Université CENTRE NATIONAL
ni{'.f‘. SOPHIA ANTIFOLIE DE LA RECHERCHE
IIIIIIIIIIII

A

%I INRIA

oFH AN =

Formalism and Platform for Autonomous
Distributed Components

OASIS team - Ludovic Henrio

e A Distributed Component Model
e Formalisation in Isabelle

e Autonomous components:
Componentise component management and
distributed reconfiguration

Reseco 2009

A DISTRIBUTED COMPONENT
MODEL

Server
Interfaces

What are (GCM) Components?

NF (server) interfaces

Bindings

Composite component

L N | 1 Primitive component

|_

Client
> + interfaces

| Business code

Primitive component

-

l N I Business code
/7

~— NB: interface = port

3

A Primitive GCM Component

Cl

HL L H

Cl.foo(p) — |
Tt o E

Primitive components communicating by asynchronous remote
method invocations on interfaces (requests)

= Components abstract away distribution and concurrency

In ProActive (reference implementation) components are mono-threaded
=» simplifies concurrency but can create deadlocks

Composition in GCM

Bindings:
Requests = Asynchronous method invocations

/

g

-

A\
-

-

-

_|

Futures for Components

Component are independent entities
(threads are isolated in a component)
+

Asynchronous method invocations with results
v

Futures are necessary

First-class Futures

(Jﬁ

Cl.foo(f) <~

 Only strict operations are blocking (access to a future

« Communicating a future is not a strict operation

First-class Futures and Hierarchy

Without first-class futures, one thread is systematica lly
blocked in the composite component.

Approach: a refined GCM model

e A model:
- more precise than GCM, give a semantics to the model:
o future / requests
e request queues
e N0 shared memory between components
» Notion of request service

- less precise than ProActive/GCM
o can be multithreaded
e NO “active object” model

FORMALISATION

10

Objectives

A model general enough to study GCM, but also other
component models interacting by requests

* In atheorem prover (Isabelle)
e To study
- the GCM component model,
- Its implementation(s),
- Interaction between futures and components,
- component reconfiguration and management

Principles

component architecture:

- bindings

- Interfaces (only functional)
- component composition

H

H

H+H>— |)
Ny

>

communications by requests and futures

- request queues
- future references

abstraction of the business code by a behaviour (~LTS)

values abstracted away: we just keep track of future
references ez Value = "natxiFid list)"

12

Primitive Components

* Primitive components are defined by interfaces plus an
Internal behaviour, they can:

- emit requests
- serve requests <= 2
- send results S -7
- receive results (at any time) |\, 7 e
- do internal actions // 2
some rules define a Q
correct behaviour,
e.g. one can only send result for a served request
 We define the behaviour of the whole components as

small-step operational semantics

13

Composite Components

« Composite components are defined by their interfaces +

content + bindings
e Semantics

- Composites also have request queues (futures)
- Only delegate calls to inner or outer components

- Use the bindings to know
where to transmit requests

- Plus receive futures
(like primitives)

=

ComMmCHILD qOMMPARENT
|

1
]
[N I N Y I
\
+
1

\ I
1

1

\}

]
CoMMBROTHERS ComprosITECALL' 14

Future Update Strategies

How to bring future values to components that need them
Different strategies can be envisioned

A “naive” approach: Any component can receive a value for
a future reference it holds. Not much operational.

More operational is the lazy approach:

m future vm

\'4 -~
I | Y 4 . -I%\A I |
HH) H» 1,
- 4 HH

15

Eager home future update

o A strategy avoiding to store future values indefinitely

* Relies on future registration and sends the value as soon
as it is calculated

register future

kegister futly

16

First Proofs (ongoing)

e Future update remove all references to a given future
lemma UpdFutRed_futdi=zasppear:
"S -[f, v. N]=fF 52 .EL = CorrectComponsnthezak S —
(527" = Some C—=fE=et {=nd wi—f¢ LocalFeferencedEqgs Cr"

o All Future references are registered during reduction

theorem regizteredFutures: " C1L = LY ==
iGlobalRerizteredFuturesComnp C1 —GlobalRFegisteredFutouresCompe C20"

A formalisation in Isabelle of Component structure

request / futures

Middle-term goal: correctness of various strategies

17

A PLATFORM FOR
AUTONOMOUS COMPONENTS

18

Non-functional Component Structure

* Non-functional aspects as a composition of components
(inside a membrane)

- A component structure for the membrane
- New kind of interfaces and bindings
- An API for reconfiguring ; T

the membrane

- Non-functional code is

e COmponents or objects
o distributed or not

|
Nembrane contrgller
]

Membrane ﬁ

Adaptation in the GCM

e Functional adaptation : adapt the architecture
+ behaviour of the application to new
requirements/objectives

- add a new functionality

 Non-functional adaptation : adapt the architecture of
the container+middleware to changing environment/NF
requirements (QoS ...)

- Change communication protocol

Both functional and non-functional adaptation are

expressed as reconfigurations

20

How to express reconfigurations?

* Fractal / GCM defines an API for reconfiguring
components

o We start from FScript:

A Scripting reconfiguration language
Dedicated to Fractal components

FPath expressions: navigate and select elements In
the components architecture

Centralized execution

21

A Controller for Reconfigurations

Manages and allows the invocation of the script
Interpreter

Is collocated with the component

Exposes methods for reconfiguration

- setInterpreter(interpreterClassName)

- loadScript(scriptFileName)

Reconfiguration interface
- executeAction(actionName, arguments...) I_. Interpreter

HH HH

Membrane

22

Triggering Distributed Reconfigurations
In the Scripting Language
A primitive for the distributed script interpretation

renot e_cdlfgag componenadbn _namepaa meey

- Triggers the action action_name by the interpreter located

In target component

- Receives action arguments as parameter

Reconfiguration interface

o

A\
\actlon(arguments)

1 ﬂ
target_component

Interpreter

ddibnaconl

remade_cdCZadbnd
remae_cdC1labnl])
remae_cdC12adbn1d)

defibnadon12

remade_cdC121abn121)

Example

Reconfiguration

I RC 2 interface

Re69nfiguration scripts -I C;_- i
I RC1
Interpreter Membrane
l_ _l RC11 I RC 12 l_ _l
)
==

a—

24

ddibnaconl

remade_cdCZadbnd
remae_cdC1labnl])
remae_cdC12adbn1d)

defibnadon12

remade_cdC121abn121)

Example

Reconfiguration

I RC 2 interface

Re(f?nfiguration scripts -I C;_- i
actionl()
I RC1
Interpreter Membrane
l_ _l RC11 I RC 12 l_ _l
)
RC 121 ale
Y.,
Cl12

25

ddibnaconl

remae_cdC2abn?)
remae_cdC11abnll
remae_cdC12abnl?

defibnadon12

remae_cdC121abn121)

Example

Reconfiguration

I RC 2 interface

Redqnfiguration scripts - C;_- M
action1() /
l action2()
Tre y
Irierpreter
. — \\ | 3 Membrane
actionl u action12()
|_ _l - rC11 I RC 12 |_ _l
)
Ll RC 121 als
Y.,
Cl12
Cl

26

ddibnaconl

remade_cdCZadbnd
remae_cdC1labnl])
remae_cdC12adbn1d)

defibnadon12

remade_cdC121abn121)

Example

Reconfiguration

I RC 2 interface

Re69nfiguration scripts e c;;_- i
actionl()
l action2()
RC
I—.\Interpreter Membrane
actW \action12()
l_ _l RC 11 I RC 12 l_ _l
% Cl#- “ action121()__
HAd Y o HAH
4%
C12
C1l

27

Example
Reconfiguration
RC 2 interface

defonaconl 4;—.
remcte_cdC2abn) \ = = =
remde_cdC1iabnl] Reconfiguration scripts C2
tremade_c4C12abn12 /

- actionl()

i action2()

defbnacbn12 l

. I RC
remde_c4C121abn121)

_ Interpreter Membrane

\
actM \actioan()
|_ _l RC 11 I RC 12 |_ _l

. k 01#- ‘\actionlzl()
= =]

RC 121

The interpretation is parallel and distributed

28

Conclusion

« A component model for adaptive autonomous
components

- structured membrane
- distributed reconfiguration
« A platform supporting adaptation and distribution
- based on ProActive (active objects, distribution)
- ADL (membrane and business code composition)

o A formalisation to study the component model and its
Implementation

- toward verification of component management
procedures

29

Ongoing and Future Works

 Formalisation is a long process:

For the moment, more a formal specification + a few
proofs than a complete verification environment

 Verification of (re)configuration procedures by model
checking

- Complementary with Theorem proving approach
application specific vs. model properties

- Already model generation relies on ASP properties

30

Verification of Properties: Deployment

start Buffer without linking the alarm interface

™
error_unbound(B.E,)

—»() bind(P.Ey, B.E,) +() bind{C.Ey, B.E;) »() start(Buf fer) —-\Cgf v —

error unbound(B.E,)

B

- The deployment is always successful
[(not v)*]< true* .~ > true

- But Error during deployment
[(notv)*.Og] false

Verification of Properties

regular p-calculus (Mateescu’2004)

 Deployment

e (on the Static Automaton with successful
synchronisation visible)

- The deployment is always successful
[(not v)*] < true * .</ >true
- No Error during deployment

[(not v) *. O] false
. . . ﬁ .
e.g. start Buffer without ¢inkinepahé Blarm interface
—»() bind(P.Ey, B.E,) »(_}- bind(C.Ey, B.E;) +»()} start(Buf fer) —» v —

error_unbound(B.E,)
e T

Eric MADELAINE ---- S
OASIS

Verification of Properties

* Functional properties under reconfiguration (respecting
the topology)

- Future update (asynchronous result messages)
iIndependent of life-cycle or binding
reconfigurations

- Build a model including life-cycle controllers,

: i jon Actinng vigihle-
with the reconfigurat op Aete d(C.Ey, B.E;) ?stop(C)

- Then we can prove:
[true*.Req_Get() | uX. (< true > true [

[Resp _Get()] X)

Eric MADELAINE ---- | 32

OASIS

Example

e Add the component given_ child to the composite

given parent

gven_paert

- I—Ij>H

gven_paert

gven_cHd

-

=

-

renot e_cdl@gen paerbddgen paetiven ch

35

GCM API for Reconfiguration

e Life-cycle controller

shggetcSae]
vad start Fc frowdgdeCydeExcepbn

vad st opFc fhowdkgdie CydeExcepn

e Binding controller

sndJ) _
anybokupFodngeiName)
trows NoSuchireface Excerbn
vad h ndFc @geriNa meanysavadhows
vad unhb ndFc @hg&iNamelows

e Content Controller

anyjpadriemaridaces)
anygedrienmadace@dNa melrows ComponerpaFcSubCo mponens

vad addFcSubComponent (Com ponengrows
vad renoveFcSubComponent Componendrows

36

