TESTING CRYPTOGRAPHIC
PROTOCOL
IMPLEMENTATIONS

Verifying crypto protocols

Lots of formal methods

Good representative: Blanchet’s ProVerif
Mainly for its good spec language

Almost always gives an answer

Not much on verifying implementations
fs2pv, Csur

Running example today: TLS (the thing that runs
when you browse https://...

A long history

— 1994 — Netscape’s Secure Sockets Layer (SSL)
— 1994 — SSL2 (known attacks)

— 1995 — SSL3 (fixed them)

— 1999 — IETF’s TLS1.0 (RFC2246, =SSL3)

— 2006 — TLS1.1 (RFC4346)

— 2008 — TLS1.2 (RFC5246)

* Provides a layer between TCP and Application (in the TCP/IP model)
— ltself a layered protocol: Handshake over Record

* Record (sub)protocol

— provides a private and reliable connection

* Handshake (sub)protocol

— authenticates one or both parties, negotiates security parameters

— establishes secret connection keys for the Record protocol

* Resumption (sub)protocol

— abbreviated version of Handshake: generates connection keys from previous
handshake

Transport layer security (TLS)

Uses several cryptographic primitives
Asymmetric encryption (eg, RSA)
Symmetric encryption (eg, AES)

Hash functions (eg, SHA1, MD5)
MAC function (HMACQ)

Gathered in “ciphersuites”, eg
TLS_RSA_WITH_AES_128_CBC_SHA ,
TLS_DHE_DSS_WITH_DES_CBC_SHA

TLS (generic)

Client

ClientHello

[Certificate]
ClientKeyExchange
[CertificateVerify]
[ChangeCipherSpec]
Finished

Application Data

-------- >
e
-------- >
e
S S— >

Server

ServerHello
[Certificate]
[ServerKeyExchange]
[CertificateRequest]
ServerHelloDone

[ChangeCipherSpec]
Finished

Application Data

Handshake (RSA, client anonymous)

Client Server

ClientHello —=--- >

(version, ciphers, nonce) ServerHello
(chosen version & cipher=RSA + nonce)
Certificate

ServerHelloDone

ClientkeyExchange
(encrypts pre-master-secret w/servers pk)

ChangeCipherSpec
Client Finished - > (master secret computed from nonces
(all the previous msgs hashed) and pms), split in 6 keys:

cek,sek,cmk,smk,civ,siv)
e Server Finished

TLS bugs / attacks

Bugs and attacks keep being found!
This year a couple

Errors:
“Bugs” -> crash the client or server, execute code,...

“Attacks” -> everything looks fine but the goals are
violated

3 kinds:

Message-flow
Implementation
Cryptographic

TLS message-flow attacks

Ciphersuite rollback (ssl 2):
Change the negotiated ciphersuite to the weakest

Hello messages were not included in the finished
messages! Hence unauthenticated

Same issue in resumption, it didn’t include finished
messages

TLS implementation bugs 1/2

From Advisory 2002:

1. The client master key in SSL2 could be oversized and
overrun a buffer.

2. The session ID supplied to a client in SSL3 could be
oversized and overrun a buffer.

3. The master key supplied to an SSL3 server could be
oversized and overrun a stack-based buffer.

TLS implementation bugs 2/2

From Advisory 2009:

“Several functions inside OpenSSL incorrectly checked the
result after calling the EVP_VerifyFinal function, allowing a
malformed signature to be treated as a good signature
rather than as an error.”

ret=RSA_verify(NID_md5_shal, buf,36, buf2, rsa_num,
rsa_keylj]);

- if (ret == 0) <- ERROR
+ if (ret <= 0) <- PATCH
{ BIO_printf(bio_err, "RSA verify failure\n");

TLS cryptographic attacks
L

o Attacks more on the primitives
Predicting randomness
Timing attacks

Using alert messages as oracles in RSA mode

How to verify TLS?

Translates to 3 separate problems

“How to verify an implementation of TLS
{symbolically,cryptographically,implementation-
wise}

Mostly manual attempts

Some work in verification for “symbolically”
Rest of this talk:

Will show earlier work for “symbolically”
This work’s idea: put symbolic and impl. together

Verifying protocol implementations,
Cambridge-Paris ‘s style

/ |
ipm. MJ ——

f Other |

Implementations

Interoperability Symbolic Symbolic Computational
Testing Debugging Verification Verification

Demo
I

Results from that work:
]

All properties are automatically proved
1 — But after a lot of hand-tuning on the source code
1 (otherwise ProVerif runs out of memory or does not finish)

1 — Final ProVerif script of Handshake+Resumption+Record still large
(2100LOC)

© — Proving Record/Handshake separately is much easier (but less precise)

11 * Experimental details:

Part of protocol verified # of PV running time | Memory
queries used

Handshake (auth. queries) 16sec
Handshake (secr. queries) 2 10sec 80MB
Handshake + Resumption 2 Amin 460MB

(resumption auth. queries)

Handshake + Resumption + Record 2 bmin 700MB
(record auth. queries)

Handshake + Resumption + Record 8 2hours 1.7GB

+ and -

+:
Model faithfully follows implementation

Automatic

Derived model unmanageable, too complex (resource hog)
—> 50, no spec, one believes in it because it interoperates

Also true for Csur:

“a running 229 line implementation (excluding included les) of A's role in the
Needham-Schroeder protocol results in a set of 459 clauses”

Works only for (a subset of) F#
No legacy code

Verifying protocol implementations,
Cordoba’s style

Instead of going from implementations to spec, go
from spec to implementations

Derive test cases from spec, try them on (anyl!)
implementation

Spec writing is manual (but for some this is a +)
Can’t prove absence of impl. bugs (testing karma)

+:
Spec readable and short, quick verification

Works on any implementation

The role of testing is to gain confidence that we'’re
verifying the correct spec

How it works?e

loco’s style testing
Find all execution interleavings i

For each i, traverse it maintaining the knowledge of “known”
and “unknown” terms

“known” terms come from eavesdropping

“unknown” terms are used by the procs but not immediately known

Accept each output made by the processes, “learn” as much as possible
may be delayed from previous “lets”

For each input made by the processes, branch new tests for each
received subterm

Change size, change msg, ...
Detect expected results and check conformance

Demo
I

The future
I
o If bugs_found -> JACM
o Elsif old_bugs_found -> JAio
- Else FAMAF _TR

Other things to try

Complement with some white-box testing
Csur? Why tool?

Q: given that impl bugs (like buffer overflows) are sort of
independent, why not check them with another tool?
Eg, Astree?

Best answer so far: this technique is more to check conformance with
the spec; should be complementary with those

Exhaustive coverage of protocols
TLS: Apache, openssl, gnutls, all browsers
Other prots: DNSSEC, openssh, ipsec,...

