
TESTING CRYPTOGRAPHIC
PROTOCOL
IMPLEMENTATIONS

Verifying crypto protocols

� Lots of formal methods
�Good representative: Blanchet’s ProVerif

�Mainly for its good spec language

� Almost always gives an answer

� Not much on verifying implementations
� fs2pv, Csur

� Running example today: TLS (the thing that runs
when you browse https://...

A long history
� – 1994 – Netscape’s Secure Sockets Layer (SSL)

� – 1994 – SSL2 (known attacks)

� – 1995 – SSL3 (fixed them)

� – 1999 – IETF’s TLS1.0 (RFC2246, ≈SSL3)

� – 2006 – TLS1.1 (RFC4346)

� – 2008 – TLS1.2 (RFC5246)

� • Provides a layer between TCP and Application (in the TCP/IP model)

� – Itself a layered protocol: Handshake over Record

� • Record (sub)protocol

� – provides a private and reliable connection

� • Handshake (sub)protocol

� – authenticates one or both parties, negotiates security parameters

� – establishes secret connection keys for the Record protocol

� • Resumption (sub)protocol

� – abbreviated version of Handshake: generates connection keys from previous
handshake

Transport layer security (TLS)

� Uses several cryptographic primitives
� Asymmetric encryption (eg, RSA)

� Symmetric encryption (eg, AES)

� Hash functions (eg, SHA1, MD5)

� MAC function (HMAC)

� Gathered in “ciphersuites”, eg
TLS_RSA_WITH_AES_128_CBC_SHA ,
TLS_DHE_DSS_WITH_DES_CBC_SHA

TLS (generic)

Client Server

ClientHello -------->
ServerHello
[Certificate]
[ServerKeyExchange]

<-------- [CertificateRequest]
ServerHelloDone

[Certificate]
ClientKeyExchange
[CertificateVerify]
[ChangeCipherSpec]
Finished -------->

[ChangeCipherSpec]
<-------- Finished

Application Data <-------> Application Data

Handshake (RSA, client anonymous)

Client Server

ClientHello -------->
(version, ciphers, nonce) ServerHello

(chosen version & cipher=RSA + nonce)
Certificate
ServerHelloDone

<--------

ClientKeyExchange
(encrypts pre-master-secret w/servers pk)
ChangeCipherSpec
Client Finished --------> (master secret computed from nonces
(all the previous msgs hashed) and pms), split in 6 keys:

cek,sek,cmk,smk,civ,siv)
�------- Server Finished

TLS bugs / attacks

� Bugs and attacks keep being found!
� This year a couple

� Errors:
� “Bugs” -> crash the client or server, execute code,…
� “Attacks” -> everything looks fine but the goals are
violated

� 3 kinds:
�Message-flow
� Implementation
� Cryptographic

TLS message-flow attacks

� Ciphersuite rollback (ssl 2):

� Change the negotiated ciphersuite to the weakest

� Hello messages were not included in the finished
messages! Hence unauthenticated

� Same issue in resumption, it didn’t include finished
messages

TLS implementation bugs 1/2

� From Advisory 2002:
� 1. The client master key in SSL2 could be oversized and
overrun a buffer.

� 2. The session ID supplied to a client in SSL3 could be
oversized and overrun a buffer.

� 3. The master key supplied to an SSL3 server could be
oversized and overrun a stack-based buffer.

TLS implementation bugs 2/2

� From Advisory 2009:
� “Several functions inside OpenSSL incorrectly checked the
result after calling the EVP_VerifyFinal function, allowing a
malformed signature to be treated as a good signature
rather than as an error.”

ret=RSA_verify(NID_md5_sha1, buf,36, buf2, rsa_num,
rsa_key[j]);

- if (ret == 0) <- ERROR

+ if (ret <= 0) �- PATCH

{ BIO_printf(bio_err, "RSA verify failure\n");

TLS cryptographic attacks

� Attacks more on the primitives

� Predicting randomness

� Timing attacks

� Using alert messages as oracles in RSA mode

�….

How to verify TLS?

� Translates to 3 separate problems

� “How to verify an implementation of TLS
{symbolically,cryptographically,implementation-
wise}

� Mostly manual attempts

� Some work in verification for “symbolically”
� Rest of this talk:

�Will show earlier work for “symbolically”

� This work’s idea: put symbolic and impl. together

Verifying protocol implementations,
Cambridge-Paris ‘s style

Demo

Results from that work:

All properties are automatically proved

� – But after a lot of hand-tuning on the source code

� (otherwise ProVerif runs out of memory or does not finish)

� – Final ProVerif script of Handshake+Resumption+Record still large
(2100LOC)

� – Proving Record/Handshake separately is much easier (but less precise)

� • Experimental details:

+ and -

� +:
� Model faithfully follows implementation

� Automatic

� -:
� Derived model unmanageable, too complex (resource hog)

� � so, no spec, one believes in it because it interoperates

� Also true for Csur:
� “a running 229 line implementation (excluding included les) of A's role in the

Needham-Schroeder protocol results in a set of 459 clauses”

� Works only for (a subset of) F#

� No legacy code

Verifying protocol implementations,
Cordoba‘s style

� Instead of going from implementations to spec, go
from spec to implementations

� Derive test cases from spec, try them on (any!)
implementation

� -:
� Spec writing is manual (but for some this is a +)
� Can’t prove absence of impl. bugs (testing karma)

� +:
� Spec readable and short, quick verification
� Works on any implementation

� The role of testing is to gain confidence that we’re
verifying the correct spec

How it works?

� Ioco’s style testing

� Find all execution interleavings i

� For each i, traverse it maintaining the knowledge of “known”
and “unknown” terms
� “known” terms come from eavesdropping

� “unknown” terms are used by the procs but not immediately known

� Accept each output made by the processes, “learn” as much as possible
� may be delayed from previous “lets”

� For each input made by the processes, branch new tests for each
received subterm
� Change size, change msg, …

� Detect expected results and check conformance

Demo

The future

� If bugs_found -> JACM

� Elsif old_bugs_found -> JAIIO

� Else FAMAF_TR

Other things to try

� Complement with some white-box testing
� Csur? Why tool?
� Q: given that impl bugs (like buffer overflows) are sort of
independent, why not check them with another tool?
� Eg, Astree?
� Best answer so far: this technique is more to check conformance with
the spec; should be complementary with those

� Exhaustive coverage of protocols
� TLS: Apache, openssl, gnutls, all browsers
� Other prots: DNSSEC, openssh, ipsec,…

