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Abstract. In this article, we develop a new method to segment Q-Ball
imaging (QBI) data. We first estimate the orientation distribution func-
tion (ODF) using a fast and robust spherical harmonic (SH) method.
Then, we use a region-based statistical surface evolution on this image
of ODFs to efficiently find coherent white matter fiber bundles. We show
that our method is appropriate to propagate through regions of fiber
crossings and we show that our results outperform state-of-the-art diffu-
sion tensor (DT) imaging segmentation methods, inherently limited by
the DT model. Results obtained on synthetic data, on a biological phan-
tom, on real datasets and on all 13 subjects of a public QBI database
show that our method is reproducible, automatic and brings a strong
added value to diffusion MRI segmentation.

1 Introduction

We would like to segment white matter fiber bundles in which diffusion prop-
erties are similar and ultimately compare their features to those in other ROI
in the same subject or on multiple subjects. Existing DTI-based segmentation
techniques [1-5] are inherently limited by the DT model and most often blocked
in regions of fiber crossings where DTs are oblate and isotropic. This is why
recent high angular resolution diffusion imaging (HARDI) techniques such as
QBI [6] have been proposed to aid the inference of crossing, branching or kissing
fibers. New methods have thus started to appear to segment bundles in fields
of ODFs [4,7]. In [4], the ODF map is reconstructed according the time con-
suming diffusion spectrum imaging (DSI) scheme and the segmentation problem
is developed using a level set approach in a non-Euclidean 5-dimensional (5D)
position-orientation space. This extension from 3D to 5D space leads to work
with huge 5D matrices and there are important problems with data handling
and storage. In [7], the main contribution is to model the ODF with a mix-
ture of von Mishes-Fisher distributions and use its associated metric in a hidden
Markov measure field segmentation scheme. Thus, both the ODF modeling and
segmentation technique are different from our proposed method.

In this paper, we answer the following three questions: 1) How can the seg-
mentation problem be formulated and solved efficiently on a field of diffusion
ODFs? 2) What is gained by the ODF with respect to the DT? 3) Is it possible
to validate the segmentation results and make the segmentation automatic? To
do so, we propose an eflicient region-based level set approach using a regularized
and robust spherical harmonics (SH) representation of the ODF [8]. We first



show that a better local modeling of fiber crossings improves segmentation re-
sults globally. Then, we show that our ODF segmentation is more accurate than
the state-of-the-art DTT segmentation [5] in regions of complex fiber configura-
tions from synthetic data, from a biological phantom and from real data. Finally,
we show that our Q-ball segmentation is reproducible by segmenting the corpus
callosum (CC) of the 13 subjects of a public QBI database [9] automatically.

2 ODF Estimation from QBI

QBI [6] reconstructs the diffusion ODF directly from the N HARDI measure-
ments on a single sphere by the Funk-Radon transform (FRT). The ODF is
intuitive because it has its maximum(a) aligned with the underlying population
of fiber(s). However, computing statistics on a large number of discrete ODF
values on the sphere is computationally heavy and infeasible to integrate into a
segmentation algorithm of the whole brain. A more compact representation of
the ODF is thus needed. [8, 10, 11] proposed a simple analytic spherical harmonic
(SH) reconstruction of the ODF. Letting Y;™ denote the SH of order ¢ and degree
m (m = —/,...,£) in the standard basis and Y; (j(¢,m) = ({*+¢+2)/2+m) be
the SH in the modified real and symmetric basis, the final ODF is
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where L = ({+1)(£+2)/2, ¢; are the SH coefficients describing the input HARDI
signal, P(; is a Legendre polynomial of order £(j)* and f; the coefficients de-
scribing the ODF ¥. Here, we use our solution [8] with a Laplace-Beltrami
regularization of the SH coeflicients c; to obtain a more robust ODF estimation.

3 Statistical Surface Evolution

We want to find a global coherence in the Q-ball field of ODFs. We denote the
image of ODFs by F : 2 — RZ so that for all x € 2, F(x) is an ODF of order
¢ represented by a vector of L real SH coefficients, F(x) := {fi,..., fr} € RL.
Now, the question is what is a good metric to compare ODFs?

Distances between ODFs We want to capture similarities and dissimilarities
between two ODFs, i.e two spherical functions ¥, ¥’ € S? that can be represented
by real SH vectors f, f’ € R%, as shown in the previous section. Since the ODFs
come from real physical diffusion measurements they are bounded and form an

1 4(4) is the order associated with the j** element of the SH basis, i.e. for j =
1,2,3,4,5,6,7,... £(j)=0,2,2,2,2,2,4, ...



open subset of the space of real-valued £2 spherical functions with an inner
product (,) defined as

L L
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(2)
Because of the orthonormality of the SH basis, the cross terms cancel and the ex-
pression is simply (¥, ¥’') = Zle fj - f}. Therefore, the induced £? norm giving

the distance metric between two ODF's is simply || —¥'|| = Zle(fj = )2
The Euclidean distance was also used successfully for DTT segmentation in [5]
even though more appropriate metrics exist such as the J-Divergence [3, 5] and
Riemannian geodesic distances [5]. Similarly, one can think of choosing another
metric to compare ODFs. For instance, since the ODF can be viewed as a proba-
bility distribution function (pdf) of fiber orientations, one can use the Kullback-
Leibler distance between two pdfs, as done in [6]. However, in that case the
problem quickly blows up computationally because one needs to use all N dis-
crete data on the sphere instead of the L SH coefficients (L << N).?

Segmentation by Surface Evolution Inspired by general works on image
segmentation [12] , we search for the optimal partition S in two regions S; and
So of the image (2. We maximize the a posteriori frame partition probability
p(S|F) of obtaining the desired segmentation for the observed image of ODF's
F. The major difference in our approach is that we use order-4 ODFs, with
L = 15 real coefficients whereas in [5] DTs represented by 6D vectors® are used
as input to the region-based segmentation.

We use the level set framework to represent the optimal partition S as the
zero-crossing of the level set function ¢. Hence, using Bayes rule, the optimal
partition is obtained by maximizing p(¢|F) x p(F|¢)p(p). At this point, the
main assumption is that probability distributions p; and py of SH coefficients in
regions S; and Sy are Gaussians.* Hence, we consider a parametric model with
a L-dimensional Gaussian. Letting 7, € R be the mean SH ODF vector and
A, be the L x L covariance matrix of the ODF vectors in region r = 1,2, the
likelihood of the ODF F(x) to be part of region r is defined as

— 1 1
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The optimal segmentation is then obtained by maximizing p(F|$)p(¢) or by

minimizing of the negative logarithms. Hence, the final energy minimization is

E(6,p1,ps) = — /Q log p1 (F(x))dx — /Q log pa(F(x))dx -+ v /Q 5(6)|Voldx, (4)

2 For example, one needs to process N = 200 values instead of L = 15 SH coefficients.

3 The order-2 SH estimation of the ODF has six coefficients and is related to the DT.
The Euclidean DTT segmentation [5] is thus a special case of the ODF segmentation.

4 This is in fact a reasonable assumption because we observed “bell-shaped” his-
tograms of each of the L coefficients of the ODFs in the CC of our real data.



where the first two terms are the region-based terms and the last term allows to
impose a smoothness constraint v on the evolving surface. The Euler-Lagrange
equations can then be computed and discretized as in [5] to derive the implicit
surface evolution of ¢. The most coherent partition is thus obtained in an efficient
and simple level set implementation.

4 (Q-Ball Data Generation and Acquisitions

Synthetic Data We generate synthetic Q-ball data using the multi-tensor
model [6], S(u;) = Y°;_; L exp(—bu} Dk (6)u;) + noise, for N encoding direc-
tions i € {1,..., N}. We use N = 81 from a 3" order tessellation of the icosahe-
dron, b = 3000 s/mm?, n = 1 or 2 and Dy(#) the diffusion tensor with standard
eigenvalues [300, 300, 1700]x10~% mm? /s oriented in direction 6 [6,8]. The noise
is generated with a complex Gaussian noise with a standard deviation of 1/35,
producing a signal with SNR 35. We generate two synthetic data example, one
with a 2-fiber 90° crossing (Fig. 1) and the other with a 2-fiber branching con-
figuration (Fig. 2). DTs and ODF's are visualized as spherical functions colored
according to the Fractional Anisotropy (FA), with colormap going from red to
blue for anisotropic to isotropic profiles.
Biological Phantom Data We obtained the biological phantom from [13].
It was created from two excised rat spinal cords embedded in 2% agar. The
acquisition was done on 1.5T scanner using 90 encoding directions, with b =
3000 s/mm?, TR= 6.4 s, TE= 110 ms, 2.8 mm isotropic voxels and four signal
averages per direction. We compare the DT Euclidean and Riemannian [5] and
ODF surface evolutions on this dataset.
Human Brain Data First, we use a human brain dataset acquired on 3T scan-
ner [14] with 60 encoding directions, b = 1000 s/mm?, 72 slices with 1.7mm
thickness, twenty one b = 0 s/mm? images, 128 x 128 image matrix, TE = 100
ms, TR = 12 s. We compare the segmentations of the DT Euclidean and Rie-
mannian [5] and ODF surface evolutions on two well-known fiber bundles; the
corpus callosum (CC) and cortico spinal tract (CST).

Then, we test our ODF segmentation on the public NMR database [9]. The
13 datasets were acquired on a 1.5T scanner with 200 encoding directions, b =
3000 s/mm?, 60 slices with 2 mm thickness, twenty five b = 0 s/mm? images,
128 x 128 image matrix, TE = 93.2 ms, TR = 1.9 s. For each subject, a single
voxel in the medial part of the CC is selected (manually) to initialize the flow.

5 Segmentation Results & Discussion

Synthetic Datasets First, Fig. 1 shows that initialization has a strong influence
on the final surface. If the initialization contains strictly anisotropic DTs/ODFs,
the final surface is not able to pass through the fiber crossing area, as seen in
Fig. 1(a). Similarly, the final surface is trapped in the crossing area when initial-
izing strictly in the 2-fiber region (Fig. 1(b)). This is because the statistics of the
initial region have a large difference with the rest of the DTs/ODFs and hence,
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Fig. 1. In the first row, the ODFs and the DTs and ODF's in the 90° crossing area. In
(a-~c), from left to right, the initialization used, the DT Riemannian [5] and the ODF
flow segmentation. In the last row, the ODF front evolution in time.

Fig. 2. Segmentation on a synthetic branching example. In (a-d), from left to right,
the initialization used, the DT Riemannian [5] and the ODF flow segmentation

the evolving surface is blocked from connecting to the rest of the structure.
However, if the initialization contains a mixture of both single fiber and 2-fiber
DTs/ODFs, the DT flow propagates through the crossing region to connect to
the similar anisotropic DTs on the other side of the crossing and the second
fiber is completely ignored, as seen in Fig. 1(c). The DTs in the crossing are
oblate and there is no information on the second orientation. In contrary, there
is information about the second orientation in the ODF flow and the surface evo-
lution finds the whole 2-fiber structure as coherent. Fig. 2 shows a more complex
branching region. In the DT flow, we see that the surface remains trapped in



Fig. 3. In (a-c), from left to right, the initialization, the DT Euclidean [5] flow at ¢ = 40
starting to leak outside the phantom structure and the segmentation of the ODF flow.

the regions of the initial seeding for all initializations. In contrary, in the ODF
case, when the flow is initialized in the bottom and middle part of the branch,
the whole branching structure is recovered because the ODF contains a broader
range of orientations in its statistics.

Biological Phantom Dataset Fig. 3 shows that the DT flow with the Eu-
clidean distance is unable to segment the spinal cords. Whereas in [5] the initial-
ization was placed outside the phantom and the flow converged inwards, here,
we initialized inside the structure and we see that the surface leaks outside the
cords because many DTs are isotropic in the fibers and there are also isotropic
DTs outside the structure with mean diffusivity in a similar range. However,
our new ODF flow segments the whole structure quite easily. The segmentation
agrees with results published using the DT Riemannian flow [5, Fig.12-13].
Human Brain Datasets Our ODF segmentation on real datasets recovers
more structure than other published results on the CC and CST [1,4,5]. Fig. 4
shows that we are able to reproduce results from [5] with the DT-based flows
using both the Euclidean and Riemannian distances. In the DT Euclidean flow,
we see that the evolving surface stops near complex crossing area where oblate
and isotropic DTs (greenish-blue) block the flow. The DT Riemannian is able to
connect more voxels than the DT Euclidean by slightly evolving into the cross-
ing area. However, in the CST, the flow is still unable to recover the branching
fiber structure projecting to the cortex. The ODF flow recovers that branching
structure to the different sulci and also recovers more of the splenium of the CC.

Fig 5 shows that our new ODF surface evolution is reproducible on many
subjects from the same set parameters. Convergence depends on the subject but
was always obtained automatically for 80 to 120 iterations of the flow, where
an iteration takes roughly 0.5 second on a Dell single processor, 3.4 GHz, 2 GB
RAM machine. We see that for most subjects, we have segmented the full CC
with the longer posterior parts of the splenium and the full genu, as in Fig. 4.
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Fig. 4. ODF flow segmentations can propagate through crossing regions and go further
than other segmentation methods. DT-based segmentations are overlaid on a slice with
DTs and the ODF flow is overlaid on the same slice with the ODFs.

Fig. 5. Automatic segmentation of the corpus callosum using the ODF flow on the 13
subjects of the NMR database [9] from a single seed point in the middle of the CC.

Overall all CC structures are similar but there are some differences across CCs.
Hence, it is now important to quantify this multi-subject variability.

6 Conclusion

We have presented an efficient statistical surface evolution framework for the seg-
mentation of Q-Ball images. The proposed method combines state-of-the-art SH
reconstruction of the ODF from QBI and state-of-the-art region-based surface
evolution. To answer questions of the introduction: 1) The segmentation prob-
lem on ODF images can be formulated efficiently with the level sets evolving
to partition similar ODF based on their spherical harmonic representation. 2)
The ODF flow is able to deal with complex fiber configurations such as crossing
and branching fibers better than DT-based segmentation using the Euclidean
and Riemannian distances. 3) It is possible to validate the segmentation results.



In particular, we obtained sets of globally coherent ODFs agreeing with well-
known real data cerebral anatomical structures as well as with synthetic and
biological phantom datasets where the ground truth was known. Another im-
portant contribution was to show the reproducibility of the surface evolution on
real datasets with different b-values and also on the 13 subjects from the public
NMR database. It is now important to develop a better initialization of the level
set front in order to perform a fully automatic segmentation. It is now possi-
ble to imagine performing a multi-subject study with segmented fiber bundles
to quantify certain diffusion properties and attempt to follow the evolution of
white matter diseases.
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