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MotivationMotivation

P2P: large scale solution for Big Data 
management systems (Cassandra,    
CouchDB…)

 However, key issue with distributed 
systems: Load Balancing
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Load Imbalance IssuesLoad Imbalance Issues

When managing real world datasets:

 Very biased data (ex: Unicode)
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 Large workloads sent to very few nodes

 Churn

 Heterogeneity between peers 
(bandwidth, CPU, storage capacities)
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Load Balancing SolutionsLoad Balancing Solutions

 Plenty of existing load balancing 
strategies

 Hard to anticipate the most efficient 
strategy for a particular system

 Many parameters to take into account
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SummarySummary

 Criteria to choose a load balancing strategy

 How existing papers match our criteria

 API for load balancing

 Experiments on our own storage system
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How to Build a StrategyHow to Build a Strategy

 How is load information exchanged?

 How to trigger load balancing?

 What should be balanced?
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How to Build a StrategyHow to Build a Strategy

How is load information exchanged?

 Load information exchange? What, how and when

 Load information recipients? Who informs who
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How to Build a StrategyHow to Build a Strategy

How to trigger load balancing?

 Load criteria? Resource (CPU, disk space, ...) & 
operation (item lookup, insertion, ...)

 Load state estimation? How to estimate load

 Load balancing decision? When to trigger rebalance
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How to Build a StrategyHow to Build a Strategy

What has to be moved?

 Load balancing method? How to balance load

 Load to move? What and how much to move

 Target? Who will receive the load to move
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3 different strategies

Among the most cited for this topic

Differences:
◦Load balancing triggered after various events
◦Context: pub/sub, virtual servers, data storage

Existing Load Balancing StrategiesExisting Load Balancing Strategies



Strategy #1Strategy #1
 Rao et al. (Berkeley)

Nodes maintaining a directory

Nodes sending their load information

P1 P2

D1 D2

P1: 
load > threshold?

 yes
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Strategy #1Strategy #1

How is load information exchanged?
  Periodic push and pull calls from peers to 

directories.

How to trigger load balancing? 
Periodically compare virtual servers load with 

internal threshold.

What has to be moved?
Transfer a virtual server to a light node.

12



Strategy #2Strategy #2

 Gupta et al. (University of California)

P1

P3

P2

Split 
with P2

New peer
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Strategy #2Strategy #2

 Gupta et al. (University of California)

P1

P3

P2
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Strategy #2Strategy #2

 Gupta et al. (University of California)

P1

P3

P2

P4
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Strategy #2Strategy #2

How is load information exchanged? 
  Periodic push calls between peers.

How to trigger load balancing? 
  When a new peer joins the system: find the 

most loaded with subscriptions.

What has to be moved? 
  Half of the heavy peer’s area to the new peer.
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Strategy #3Strategy #3

 Byers et al. (Boston & Harvard University)

P0

P1

P2

P3
Hash1(             ) = P1

Hash2(           ) = P2

Hash3(           ) = P3
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Strategy #3Strategy #3

How is load information exchanged? 
  Hash_n(item) to contact n peers.

How to trigger load balancing?
  When inserting an item: find the least 

loaded peer among n.

What has to be moved?
  The item to insert to the lightest node.
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Load Balancing ImplementationLoad Balancing Implementation

Many different criteria 
=

Many strategies possible
=

 Many specific implementations

 Identify key points for a generic API to 
implement any strategy
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Generic API ComponentsGeneric API Components
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How is 
information 
exchanged?

How to trigger 
load balancing?

What has to 
be moved?



Use Case: Event CloudUse Case: Event Cloud

Continuous storage and retrieval in a Big 
Data environment

Distributed RDF quadruple store (Semantic web)

RDF term = set of URIs = biased data
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Implementation on Event CloudImplementation on Event Cloud

Load information exchange:

◦None (internal threshold)
◦With neighbors

 Load criteria:

◦Number of items per peer
◦CPU used for subscription matching

10 lines of code required to modify strategy
22

make_decision() {
if (load > threshold)

…
}

make_decision() {
if (load > 
get_neighbors_load())

…
}
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Middle vs. Centroid Split:

Implementation on Event CloudImplementation on Event Cloud

Peer managing data (blue 
dots)

New peer joins at Middle value

P1.select_load_to_move(){
get_data_from_middle()
}

New peerP1 P1
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Middle vs. Centroid Split:

Implementation on Event CloudImplementation on Event Cloud

Peer managing data (blue 
dots)

New peer joins at Centroid value

New peer

P1.select_load_to_move(){
get_data_from_centroid()
}

P1 P1



Distribution among 32 peers

Number of 
Quadruples 
per peer

Implementation on Event CloudImplementation on Event Cloud



ConclusionConclusion

Flexible API

Separation with the rest of the code

Implemented on our storage system 

Compatible with famous existing strategies

Principles applicable on non P2P systems
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The EndThe End

Thank you!

Questions?
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