
Formalism and Platform for Autonomous
Distributed Components

• A Distributed Component Model
• Formalisation in Isabelle
• Autonomous components:

Componentise component management and
distributed reconfiguration

OASIS team - Ludovic Henrio

Reseco 2009
1

A DISTRIBUTED COMPONENT
MODEL

2

What are (GCM) Components?

Bindings

Business code

Business code

Server
interfaces

Client
interfacesPrimitive component

Primitive component

Composite component

NF (server) interfaces

3

NB: interface = port

A Primitive GCM Component

CI.foo(p)

Primitive components communicating by asynchronous remote
method invocations on interfaces (requests)

� Components abstract away distribution and concurrency

in ProActive (reference implementation) components are mono-threaded
� simplifies concurrency but can create deadlocks

4

CI

Composition in GCM

Bindings:
Requests = Asynchronous method invocations

5

Futures for Components

f=CI.foo(p)
……….
f.bar()f.bar()

Component are independent entities
(threads are isolated in a component)

+
Asynchronous method invocations with results

����

Futures are necessary

6

First-class Futures

f=CI.foo(p)

…
…
…CI.foo(f)CI.foo(f)

• Only strict operations are blocking (access to a future)

• Communicating a future is not a strict operation

First-class Futures and Hierarchy

Without first-class futures, one thread is systematica lly
blocked in the composite component.

Approach: a refined GCM model

• A model:
− more precise than GCM, give a semantics to the model:

� future / requests
� request queues
� no shared memory between components
� notion of request service

− less precise than ProActive/GCM
� can be multithreaded
� no “active object” model

9

FORMALISATION

10

Objectives

• A model general enough to study GCM, but also other
component models interacting by requests

• In a theorem prover (Isabelle)
• To study

− the GCM component model,
− its implementation(s),
− interaction between futures and components,
− component reconfiguration and management

11

Principles

• component architecture:
− bindings
− interfaces (only functional)
− component composition

• communications by requests and futures
− request queues
− future references

• abstraction of the business code by a behaviour (~LTS)
• values abstracted away: we just keep track of future

references

12

Primitive Components

• Primitive components are defined by interfaces plus an
internal behaviour, they can:
− emit requests
− serve requests
− send results
− receive results (at any time)
− do internal actions
some rules define a
correct behaviour,
e.g. one can only send result for a served request

• We define the behaviour of the whole components as
small-step operational semantics

13

Composite Components

• Composite components are defined by their interfaces +
content + bindings

• Semantics
− Composites also have request queues (futures)
− Only delegate calls to inner or outer components
− Use the bindings to know

where to transmit requests
− Plus receive futures

(like primitives)

14

Future Update Strategies

• How to bring future values to components that need them
• Different strategies can be envisioned
• A “naive” approach: Any component can receive a value for

a future reference it holds. Not much operational.
• More operational is the lazy approach:

15

require future value

Eager home future update

• A strategy avoiding to store future values indefinitely
• Relies on future registration and sends the value as soon

as it is calculated

16

register future

register future

First Proofs (ongoing)

• Future update remove all references to a given future

• All Future references are registered during reduction

17

A formalisation in Isabelle of Component structure +
request / futures

Middle-term goal: correctness of various strategies

A PLATFORM FOR
AUTONOMOUS COMPONENTS

18

Non-functional Component Structure

• Non-functional aspects as a composition of components
(inside a membrane)
− A component structure for the membrane
− New kind of interfaces and bindings
− An API for reconfiguring

the membrane
− Non-functional code is

� components or objects
� distributed or not

19

Adaptation in the GCM

• Functional adaptation : adapt the architecture
+ behaviour of the application to new
requirements/objectives
− add a new functionality

• Non-functional adaptation : adapt the architecture of
the container+middleware to changing environment/NF
requirements (QoS …)
− Change communication protocol
− Update security policy
− …

20

Both functional and non-functional adaptation are
expressed as reconfigurations

How to express reconfigurations?

• Fractal / GCM defines an API for reconfiguring
components

• We start from FScript:

− A Scripting reconfiguration language

− Dedicated to Fractal components

− FPath expressions: navigate and select elements in
the components architecture

− Centralized execution

21

A Controller for Reconfigurations

• Manages and allows the invocation of the script
interpreter

• Is collocated with the component

• Exposes methods for reconfiguration

− setInterpreter(interpreterClassName)

− loadScript(scriptFileName)

− executeAction(actionName, arguments...)

Reconfiguration interface

Interpreter

Membrane

22

Triggering Distributed Reconfigurations
in the Scripting Language

A primitive for the distributed script interpretation

− Triggers the action action_name by the interpreter located
in target_component

− Receives action arguments as parameter
Reconfiguration interface

action(arguments)

In
te

rp
re

te
r

target_component

remote_call(target_component, action_name, parameters, ...);

23

definition action1

...

remote_call(C2,’action2’)

remote_call(C11,’action11’)

remote_call(C12,’action12’)

...

definition action12

...

remote_call(C121,’action121’)

... Interpreter Membrane

C2

RC 1

RC 12

RC 121

RC 2

RC 11

Reconfiguration scripts

C11

Example
Reconfiguration
interface

24

definition action1

...

remote_call(C2,’action2’)

remote_call(C11,’action11’)

remote_call(C12,’action12’)

...

definition action12

...

remote_call(C121,’action121’)

... Interpreter

RC 1

RC 12

RC 121

RC 2

RC 11

C121

C11

C12

Example

action1()

Reconfiguration
interface

Membrane

C2Reconfiguration scripts

25

definition action1

...

remote_call(C2,’action2’)

remote_call(C11,’action11’)

remote_call(C12,’action12’)

...

definition action12

...

remote_call(C121,’action121’)

... Interpreter

RC 1

RC 12

RC 121

RC 2

RC 11

C121

C11

C1

C12

Example

action1()

action11()

action2()

action12()

Reconfiguration
interface

Membrane

C2Reconfiguration scripts

26

definition action1

...

remote_call(C2,’action2’)

remote_call(C11,’action11’)

remote_call(C12,’action12’)

...

definition action12

...

remote_call(C121,’action121’)

... Interpreter

RC 1

RC 12

RC 121

RC 2

RC 11

C121

C11

C1

C12

Example

action1()

action11()

action2()

action12()

action121()

Reconfiguration
interface

Membrane

C2Reconfiguration scripts

27

definition action1

...

remote_call(C2,’action2’)

remote_call(C11,’action11’)

remote_call(C12,’action12’)

...

definition action12

...

remote_call(C121,’action121’)

... Interpreter

RC 1

RC 12

RC 121

RC 2

RC 11

C121

C11

C12

Example

action1()

action11()

action2()

action12()

action121()

The interpretation is parallel and distributed

Reconfiguration
interface

Membrane

C2Reconfiguration scripts

28

Conclusion

• A component model for adaptive autonomous
components
− structured membrane
− distributed reconfiguration

• A platform supporting adaptation and distribution
− based on ProActive (active objects, distribution)
− ADL (membrane and business code composition)

• A formalisation to study the component model and its
implementation
− toward verification of component management

procedures

29

Ongoing and Future Works

• Formalisation is a long process:
For the moment, more a formal specification + a few

proofs than a complete verification environment

• Verification of (re)configuration procedures by model
checking
− Complementary with Theorem proving approach

application specific vs. model properties
− Already model generation relies on ASP properties

30

31

32

− The deployment is always successful
[(not √)*] < true * .√ > true

− But Error during deployment
[(not √) * . OE] false

Verification of Properties: Deployment

start Buffer without linking the alarm interface

Eric MADELAINE ----
OASIS

33

• Deployment
• (on the Static Automaton with successful

synchronisation visible)
− The deployment is always successful

[(not √)*] < true * .√ > true

− No Error during deployment
[(not √) * . OE] false

Verification of Properties
regular μμμμ-calculus (Mateescu’2004)

e.g. start Buffer without linking the alarm interface

Eric MADELAINE ----
OASIS

34

• Functional properties under reconfiguration (respecting
the topology)
− Future update (asynchronous result messages)

independent of life-cycle or binding
reconfigurations

− Build a model including life-cycle controllers,
with the reconfiguration actions visible:

− Then we can prove:

Verification of Properties

[true*.Req_Get()] µX. (< true > true ∧
[¬Resp_Get()] X)

Example

• Add the component given_child to the composite
given_parent

given_parent

given_child

given_parent

remote_call($given_parent, ‘add’, ‘$given_parent’, ‘given_chil d’);

35

GCM API for Reconfiguration

• Life-cycle controller

• Binding controller

• Content Controller

string getFcState ();
void startFc () throws IllegalLifeCycleException;
void stopFc () throws IllegalLifeCycleException;

string[] listFc ();
any lookupFc (string clientItfName)

throws NoSuchInterfaceException ;
void bindFc (string clientItfName, any serverItf) throws . . .
void unbindFc (string clientItfName) throws. . .

any[] getFcInternalInterfaces ();
any getFcInternalInterface (string itfName) throws . . . Component[] getFcSubComponents
();
void addFcSubComponent (Component c) throws . . .
void removeFcSubComponent (Component c) throws . . .

36

