Computing the Leakage of Information-Hiding Systems

Miguel E. Andrés Radboud University, The Netherlands Catuscia Palamidessi INRIA and LIX, France

Peter Van Rossum Radboud Univeristy, The Netherlands Geoffrey Smith SCIS, USA

Motivation

Information Hiding

The problem of constructing protocols or programs that protect sensitive information from being deduced by some adversary

- □ **Anonymity**: Design mechanisms to prevent an observer of network traffic from deducing who is comunicating
- Secure Information Flow: Prevent programs from leaking their secret input to an observer of their public output
- Example: Crowds

Motivation

Information Leakage

□ Vulnerability (in one try) > A priori vulnerability $V(S) = \max \pi(S)$ > A posteriori vulnerability $V(\mathbf{S}|\mathbf{O}) = \sum_{\mathbf{o}} \max_{\mathbf{s}} \mathbf{P}(\mathbf{s}|\mathbf{o}) \times \mathbf{P}(\mathbf{o}) = \sum_{\mathbf{o}} \max_{\mathbf{s}} \mathbf{C}(\mathbf{o}|\mathbf{s}) \times \pi(\mathbf{s})$ Multipilicative Leakage □ Additive Leakage $L_{x}(\mathbf{C}, \pi) = V(\mathbf{S}|\mathbf{O}) / V(\mathbf{S})$ $L_{+}(\mathbf{C},\boldsymbol{\pi}) = V(\mathbf{S}|\mathbf{O}) - V(\mathbf{S})$ Maximum Leakage $ML_x(\mathbf{C}) = \max L_x(\mathbf{C}, \pi)$ and $ML_+(\mathbf{C}) = \max L_+(\mathbf{C}, \pi)$ $\pi \in D(S)$ $\pi \in D(S)$

Leakage is defined in terms of the channel matrix C!

Motivation

What we do (contributions)

- Model IHS's using automata
- We present two techniques to compute the channel matrix and leakage of an IHS
 - Reachability Analysis
 - Quantitative Counterexample Generation
 - Also providing approximation
 - Also providing feedback for debugging
- Show how to use our techniques to compute and approximate leakage of different different form of IHS's
- Show that for interactiving IHS's the definition of associated channel proposed in literature is not sound.
 - However, we note that it is still possible to define its leakage in a consistent way and show that our methods extend smoothly to this case.

- Motivation
- Information-hiding systems as automata
- Reachability analysis approach
- Iterative approach
 - □ Regular expressions techniques
 - □ SCC analysis technique
 - Identifying high-leakage sources
- Information-hiding systems with variable a priori
- Interactive information-hiding systems
- Future work

Information-hiding systems as automata

Probabilistic automata

 $\boldsymbol{\mathcal{M}}=(\boldsymbol{\mathcal{Q}}\,,\,\boldsymbol{\mathrm{A}}\,,\,\boldsymbol{\delta})$ where

- **Q** is a finite set of **states**
- A a finite set of actions
- $\delta: \textbf{\textit{Q}} \rightarrow D(\textbf{\textit{A}} \times \textbf{\textit{Q}})$ is the *transition function*

Paths represent possible *evolutions* of the automaton, each *path* has an associated *probability*

$$init \xrightarrow{a} q_a \xrightarrow{A} corr \xrightarrow{\tau} S$$
$$\mathbf{P}(init \xrightarrow{a} q_a \xrightarrow{A} corr \xrightarrow{\tau} S) = \frac{1}{3} \cdot \frac{p}{3} \cdot 1$$

• $\mathbf{J} = (\mathbf{M}, \mathbf{As}, \mathbf{Ao}, \mathbf{Ar})$ where

- $M = (Q, A, \delta)$ is a probabilistic automaton
- As, Ao, and Ar are disjoint sets of secret, observable, and internal actions
- ô satisfies:
 - Secret actions can occur only at the beginning
 - Only internal actions can occur in cycles
- Assume a *known* a priori distribution π

Motivation

Information-hiding systems as automata

Reachability analysis approach

- Iterative approach
 - □ Regular expressions techniques
 - □ SCC analysis technique
 - □ Identifying high-leakage sources
- Information-hiding systems with variable a priori
- Interactive information-hiding systems

Reachability analysis approach Goal: compute channel matrix C 01 On On 01 **S**₁ **P**(01□S1) S **P**(01|S1) $P(O_n|S_1)$ **P**(On □ S1) $P(O_i|S_j) = P(O_i \square S_j) / \pi(S_j)$ Sm **S***m***P**(01□Sm) $P(O_1|S_m)$ $P(O_n|S_m)$ P(On⊡Sm) **Channel Matrix Matrix of joint Probabilities** Solution: system of line or course, some of some of the system of the

Venae Let $\mathbf{P}_q(\lambda)$ = Probability of seeing $\lambda \in (A_s \cup A_o)^*$ from state q. Then we have $\exists S$

Reachability analysis approach

Example	Notation: $\mathbf{P}_q(\lambda) = x_q^{\lambda}$	
$x_{init}^{aA} = \frac{1}{3} \cdot x_{q_a}^A$,	$x_{q_a}^A = \frac{p}{3} \cdot x_{q_a}^A + \frac{p}{3} \cdot x_{q_b}^A + \frac{p}{3} \cdot x_{corr}^\epsilon$	$x_{corr}^A = x_S^A,$
$x_{init}^{bA} = \frac{2}{3} \cdot x_{q_b}^A$,	$x_{q_b}^A = \frac{p}{3} \cdot x_{q_a}^A + \frac{p}{3} \cdot x_{q_b}^A + \frac{p}{3} \cdot x_{corr}^A,$	$x_S^A = 0,$
$x_{\textit{init}}^{aB} = \frac{1}{3} \cdot x_{q_a}^B$,	$x^B_{q_a} = \tfrac{p}{3} \cdot x^B_{q_a} + \tfrac{p}{3} \cdot x^B_{q_b} + \tfrac{p}{3} \cdot x^B_{corr},$	$x^B_{corr} = x^B_S,$
$x_{init}^{bB} = \frac{2}{3} \cdot x_{q_b}^B$,	$x^B_{q_b} = \frac{p}{3} \cdot x^B_{q_a} + \frac{p}{3} \cdot x^B_{q_b} + \frac{p}{3} \cdot x^\epsilon_{corr},$	$x_S^B = 0,$
$x_{init}^{aU} = \frac{1}{3} \cdot x_{q_a}^U$,	$x_{q_a}^U = \tfrac{p}{3} \cdot x_{q_a}^U + \tfrac{p}{3} \cdot x_{q_b}^U + (1-p) \cdot x_S^\epsilon,$	$x_{corr}^{\epsilon} = x_{S}^{\epsilon},$
$x_{init}^{bU} = \frac{2}{3} \cdot x_{q_b}^U,$	$x^U_{q_b} = \tfrac{p}{3} \cdot x^U_{q_a} + \tfrac{p}{3} \cdot x^U_{q_b} + (1-p) \cdot x^\epsilon_S,$	$x_S^\epsilon = 1.$
	7	

$$\begin{aligned} x_{init}^{aA} &= \frac{7}{40}, & x_{init}^{aB} &= \frac{3}{40}, & x_{init}^{aU} &= \frac{1}{12}, \\ x_{init}^{bA} &= \frac{3}{20}, & x_{init}^{bB} &= \frac{7}{20}, & x_{init}^{bU} &= \frac{1}{6}. \end{aligned}$$

Solution

- Complexity
 - $\Box O((|obs| \times |Q|)^3)$ In general
 - $\Box O(|obs| \times |Q|^3)$ Some Scenarios (e.g observables at the end)

Motivation

- Information-hiding systems as automata
- Reachability analysis approach

Iterative approach

- **Regular expressions techniques**
- SCC analysis technique
- Identifying high-leakage sources
- Information-hiding systems with variable a priori
- Interactive information-hiding systems

Iterative approach

FaMAF, Córdoba - Argentina

Radboud University

Iterative approach [regexps]

- **Idea:** Translate M into an *equivalent* regular expression $r_{M}=r_{1}+r_{2}+...+r_{n}$
 - □ Each *r_i* represents a set of paths *Paths-r_i* of M
 - Each r_i has a probability and $P(r_i)=P(Paths-r_i)$
 - Example $r_{1} \triangleq \langle b, \frac{2}{3}, q_{b} \rangle \cdot \hat{r}^{*} \cdot \langle B, 0.3, corr \rangle \cdot \langle \tau, 1, S \rangle,$ $r_{2} \triangleq \langle b, \frac{2}{3}, q_{b} \rangle \cdot \hat{r}^{*} \cdot \langle B, 0.3, corr \rangle \cdot \langle \tau, 1, S \rangle,$ $r_{3} \triangleq \langle a, \frac{1}{3}, q_{a} \rangle \cdot \langle \tau, 0.3, q_{a} \rangle^{*} \cdot \langle A, 0.3, corr \rangle \cdot \langle \tau, 1, S \rangle,$ $r_{3} \triangleq \langle a, \frac{1}{3}, q_{a} \rangle \cdot \langle \tau, 0.3, q_{a} \rangle^{*} \cdot \langle A, 0.3, corr \rangle \cdot \langle \tau, 1, S \rangle,$ $r_{4} \triangleq \langle b, \frac{2}{3}, q_{b} \rangle \cdot \hat{r}^{*} \cdot \langle U, 0.1, S \rangle,$ $r_{5} \triangleq \langle a, \frac{1}{3}, q_{a} \rangle \cdot \langle \tau, 0.3, q_{a} \rangle^{*} \cdot \langle U, 0.1, S \rangle,$ $r_{7} \triangleq \langle a, \frac{1}{3}, q_{a} \rangle \cdot \langle \tau, 0.3, q_{a} \rangle^{*} \cdot \langle U, 0.1, S \rangle,$ $r_{8} \triangleq \langle a, \frac{1}{3}, q_{a} \rangle \cdot \langle \tau, 0.3, q_{a} \rangle^{*} \cdot \langle T, 0.3, q_{a} \rangle \cdot \langle \tau, 0.3, q_{a} \rangle^{*} \cdot \langle U, 0.1, S \rangle,$ $r_{9} \triangleq \langle a, \frac{1}{3}, q_{a} \rangle \cdot \langle \tau, 0.3, q_{a} \rangle \cdot \langle \tau, 0.3, q_{b} \rangle \cdot \hat{r}^{*} \cdot \langle U, 0.1, S \rangle,$ $r_{10} \triangleq \langle a, \frac{1}{3}, q_{a} \rangle \cdot \langle \tau, 0.3, q_{a} \rangle \cdot \langle U, 0.1, S \rangle,$ $r_{10} \triangleq \langle a, \frac{1}{3}, q_{a} \rangle \cdot \langle \tau, 0.3, q_{a}$
- Partial Matrices (with regexps)

$$\mathbf{C}_{o}(O \square S) = 0, \quad \mathbf{C}_{k+1}(O \square S) = \begin{cases} \mathbf{C}_{k}(O \square S) + \mathbf{P}(r_{k+1}) & \text{if } o-trace(r_{k+1}) = 0 & \text{where} \\ and & s-trace(r_{k+1}) = s & \text{M} \equiv r_{1} + \dots + r_{n} \\ \mathbf{C}_{k}(O \square S) & \text{otherwise} \end{cases}$$

ReSeCo - December 17th 2009 FaMAF, Córdoba - Argentina

Iterative approach [SCC analysis]

Idea: Group together paths that only differ in the way they traverse SCC

- 1. Abstract away SCC of M (we do it in such a way that the observable behaviour of the automaton does not change) obtaining an acyclic model Ac(M)
- 2. Construct the *partial matrix* of Ac(M) instead of M
- Example

1.
$$init \xrightarrow{a} q_a \xrightarrow{A} corr \xrightarrow{\tau} S$$

2. $init \xrightarrow{b} q_b \xrightarrow{B} corr \xrightarrow{\tau} S$
3. $init \xrightarrow{a} q_a \xrightarrow{U} S$
4. $init \xrightarrow{b} q_b \xrightarrow{U} S$
5. $init \xrightarrow{a} q_a \xrightarrow{B} corr \xrightarrow{\tau} S$
6. $init \xrightarrow{b} q_b \xrightarrow{A} corr \xrightarrow{\tau} S$

Partial Matrices (with SCC analysis) $C_{0}(o \square s) = 0, \quad C_{k+1}(o \square s) = \begin{cases} C_{k}(o \square s) + P(\sigma_{k+1}) & \text{if } o-trace(\sigma_{k+1})=o \\ and s-trace(\sigma_{k+1})=s, \\ C_{k}(o \square s) & \text{otherwise.} \end{cases}$ where $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ are the paths of Ac(M)
ReSeCo - December 17th 2009
Miguel E. Andrés

Iterative approach [Identifying high-leakage sources]

- Goal: Identify sources of high leakage (debugging)
- Idea:

 $L_{x}(\boldsymbol{C},\boldsymbol{\pi}) = V(\boldsymbol{S}|\boldsymbol{O}) / V(\boldsymbol{S}), \qquad L_{+}(\boldsymbol{C},\boldsymbol{\pi}) = V(\boldsymbol{S}|\boldsymbol{O}) - V(\boldsymbol{S})$

 $V(\mathbf{S}) = \max_{s} \pi(s), \quad V(\mathbf{S}|\mathbf{O}) = \sum_{o} \max_{s} \mathbf{C}(o|s) \times \pi(s) = \sum_{o} \max_{s} \mathbf{P}(o \square s)$

Example

Radboud University

- Motivation
- Information-hiding systems as automata
- Reachability analysis approach
- Iterative approach □ Regular expressions techniques □ SCC analysis technique
 - □ Identifying high-leakage sources

Information-hiding systems with variable a priori

Interactive information-hiding systems

Information-Hiding Systems with variable a priori

- IHS with variable a priori
 - $\mathbf{J} = (\mathbf{M}, \mathbf{As}, \mathbf{Ao}, \mathbf{Ar})$ where
 - $M = (Q, A, \delta)$ is a *non-deterministic* automaton
 - As, Ao, and Ar are disjoint sets of secret, observable, and *internal* actions
 - δ satisfies:
 - > Non-determinism can occur only at the beginning
 - Secret actions can occur only at the beginning
 - Only internal actions can occur in cycles
- Lemma (The channel matrix is independet of π) For all $\pi, \rho \in D(S)$ we have: $\mathbf{P}_{\pi}(o \mid s) = \mathbf{P}_{\rho}(o \mid s)$, for all secrets s and observable o
- Maximum leakage Computation

$$\mathsf{ML}_{\mathsf{x}}(C) = \max_{\boldsymbol{\pi} \in \mathsf{D}(S)} \mathsf{L}_{\mathsf{x}}(C, \boldsymbol{\pi}) \text{ and } \mathsf{ML}_{\mathsf{+}}(C) = \max_{\boldsymbol{\pi} \in \mathsf{D}(S)} \mathsf{L}_{\mathsf{+}}(C, \boldsymbol{\pi})$$

- Multiplcative Leakage: easy taking π uniform distribution
- □ Additive Leakage: More difficult, we have to consider all corner points distribution
 - Lemma: Computing maximum additive leakage is NP-complete

- Motivation
- Information-hiding systems as automata
- Reachability analysis approach
- Iterative approach
 - □ Regular expressions techniques
 - □ SCC analysis technique
 - □ Identifying high-leakage sources
- Information-hiding systems with variable a priori

Interactive information-hiding systems

Interactive Information-Hiding Systems

- Idea: Secrets and observables can alternate
- Interactive IHS
 - $\mathbf{J} = (\mathbf{M}, \mathbf{As}, \mathbf{Ao}, \mathbf{A\tau})$ where
 - $M = (Q, A, \delta)$ is a *probabilistic* automaton
 - As, Ao, and Ar are disjoint sets of secret, observable, and *internal* actions
 - δ satisfies:
 - Transitions are either secret or observable (not both)
 - > Only *internal actions* can occur in cycles
- Example (eBay Protocol)
 - A_s={poor, rich}
 - A₀={cheap, expensive, sell, cancel}
 - $A_{\tau} = \{\}$

Interactive Information-Hiding Systems Observation: The channel matrix depends on the distribution over secrets

Consequence: We cannot model Interactive protocols as noisy channels. However we can still compute leakage

 $V(\mathbf{S}) = \max_{s} \pi(s), \quad V(\mathbf{S}|\mathbf{O}) = \sum_{o} \max_{s} \mathbf{C}(o|s) \times \pi(s) = \sum_{o} \max_{s} \mathbf{P}(o \square s)$ Recall

 $\pi(poor) = P(poor) = 7/15$ π (*rich*) = **P**(*rich*) = 8/15

1/15

1/5

rich

ReSeCo - December 17th 2009 FaMAF, Córdoba - Argentina

19/75

1/75

- Motivation
- Information-hiding systems as automata
- Reachability analysis approach
- Iterative approach
 - □ Regular expressions techniques
 - □ SCC analysis technique
 - □ Identifying high-leakage sources
- Information-hiding systems with variable a priori
- Interactive information-hiding systems

- Use tools from counterexamples generation to compute/approximate leakage of large scale protocols
- Try to identify flaws in protocols
- Extend the notion of noisy channel to capture the dynamic nature of interactive protocols
 - Lift channel inputs from secrets to schedulers on secrets
 - □ Use channels with history and/or feedback

Thanks for your attention!

