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Abstract

We present a Diffusion Maps clustering method applied
to diffusion MRI in order to segment complex white matter
fiber bundles. It is well-known that diffusion tensor imag-
ing (DTI) is restricted in complex fiber regions with cross-
ings and this is why recent High Angular Resolution Dif-
fusion Imaging (HARDI) such has Q-Ball Imaging (QBI)
have been introduced to overcome these limitations. QBI
reconstructs the diffusion orientation distribution function
(ODF), a spherical function that has its maximum(a) agree-
ing with the underlying fiber population. In this paper, we
use the ODF representation in a small set of spherical har-
monic coefficients as input to the Diffusion Maps cluster-
ing method. We first show the advantage of using Diffu-
sion Maps clustering over classical methods such as N-Cuts
and Laplacian Eigenmaps. In particular, our ODF Diffu-
sion Maps requires a smaller number of hypothesis from
the input data, reduces the number of artifacts in the seg-
mentation and automatically exhibits the number of clus-
ters segmenting the Q-Ball image by using an adaptative
scale-space parameter. We also show that our ODF Diffu-
sion Maps clustering can reproduce published results using
the diffusion tensor (DT) clustering with N-Cuts on simple
synthetic images without crossings. On more complex data
with crossings, we show that our method succeeds to sep-
arate fiber bundles and crossing regions whereas the DT-
based methods generate artifacts and exhibit wrong number
of clusters. Finally, we show results on a real brain dataset
where we successfully segment the fiber bundles.

1. Introduction

Recent work shows that diffusion Magnetic Resonance
Imaging (dMRI) can help recovering white matter complex
brain architecture. However this is still an open problem due

to the structural complexity of the fiber tract bundles, which
can have crossing configurations. Diffusion tensor imaging
(DTI) [4] is restricted in these conditions due to its hypoth-
esis that the diffusion within a voxel follows a Gaussian dis-
tribution, a model that cannot model intra-voxel crossings.
Q-ball Imaging (QBI) [28], a recent high angular resolution
diffusion imaging (HARDI) technique, overcome this lim-
itation by reconstructing the diffusion orientation distribu-
tion function (ODF), a spherical function that has its max-
ima(um) agreeing with the underlying fiber populations.

The goal of this work is to provide a segmentation
method that can recover the white matter brain architecture
and that can deal with fiber tract crossings while requiring
a minimum number of hypothesis from the data. Spectral
embedding and clustering methods have recently proved to
be effective in image segmentation [25, 32]. The classical
approaches like N-Cuts [25] and Laplacian Eigenmaps [5]
require data within each cluster to be uniformly sampled,
producing artifacts when this hypothesis is not met. More-
over classical approaches to spectral clustering [25, 24, 5]
also assume that the scale within each cluster is the same us-
ing a single scale parameter for the whole dataset. In order
to overcome these limitations, we use Diffusion Maps [7] as
spectral embedding method, which looses the dependence
on the sampling of the elements to cluster. Moreover, we
use an adaptative scale-space parameter in order to deal
with space-scale differences across different clusters. Fi-
nally, our approach also allows to automatically determine
the number of clusters by analyzing the spectra of the image
embedding.

Another contribution of this paper is to show that the Q-
ball ODF clustering using Diffusion Maps can reproduce
the DT clustering using N-Cuts on simple synthetic images
without crossings. On more complex data with crossings,
we show that our method succeeds to separate fiber bundles
and crossing regions whereas the DT-based methods gener-
ate artifacts and exhibit wrong number of clusters. Finally,



we successfully segment some important fiber bundles on a
real dataset.

2. Methods

The main goal of this work is to produce a segmentation
algorithm able to segment dMRI data into fiber bundles and
crossings. Although clustering methods in general and the
algorithm developed in this work could be applied to the
raw signal estimation using a spherical harmonic represen-
tation [13, 1, 8], we choose to use the ODF reconstruction
as input to our algorithm as it is a very popular object used
for fiber clustering, segmentation and tracking. In order to
represent intra-voxel crossings with the ODF, we need at
least 15 real harmonic coefficients [14, 9]. This leads to
3D images with a high dimensional element at each voxel.
This high dimensionality makes previous diffusion imaging
segmentation approaches based on Level Set Methods such
as [20, 17, 10] computationally expensive. Moreover, these
methods require an initialization step. In order to perform
the segmentation in an initialization-free manner and with
a lower dimensionality image, we use spectral clustering
methods [25, 32], which perform dimensionality reduction
before performing the segmentation and do not need initial-
ization. The segmentation is then performed on the statistics
within each cluster and the fiber crossings can be identified.

In this section, we present the two main parts of our algo-
rithm. First, the estimation of the Q-ball diffusion ODF and
its compact representation using spherical harmonics. Sec-
ond, the Diffusion Maps spectral clustering technique used
to segment the ODF image into the background, the differ-
ent fiber bundles and the crossings areas between these fiber
bundles.

2.1. ODF Estimation from QBI

QBI [28] reconstructs the diffusion ODF directly from
the N HARDI measurements on a single sphere by the
Funk-Radon transform (FRT). The ODF is intuitive because
it has its maximum(a) aligned with the underlying popula-
tion of fiber(s). However, computing statistics on a large
number of discrete ODF values on the sphere is computa-
tionally heavy and infeasible to integrate into a segmenta-
tion algorithm of the whole brain. A more compact rep-
resentation of the ODF is thus needed. [9, 2, 14] proposed
a simple analytical spherical harmonic (SH) reconstruction
of the ODF. Letting Y™ denote the SH of order ¢ and
degree m (m = —/{,...,¢) in the standard basis and Y;
(j(6,m) = (£2 + ¢+ 2)/2 + m) be the SH in the modi-
fied real and symmetric basis, the final ODF is
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where 0 < 0 <2m,0< o <m L={+1)l+2)/2 ¢
are the SH coefficients describing the input HARDI signal,
P,; is a Legendre polynomial of order £(j)' and f; the co-
efficients describing the ODF W. Here, we use the solution
presented in [9] with a Laplace-Beltrami regularization of
the SH coefficients c; to obtain a more robust ODF estima-
tion.

Distances between ODFs We want to capture similari-
ties and dissimilarities between two ODFs, i.e two spheri-
cal functions W, ¥’ € S2. This can be done by taking the
Euclidean distance between all N discrete ODF value on
the sphere. When the ODFs W, ¥ are represented by real
SH vectors f, f/ € RZ, as shown in the previous section,
this Euclidean distance measure can be applied directly on
the SH coefficients. Since the ODFs come from real phys-
ical diffusion measurements they are bounded and form an
open subset of the space of real-valued £ spherical func-
tions with an inner product (, ) defined as

(T,9) = /52 V(o) - ¥(o)do
L L

/52 > £:Yi(0)> £1Y5(0) | do.
i=1 j=1

()
Because of the orthonormality of the SH basis,
f Yi(o o)do = §;;, the cross terms cancel and

the expression is simply (¥, ¥’) = ZJ-L:l fi - f}. There-

fore, the induced £? norm ||¥|| = \/(¥, ¥’) giving us the
distance metric between two ODFs is simply
> =)

= ‘P”_W
j=1
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The Euclidean distance was also used successfully for DTI
segmentation in [20] even though more appropriate met-
rics exist such as the J-Divergence [29, 20] and Riemannian
geodesic distances [20]. Similarly, one can think of choos-
ing another metric to compare ODFs. For instance, since
the ODF can be viewed as a probability distribution func-
tion (PDF) of fiber orientations, one can use the Kullback-
Leibler distance between two PDFs, as done in [28]. How-
ever, in that case the problem quickly blows up computa-
tionally because one needs to use all NV discrete data on the
sphere instead of the L SH coefficients (L << N).

L
(0))?do =

2.2. Diffusion Maps

In recent years, spectral manifold learning and clustering
techniques[30, 24, 25, 26, 30, 5], have become one of the

1¢(4) is the order associated with the j*" element of the SH basis, i.e.
forj =1,2,3,4,5,6,7,... £(j)=0,2,2,2,2,2,4,...



most popular modern clustering family of methods. They
are simple to implement, they can be solved efficiently by
standard linear algebra software and they very often out-
perform traditional manifold learning and clustering algo-
rithms such as the classical PCA (Principal Component
Analysis) [16] and k-means [15] algorithms. Moreover due
to the dimensionality reduction properties they are specially
suited to work with high-dimensional data. These tech-
niques have been recently proposed in order, among other
things, to cluster various types of images [25, 32] and white
matter fiber tracts [23]. In our case we perform the spectral
clustering in two different types of elements, the DT and
the ODF. In the DT case, the element is represented by a
6-dimensional vector corresponding to each element of the
DT 3x3 symmetric matrix. In the ODF case, the element
is represented by the 15-dimensional vector corresponding
to the spherical harmonic coefficients of the order 4 ODF
estimation.

Spectral clustering reduces the clustering problem to a
graph partitioning problem. Each element to be clustered is
represented as a node in a graph and the edges joining the
vertex are a measure of affinity between the elements. This
affinity measure lies between 0 and 1, 0 being the less affine
case. A spectral decomposition of this graph is taken by cal-
culating the eigenvalue decomposition (EVD) of the graph
Laplacian [6]. Then a low-dimensional Euclidean manifold
embedding is inferred from this decomposition. Finally, the
clustering is performed in the inferred Euclidean manifold.

All the above techniques rely on three hypotheses:

1. Isometry of the embedding: after a distance is defined
between elements, the learned manifold should pre-
serve the distance relation.

2. Uniform sampling of the elements: the density of the
extracted elements changes if and only if these ele-
ments belong to anatomically different bundles.

3. Convexity of the elements: if two elements are in the
data set, almost all of the intermediate tracts obtained
by interpolation are in the data set.

Its not easy to guarantee that the data to be embedded
and clustered will adhere to these hypotheses. In [11], they
analyze when a spectral embedding algorithm is able to
recover the true parameterization of a set of images. As
medical images represent the discretization of a continuous
space, hypotheses 1 and 3 are plausible. However there is
no indication that within a fiber bundle the distribution of
the elements (DT or ODF) are uniformly sampled. More-
over, in [18] it is shown that different sampling frequencies
within one cluster leads the N-Cuts and Laplacian Eigen-
maps methods to subdivide the cluster in several parts.

In order to overcome this limitation we use the Diffusion
Maps [7] spectral embedding technique, which is resilient

to sampling frequency differences within a cluster. In or-
der to further describe the classical spectral clustering and
embedding procedure, we first sketch the steps and then de-
scribe each step in detail:

Algorithm 1 For a set X of L-dimensional elements with
an affinity function* a : X x X — R>o, perform the fol-
lowing steps:

1. Compute a normalized affinity matrix.

2. Perform an embedding y(X) of X into a n-
dimensional Euclidean manifold, n << L

3. Cluster the elements of X in the embedded space Y =
y(X).

Step 1: Computing the normalized affinity matrix The
main idea of this process is to represent in a more tractable
way the relationships between the elements of f € X,
fe RE, that will be used to cluster them. With this in mind,
a fairly good way of representing any set of elements with
an affinity function a : X x X — Ry, is a weighted graph,
G(X, E,w(-)) where the weight of the edge between two
vertices is equal to the affinity of the elements represented
by them. More formally, for an edge’, e = (f;, f;) € E,
the weight of the edge is w(e) = a(f;, f;). Hence, each ele-
ment of the adjacency matrix of G or conversely the affinity
matrix of (X, a(-)) is

Ayj = alfs, fj),

taking this in account, the weighted graph G(X, E, w(-))
can be also noted as G/(X, A), where A € RIXIXIX],

Nevertheless, the usual set up is a set of elements with
a distance function d(+) instead of an affinity function. The
distances can be easily converted into affinities by taking a
kernel of the distance function:

A £

a(fzafj) =e€ G?j ) (4)

where o is an adaptive scale space parameter that depends
on the elements f; and f;. The adaptative scale-space pa-
rameter is computed as in [31], a “neighbor-number” k
is given as parameter to the algorithm and then afj =
d(fi, fi)d(f;, fj,) where f;, is the k-th closest neighbor
according to the distance function d(-, -) of element f;.

In order to overcome the necessity of hypothesis 2, we
pre-normalize the affinity matrix, as done in [7]. This is
done by normalizing the weight of each edge of the graph,

2The function a(e;, e;) should be near zero if the two elements are not
affine and maximum when e; = e;.

3In this section the subindexed variables f;, f; represent different ele-
ments to be clustered and not spherical harmonic coefficients.



A;j, by the probability density of both elements relating
through the edge,

s = S

7

where p(-), the probability density function of the elements
in X, is not known but can be approximated, up to a multi-
plication factor, by,

p@) =) A= A
k k

As in image segmentation, the spatial position of each
element is important, the spatial dependency should be in-
corporated within the affinity matrix. Following [27, 32],
we use Markovian Relaxation to incorporate this informa-
tion. In order to represent the affinity of all the elements
that can be reached within 1 spatial step, the affinity matrix
is modified in the following way

A,
Aplij — {OPZJ

where coords( f) are spatial coordinates of element f in the
image and r represents the unit radius circle in the spatial
coordinates. Then, to obtain the affinities of elements that
can be reached within s spatial steps, it is enough to elevate
Ay to the power of 5, A, = A;l. Moreover, s can be
chosen to be the smallest positive integer which gives non-
zero elements in the whole matrix in order to represent the
weakest connected induced graph.

Due to the necessity of having a uniform behavior of the
clustering algorithm without minding the scale of the affin-
ity measure taken, a doubly stochastic matrix normalization
is performed

if || coords(f;) — coords(f;)|l2 <
any other case

A;Sds = D(APS)71/2ApsD(Ap3)71/2 = R‘X‘X‘X|’

where D(A,s) is the row-sum matrix or degree matrix of
Aps. In the following sections we will address the normal-
ized affinity matrix A, as A for the sake of clarity.

Step 2: Performing the embedding Now the algorithm
must perform an embedding of the elements in X into an n-
dimensional Euclidean space, by using the eigenvalue de-
composition of the Laplacian of the affinity matrix. This
embedding must be compliant with hypothesis 1. More for-
mally the algorithm should find mapping functiony : X —
R", n < L. This problem can be formulated as finding a
mapping that minimizes the following energy

|X]

ij=1

wherey; = y(fi), fi € X. Asin[7, 6, 5], this is equivalent
to find the spectral decomposition of the graph Laplacian of
the graph induced by A,

A = D(A) — A € RIXIXIXT)

where | X | is number of elements to be clustered, however,
as A is a double stochastic matrix, this equation can be
rewritten as

A=1—AeRXXX

then, as A is a symmetric positive definite matrix, the eigen-
value decomposition can be calculated by taking the Singu-
lar Value Decomposition (SVD),

VSVT = A e RIXIXIX]

where,
V:(wHNWFOGRWMM

is the eigenvector column matrix and S is a diagonal matrix
with the sorted eigenvalues in the diagonal, 1 = Ay > A\; >
2 Ax-1 = 0.

Finally the Euclidean coordinates y; of an element
fi € X in the n-dimensional embedding manifold, n <
min(L,|X|) are

1 T
Y(fi)ZYi:w()\lvilw--a/\nvi) ,fie X

where the first eigenvalue, )\g, is not taken into account
because it is constant and hence meaningless, as shown
in [7, 6, 5].

Step 3: Clustering Once the embedding has been per-
formed, several techniques have been proposed for the clus-
tering step.

The first step in this process is to determine the num-
ber of clusters, this can be done in two ways. The first, as
in [22], is choosing the number of clusters according to the
“elbow” than can be devised in the eigenvalues plot. For
instance, if the slope of the eigenvalues plot changes no-
ticeably at eigenvector )\;, the number of clusters should be
1+ 1. The second way is re-ordering the affinity matrix rows
and columns following the second eigenvector, as proved
in [12], which shows the block structure of the matrix as
squared blocks along the matrix diagonal. Then, the num-
ber of clusters is the number of blocks. The recommended
number of dimensions for the embedding is the same as the
number of clusters. Finally, the clustering is performed by
running a k-means clustering algorithm on this space. A for-
mal justification for this approach can be found in [5, 19].



2.3. Q-Ball Data Generation and Acquisitions

Synthetic Data We  generate  synthetic  Q-ball
data using the multi-tensor model [28], S(u;) =

o1 +exp(—buf Dy (0)u;) + noise, for N encod-
ing directions i € {1,..., N}. We use N = 81 from a 3"
order tessellation of the icosahedron, b = 3000 s/mm?,
n = 1 or 2 and Dy () the diffusion tensor with standard
eigenvalues [3,3,1.7]x107? mm?/s oriented in direction
0 (28, 9]. The noise is generated with a complex Gaussian
noise with a standard deviation of 1/35, producing a signal
with SNR 35. We generate three synthetic data example,
two simple examples, one with a ring of sinusoidal shaped
fibers, one with fibers with different sizes and scales and the
other with complex crossing areas simulating the *U’-fibers
(cortico-cortical fibers) that can occur in the brain. These
synthetic datasets help understand the behavior of the
different spectral clustering methods when confronted with
simple and complex fiber geometries.

Human Brain Data We use a human brain dataset ac-
quired on 3T scanner [3] with 60 encoding directions, b =
1000 s/mm?, 72 slices with 1.7mm thickness, twenty one
b = 0 s/mm? images, 128 x 128 image matrix, TE = 100
ms, TR =12 s.

Distance functions In order to implement the Diffusion
Maps spectral clustering method a distance function for
each data type is chosen. This distance functions are used in
order to calculate the affinity matrix as expressed by equa-
tion (4). In the DT case, following [21], we use the Rieman-
nian tensor distance. In the ODF case we use the distance
shown in equation (3).

3. Results and Discussion
3.1. Synthetic data experiments

Diffusion Maps vs. N-Cuts The first experiment shows
the difference in performance between the Diffusion Maps
and N-Cuts approach. In order to do this we used the
ring fiber bundle image. This fiber bundle has different
sampling frequencies. Within the ring, the fibers have a
sinusoidal shape where the frequency of the modulating
sine function is 4 times bigger in the lower half of the
ring. More formally, the fibers follow the angular function
o(f) = 6+ gwsin(p-6),0 < 6 < 27, where p = 8 for
the upper half of the ring and p = 32 for the lower half.
Two clusters are expected, the ring and the background.
The results of both clustering techniques are shown in fig-
ure 1, where the background has been masked out. Follow-
ing the plot of the biggest 10 eigenvalues for both methods,
shown in figure 1(f) and figure 1(e), the number of clusters
to be chosen should be either 2 or 4. The N-Cuts exhibits

frequency-dependent clustering artifacts in both cases, fig-
ure 1(a) and 1(c), while the Diffusion Maps method clearly
shows the expected result with two clusters shown in fig-
ure 1(d).

ODF vs. DT images The second experiment shows a
simple fiber tract scenario (figure 2), which does not include
fiber crossings. The DT-based and ODF-based image clus-
tering produce the same results.

Finally, the last synthetic experiment is performed over
the fiber crossing scenario presented in figure 3. The two
overlapping fiber bundles have different geometries. Seg-
mentation was performed over the DT and the ODF image
shown in figure 4. Note that the cluster number is correctly
estimated only in the ODF image. The ODF Diffusion Maps
effectively identify the two different fiber bundles as well as
the fiber crossing areas.

3.2. Real Data

The real data experiment presented in this section shows
the segmentation and labeling of a cropped axial and coro-
nal slice. The cropped slices were chosen by an expert in re-
gions of known fiber crossings where the DT model is nor-
mally limited. The ROIs show intersection of several fiber
bundles. Hence, our segmentation algorithm is confronted
with elements that have different orientation and different
diffusion characteristics. In order to show that ODF data
segments the white matter fiber bundles better than the DT
data in real cases, we analyze the evolution of the affin-
ity matrix as the scale space parameter changes in the ax-
ial cropped slice shown in figure 5. Affinity matrices were

computed with varying scale space parameter between =,

15+ 35 and 75 of the quantity of elements (| X |) to cluster re-
spectively. In order to show the block structure of the affin-
ity matrices, they were reordered using the second (Fiedler)
biggest eigenvector [12]. It can be seen in figure 6 that as
the scale diminishes, the DT data shows a high correlation
between all the elements of the slice. This makes clustering
very difficult because the blocks are small and highly corre-
lated. On the other hand, the ODF data shows a very clear
block structure across all scales. This block structure shows
a high correlation of the elements within each block and a
low inter-block correlation, giving a much better input to
the clustering algorithm than the DT data.

In figure 5, the location of the cropped axial slice is
shown in the axial slice and coronal slices. As it can be seen
in the segmented and labeled axial slice, figure 7, the seg-
mentation also allows to identify and label the main white
matter structures, Corpus Callosum (CC), Cingulum (CG)
and the Corona Radiata (CR).

In figure 8, the location of the cropped coronal slice
is shown in the axial slice and coronal slices. As it can



(a) N-Cuts, 2 clusters (blue and (b)
black)

Original ODF image

(c) N-Cuts, 4 clusters (blue, red, (d) Diffusion Maps, 2 -clusters
green and black) (red and black)

“\ o5 L\\-,- )
~ — o5 —

(e) N-Cuts eigenvalue plot (f) Diffusion Maps eigenvalue

plot

Figure 1. N-Cuts generates over-clustering due to sampling fre-
quency variation in ODF images. The original image 1(b) without
ommiting the background. Between 2 and 4 clusters are found
and the clustering results with 2, 1(a), and 4, 1(c), clusters are
shown. Diffusion Maps correctly finds two clusters, the object and
the background, 1(d) .. In the labeling, the ODFs are overlaid on
the labels, in the clustering images the background is omitted for
clarity.

be seen in the segmented and labeled coronal slice, fig-
ure 3.2, the segmentation allows to identify and label the
main white matter structures: Corpus Callosum (CC), Cin-
gulum (CG), Corona Radiata (CR), Superior Longitudinal
Fasciculus (SLF). Note that the segmentation is resilient to

crossing areas such as seen at the interface between CR and
CC.

(a) DTI (b) ODF

Figure 2. Synthetic image. On fiber tracts without crossings the
results over DT and ODF images are equivalent. The colors behind
the DTs and ODFs indicate the cluster.

(a) DTI (b) ODF

Figure 3. Synthetic image. The expected number is four, one for
each fiber, one for the crossing between the two fibers and one for
the background

()

Figure 4. Clustering results in ODF and DT images, Only ODF
show the correct clustering. In both cases the clustering result and
the reordered affinity matrix are shown.

4. Conclusions

In this work, we have presented two contributions. First,
we have shown that in order to perform spectral clustering



Figure 5. Generalized fractional anisotropy axial and coronal
slices in the real dataset with the axial region marked

(b) ODF reordered affinity matrices

Figure 6. Plots of DTI and ODF affinity matrices of an axial
cropped slice shown in figure 5. The matrices are reordered ac-
cording to the second (Fiedler) eigenvector. The affinity matrices
are shown in decreasing order of o, which takes the values %, %,
% and i of the quantity of elements to cluster.

Figure 7. Our proposed algorithm is able to identify important
white matter fiber bundles on an axial slice of a real dataset. The
cropped axial slice shown in figure 3.2 has been segmented. In the
labeled ODF visualization, each color represents one of the clus-
ters found. The white matter labels are CC: Corpus Callosum, CG:
Cingulum, ACR: Anterior Corona Radiata.

on complex dMRI with crossing fiber bundles, a HARDI
technique such as Q-Ball Imaging is better than the classical
DTI technique. This is because the ODF reconstructed from
QBI is able to recover multiple crossing fiber populations.

Figure 8. Our proposed algorithm is able to identify important
white matter fiber bundles on a coronal slice of a real dataset. Gen-
eralized fractional anisotropy axial and coronal slices are shown
with the coronal region marked. Labeled ODF visualization, each
color represents one of the 12 clusters found. The white matter
labels are CC: Corpus Callosum, CG: Cingulum, CR: Corona Ra-
diata, SLF: Superior Longitudinal Fasciculus.

Secondly, a Diffusion Maps based technique for image seg-
mentation was introduced to improve the segmentations and
to reduce artifacts arising from the widely used N-Cuts im-
age segmentation. We have illustrated the consequences of
the theoretical advantages of the Diffusion Maps ODF seg-
mentation algorithm, and shown in a real data set that our
algorithm is able to identify the most important white matter
complex structures.

Finally, the Diffusion Maps technique has been shown
to be more robust to sampling frequency variations within
each object to segment. This is shown in section 3.1 and
illustrated in figure 1. In order to cluster the elements in the
space spanned only by the tensors we have used an adapta-
tive scale-space parameter and we have used Markovian Re-
laxation in order to incorporate spatial dependencies. Over-
all, the approach is theoretically sound with the graph based
representation which lies at the heart of spectral clustering
methods.
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