
A Generic API for Load A Generic API for Load
Balancing in Structued P2P Balancing in Structued P2P
SystemsSystems

Maeva Antoine, Laurent Pellegrino, Fabrice
Huet and Françoise Baude
University of Nice Sophia-Antipolis (France), CNRS, I3S, UMR 7271

MotivationMotivation

P2P: large scale solution for Big Data
management systems (Cassandra,
CouchDB…)

 However, key issue with distributed
systems: Load Balancing

2

Load Imbalance IssuesLoad Imbalance Issues

When managing real world datasets:

 Very biased data (ex: Unicode)

A Z Ω भभ भ

 Large workloads sent to very few nodes

 Churn

 Heterogeneity between peers
(bandwidth, CPU, storage capacities)

3

Load Balancing SolutionsLoad Balancing Solutions

 Plenty of existing load balancing
strategies

 Hard to anticipate the most efficient
strategy for a particular system

 Many parameters to take into account

4

SummarySummary

 Criteria to choose a load balancing strategy

 How existing papers match our criteria

 API for load balancing

 Experiments on our own storage system

5

How to Build a StrategyHow to Build a Strategy

 How is load information exchanged?

 How to trigger load balancing?

 What should be balanced?

6

How to Build a StrategyHow to Build a Strategy

How is load information exchanged?

 Load information exchange? What, how and when

 Load information recipients? Who informs who

7

How to Build a StrategyHow to Build a Strategy

How to trigger load balancing?

 Load criteria? Resource (CPU, disk space, ...) &
operation (item lookup, insertion, ...)

 Load state estimation? How to estimate load

 Load balancing decision? When to trigger rebalance

8

How to Build a StrategyHow to Build a Strategy

What has to be moved?

 Load balancing method? How to balance load

 Load to move? What and how much to move

 Target? Who will receive the load to move

9

3 different strategies

Among the most cited for this topic

Differences:
◦Load balancing triggered after various events
◦Context: pub/sub, virtual servers, data storage

Existing Load Balancing StrategiesExisting Load Balancing Strategies

Strategy #1Strategy #1
 Rao et al. (Berkeley)

Nodes maintaining a directory

Nodes sending their load information

P1 P2

D1 D2

P1:
load > threshold?

 yes

11

Strategy #1Strategy #1

How is load information exchanged?
 Periodic push and pull calls from peers to

directories.

How to trigger load balancing?
Periodically compare virtual servers load with

internal threshold.

What has to be moved?
Transfer a virtual server to a light node.

12

Strategy #2Strategy #2

 Gupta et al. (University of California)

P1

P3

P2

Split
with P2

New peer

13

Strategy #2Strategy #2

 Gupta et al. (University of California)

P1

P3

P2

14

Strategy #2Strategy #2

 Gupta et al. (University of California)

P1

P3

P2

P4

15

Strategy #2Strategy #2

How is load information exchanged?
 Periodic push calls between peers.

How to trigger load balancing?
 When a new peer joins the system: find the

most loaded with subscriptions.

What has to be moved?
 Half of the heavy peer’s area to the new peer.

16

Strategy #3Strategy #3

 Byers et al. (Boston & Harvard University)

P0

P1

P2

P3
Hash1() = P1

Hash2() = P2

Hash3() = P3
17

Strategy #3Strategy #3

How is load information exchanged?
 Hash_n(item) to contact n peers.

How to trigger load balancing?
 When inserting an item: find the least

loaded peer among n.

What has to be moved?
 The item to insert to the lightest node.

18

Load Balancing ImplementationLoad Balancing Implementation

Many different criteria
=

Many strategies possible
=

 Many specific implementations

 Identify key points for a generic API to
implement any strategy

19

Generic API ComponentsGeneric API Components

20

How is
information
exchanged?

How to trigger
load balancing?

What has to
be moved?

Use Case: Event CloudUse Case: Event Cloud

Continuous storage and retrieval in a Big
Data environment

Distributed RDF quadruple store (Semantic web)

RDF term = set of URIs = biased data

21

Implementation on Event CloudImplementation on Event Cloud

Load information exchange:

◦None (internal threshold)
◦With neighbors

 Load criteria:

◦Number of items per peer
◦CPU used for subscription matching

10 lines of code required to modify strategy
22

make_decision() {
if (load > threshold)

…
}

make_decision() {
if (load >
get_neighbors_load())

…
}

23

Middle vs. Centroid Split:

Implementation on Event CloudImplementation on Event Cloud

Peer managing data (blue
dots)

New peer joins at Middle value

P1.select_load_to_move(){
get_data_from_middle()
}

New peerP1 P1

24

Middle vs. Centroid Split:

Implementation on Event CloudImplementation on Event Cloud

Peer managing data (blue
dots)

New peer joins at Centroid value

New peer

P1.select_load_to_move(){
get_data_from_centroid()
}

P1 P1

Distribution among 32 peers

Number of
Quadruples
per peer

Implementation on Event CloudImplementation on Event Cloud

ConclusionConclusion

Flexible API

Separation with the rest of the code

Implemented on our storage system

Compatible with famous existing strategies

Principles applicable on non P2P systems
26

The EndThe End

Thank you!

Questions?

27

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

