

</spiking-channel>
</ganglion-layer>

</retina>
</retina-description-file>

Notice that the defined <spiking-channel/> contains a single ganglion cell
(diameter deg and fovea-density inv-deg are both equal to 1). Minimal
sizes for the continuous retinal maps are automatically calculated, so as for side
effects to be absent at the center of the maps, where the single ganglion cell is
located.
NOTA: To simulate a single cell, use a circular spiking channel, which ensures that

the single cell will be located exactly at the center of fixation of the retina.

One can test the response of this cell to a drifting grating:

local/bin/Grating -type 0 -f 4 -T 40 -Lum 255 -Cont 0.7 -o tmp/grating.inr
local/bin/TestGanglionCell tmp/grating.inr -r 1 -tr 10

-ret test/retina files/EXAMPLE cat X cell.xml

which creates a drifting grating (frequency 4 Hz, spatial period 40 pixels), and
tests the defined ganglion cell on it over 10 trials, with executable TestGanglionCell
(that is called with similar options as Retina).

One can also test the contrast gain control properties of the cell on a multi-
sinus stimulus (see detailed explanations in [1]):

local/bin/shapleyVictor -T 10 -tr 0 -nP 10
-ret test/retina files/EXAMPLE cat X cell.xml

For more details on physiological recordings, see directory experiments/. For
the multi-sinus experient, also try option -h on executable shapleyVictor.

5.3 Spiking retina with contrast gain control

We finish this tutorial with the presentation of file EXAMPLE primate ParvoMagno.xml,
which presents a realistic array of spiking ganglion cells, emulating primate Para-
sol and Midget cells, both in their ON and OFF versions. This array possesses
a radial structure with a fovea, non-linear contrast gain control1, and spatial
non-linearity for the Parasol cells.

We do not display the whole definition file in this tutorial: it is actually a
bit indigest. Let us simply remark that this file appears very long because there
are 4 ganglion layers, which are simple copies one of another, safe the following
points.

1to display the perceptual interest of contrast gain control, we also display contrast gain
control on our ’Midget’ pathway; biologically however, primate Midget cells display few con-
trast gain control, as explained in Section 4.

20

• The two first ganglion layers are Midget (’Parvocellular’) cells, whereas the
two second are Parasol (’Magnocellular’) cells. As a result, the two first
layers do not display a spatial pooling sigma-pool deg (if absent from the
xml file, it is taken as zero by default); whereas the last two layers do dis-
play a spatial pooling. Similarly, values for attributes transient-relative-weight
and bipolar-amplification Hz are different in the two Midget layers
than in the two Parasol layers.

• There are two ON layers (one Midget and one Parasol), and two OFF
layers. Hence, between two layers of the same type (say Midget), the only
difference is attribute sign, which is set at 1 for one layer, and at -1 for
the other.

We test the retina on the same sequence as precedingly:

local/bin/Retina -ret test/retina files/EXAMPLE primate ParvoMagno.xml
test/sequences/walking finland/finland.10* -r 8 -nS 8

This time, since the retinal time step (defined in the retina xml file) is now
of 5 ms only, we ask that each input frame last 8 retinal steps, that is 40 ms.
Once the simulation is completed, one might wish to somehow view the emitted
spike trains. One possibility is to use program ReconstructRetina:

local/bin/ReconstructRetina -i tmp/simulation.txt -ch 1 0 -f 2
-w 3 -o tmp/last reconstruction.inr

local/bin/viewVideo tmp/last reconstruction.inr -s 20

As explained precedingly, the -ch command fixes which ganglion layer(s) should
be represented in the reconstruction from spikes. In this case, we asked for 1
channel of cells, channel number 0 (hence, the ON Midget cells). Other options
have been explained in Section 2.3. Typing -h will provide more details.

References

[1] Adrien Wohrer, Pierre Kornprobst, and Thierry Viéville. Virtual retina: a
biological retina model and simulator, with contrast gain control. Research
Report 6243, INRIA, jul 2007.

21

	General architecture of the package
	Goals, scope of use
	Requirements
	Installation
	Now what's in there?

	The executables
	The Retina executable
	The TestGanglionCell executable
	The ReconstructRetina executable
	Other executables

	Writing a retina definition file in xml
	General architecture of a file
	Log-polar scheme
	Outer Plexiform Layer
	Linear Version
	Undershoot version
	Luminance gain control version

	Contrast gain control in bipolar cells
	Ganglion layers and spike generation
	Further signal processing in ganglion cells
	Spike generation in ganglion cells

	Microsaccade generation

	Customization with species and pathway
	Examples of use
	Spikeless, linear retina
	Single spiking cell
	Spiking retina with contrast gain control

