Verifying distributed systems with unbounded channels

Régis Gascon & Éric Madelaine & Vivien Maisonneuve INRIA Sophia Antipolis

Reseco Workshop - December 17th, 2009

VERCORS in a nutshell

- Platform for specification of distributed applications.
- Based on the semantics features of the ASP calculus and the ProActive library.
 http://www-sop.inria.fr/oasis/ProActive/

- Generation of intermediate finite model.
- Various tools can then operate on these models: static analysis, model checking, code generation...
- The aim is to integrate the platform in a development environment, used by non-specialists.

pNets: Parameterized Networks of Synchronized Automata

- Basically, pNets are made of LTSs synchronized by mean of synchronization vectors.
- Verifying pNets remains to verify systems:
 - manipulating unbounded data,
 - having a parameterized topology,
 - using unbounded communication queues.
- Numerous sources of infinity
 numerous complications for formal verification.
- VerCors uses only finite-sate based model-checkers (through finite abstract interpretation).
- We want to apply infinite state model-checking techniques.

Infinite-state system verification

- Well studied theory:
 - counter systems,
 - pushdown systems,
 - parameterized systems,
 - ...
- Few implementations for unbounded queue systems:
 - LASH (Boigelot et al.),
 - TReX (Bouajjani et al.).
- Difficult to find a tool that fits our goals
 - integration to VERCORS
 - possibility of extensions

Outline

- Introduction
- 2 Systems with unbounded FIFO queues
- 3 Reachability and Acceleration
- Presentation of our prototype
- 6 Perspectives

Communicating finite state machines

Basically a finite state machine augmented with a set of queues.

Communicating finite state machines

Formally, a communicating finite state machine (CFSM) is a tuple

$$\mathcal{M} = (Q, q_0, C, \Sigma, A, \delta)$$
 such that

- Q =is a finite set of states,
- $q_0 \in Q$ is the initial state,
- C is a set of communicating channels/queues,
- \bullet Σ is the alphabet of messages,
- A is a finite set of internal actions,
- $\delta \subset Q \times ((C \times \{?,!\} \times \Sigma) \cup A) \times Q$ is the transition relation.

• Execution: Sequence respecting the transition relation.

• $\langle q_0, q_0, \varepsilon, \varepsilon \rangle$

• Execution: Sequence respecting the transition relation.

• $\langle q_0, q_0, \varepsilon, \varepsilon \rangle \xrightarrow{K!0} \langle q_0, q_0, 0, \varepsilon \rangle$

• Execution: Sequence respecting the transition relation.

 $\bullet \ \langle q_0, q_0, \varepsilon, \varepsilon \rangle \stackrel{K!0}{\longrightarrow} \langle q_0, q_0, 0, \varepsilon \rangle \stackrel{K!0}{\longrightarrow} \cdots \stackrel{K!0}{\longrightarrow}$

• Execution: Sequence respecting the transition relation.

 $\bullet \ \langle q_0, q_0, \varepsilon, \varepsilon \rangle \overset{K!0}{\longrightarrow} \langle q_0, q_0, 0, \varepsilon \rangle \overset{K!0}{\longrightarrow} \cdots \overset{K!0}{\longrightarrow}$

• Execution: Sequence respecting the transition relation.

• $\langle q_0, q_0, \varepsilon, \varepsilon \rangle \xrightarrow{K!0} \langle q_0, q_0, 0, \varepsilon \rangle \xrightarrow{K!0} \cdots \xrightarrow{K!0} \langle q_0, q_0, 0000, \varepsilon \rangle$

• Execution: Sequence respecting the transition relation.

• $\langle q_0, q_0, \varepsilon, \varepsilon \rangle \xrightarrow{K!0} \langle q_0, q_0, 0, \varepsilon \rangle \xrightarrow{K!0} \cdots \xrightarrow{K!0} \langle q_0, q_0, 0000, \varepsilon \rangle \xrightarrow{K?0} \langle q_1, q_0, 000, \varepsilon \rangle$

• Execution: Sequence respecting the transition relation.

• $\langle q_0, q_0, \varepsilon, \varepsilon \rangle \xrightarrow{K!0} \langle q_0, q_0, 0, \varepsilon \rangle \xrightarrow{K!0} \cdots \xrightarrow{K!0} \langle q_0, q_0, 0000, \varepsilon \rangle \xrightarrow{K?0} \langle q_1, q_0, 000, \varepsilon \rangle \xrightarrow{K?0} \langle q_1, q_0, 00, \varepsilon \rangle$

• Execution: Sequence respecting the transition relation.

• $\langle q_0, q_0, \varepsilon, \varepsilon \rangle \xrightarrow{K!0} \langle q_0, q_0, 0, \varepsilon \rangle \xrightarrow{K!0} \cdots \xrightarrow{K!0} \langle q_0, q_0, 0000, \varepsilon \rangle \xrightarrow{K?0} \langle q_1, q_0, 000, \varepsilon \rangle \xrightarrow{K?0} \langle q_1, q_0, 00, \varepsilon \rangle \xrightarrow{L!0} \langle q_1, q_0, 00, 0 \rangle$

• Execution: Sequence respecting the transition relation.

• $\langle q_0, q_0, \varepsilon, \varepsilon \rangle \xrightarrow{K!0} \langle q_0, q_0, 0, \varepsilon \rangle \xrightarrow{K!0} \cdots \xrightarrow{K!0} \langle q_0, q_0, 0000, \varepsilon \rangle \xrightarrow{K?0} \langle q_1, q_0, 000, \varepsilon \rangle \xrightarrow{K?0} \langle q_1, q_0, 00, \varepsilon \rangle \xrightarrow{L!0} \langle q_1, q_0, 00, 0 \rangle \xrightarrow{L!0} \langle q_1, q_1, 00, \varepsilon \rangle$

• Execution: Sequence respecting the transition relation.

• $\langle q_0, q_0, \varepsilon, \varepsilon \rangle \xrightarrow{K!0} \langle q_0, q_0, 0, \varepsilon \rangle \xrightarrow{K!0} \cdots \xrightarrow{K!0} \langle q_0, q_0, 0000, \varepsilon \rangle \xrightarrow{K?0} \langle q_1, q_0, 000, \varepsilon \rangle \xrightarrow{K?0} \langle q_1, q_0, 00, \varepsilon \rangle \xrightarrow{L!0} \langle q_1, q_0, 00, 0 \rangle \xrightarrow{L!0} \langle q_1, q_1, 00, \varepsilon \rangle \rightarrow \cdots$

Operational Semantics

- We consider unbounded FIFO queues.
- Consider a set of CFSM sharing a set of queues $\{K, L\}$.
- Configuration: $\langle q_1, q_2, w_K, w_L \rangle$ (for a pair of CFSM) Global state + Queue contents
- Operations:
 - Send (non-blocking). if $\langle q_1, K! a, q_1' \rangle \in \delta_1$ then

$$\langle q_1, q_2, w_K, w_L \rangle \xrightarrow{K!a} \langle q'_1, q_2, w_K \cdot a, w_L \rangle$$

- Receive (blocking).
- Internal Action.

Operational Semantics

- We consider unbounded FIFO queues.
- Consider a set of CFSM sharing a set of queues $\{K, L\}$.
- Configuration: $\langle q_1, q_2, w_K, w_L \rangle$ (for a pair of CFSM) Global state + Queue contents
- Operations:
 - Send (non-blocking).
 - Receive (blocking). if $\langle q_1, K?a, q_1' \rangle \in \delta_1$ then

$$\langle q_1, q_2, a \cdot w_K, w_L \rangle \xrightarrow{K?a} \langle q'_1, q_2, w_K, w_L \rangle$$

Internal Action.

Operational Semantics

- We consider unbounded FIFO queues.
- Consider a set of CFSM sharing a set of queues $\{K, L\}$.
- Configuration: $\langle q_1, q_2, w_K, w_L \rangle$ (for a pair of CFSM) Global state + Queue contents
- Operations:
 - Send (non-blocking).
 - Receive (blocking).
 - Internal Action.

if
$$\langle q_1, au, q_1'
angle \in \delta_1$$
 with $au \in A$ then

$$\langle q_1, q_2, w_K, w_L \rangle \xrightarrow{\tau} \langle q_1', q_2, w_K, w_L \rangle$$

Outline

- Introduction
- 2 Systems with unbounded FIFO queues
- 3 Reachability and Acceleration
- Presentation of our prototype
- Perspectives

We consider the following problem:

Init

We consider the following problem:

We note:

• Post(X) = { $x \mid \exists x' \in X \text{ s.t. } x \rightarrow x'$ }.

We consider the following problem:

We note:

- Post(X) = $\{x \mid \exists x' \in X \text{ s.t. } x \to x'\}$.
- $\operatorname{Post}^{i}(X) = \operatorname{Post}(\operatorname{Post}(\cdots \operatorname{Post}(X))).$

We consider the following problem:

We note:

- Post(X) = { $x \mid \exists x' \in X \text{ s.t. } x \rightarrow x'$ }.
- $\operatorname{Post}^{i}(X) = \operatorname{Post}(\operatorname{Post}(\cdots \operatorname{Post}(X))).$
- $\operatorname{Post}^*(X) = \bigcup_{i>0} \operatorname{Post}^i(X)$.

We consider the following problem:

We note:

- Post(X) = $\{x \mid \exists x' \in X \text{ s.t. } x \to x'\}$.
- $\operatorname{Post}^{i}(X) = \operatorname{Post}(\operatorname{Post}(\cdots \operatorname{Post}(X))).$
- $\operatorname{Post}^*(X) = \bigcup_{i>0} \operatorname{Post}^i(X)$. UNDECIDABLE (semi-algorithm)

Representing Sets of Configurations

- We need to represent possibly infinite sets of configurations.
- We associate to each tuple of states of the CFSM a set of finite state automata (FUDFA) over Σ.

 The set of configurations corresponds to the (regular) language associated to each state.

represents the set of configurations $\langle q_1, q_2, a^*b, a \rangle$.

Improving convergence

 FUDFA allows the direct computation of configuration sets after iterating some cycles:

• Pb: Cycles can induce non-regular sets of queue contents:

Need for characterization of accelerable loops.

Algorithm with accelerations

- F[s] is the FUDFA associated to global state s.
- We apply a depth-first exploration method.

While $S \neq \emptyset$ do

Choose and remove some $s \in S$

Acceleration:

For all cycle θ from sIf θ can be accelerated then Compute the effect of θ^* on F[s]

OneStep successors:

For all possible transition $s \stackrel{\text{op}}{\rightarrow} s'$ Compute the effect of op on F[s]Add new reached configurations to F[s'].

Complete example

$\langle q_0,q_0 angle$	→○ × →○	$\langle q_0,q_1 angle$	→ × →
$\langle q_0,q_2 \rangle$	→ () a × → () b	$raket{\langle q_1,q_0 angle}$	→a × →
$\langle q_1,q_1 angle$	→ × →	$\langle q_1,q_2 angle$	→ () a × → () b

Important issues for the implementation

- Data structure,
- Selection of cycles for acceleration,
 - global cycles or local cycles,
 - heuristics.
- Exploration strategy,
- Using the result of the computation.

Outline

- Introduction
- 2 Systems with unbounded FIFO queues
- Reachability and Acceleration
- Presentation of our prototype
- 5 Perspectives

Implementation

- Algorithm implemented in JAVA.
- Input: A set of CFSMs sharing a set of channels: text format or graphical editor (eclipse plugin).
- Computes successively the set of reachable states step by step + acceleration (at each iteration).
- A FUDFA is associated to each global state and the main loop of the algorithm can be executed.
- The algorithm follows strictly the method described.

Exploring the statespace

We have concentrated on useful functionalities (exploration, utilisation of the result).

- If the computation converges → OK
- Otherwise, the user can specify:
 - a set of final configurations,
 - a timeout (number of iterations),
 - a bound on the size of representations (≠ bounding the size of the queues).

Performance scale

- On the other hand, there is no fine tunning of the implementation for the moment:
 - data structure quite big (naive implementation of DFAs),
 - possible improvements in data manipulation.
- In this context, we have checked the implementation w.r.t. the utilisation of the computation.
 - → no evaluation in terms of computation performance.
- Objective: giving a readable diagnosis of the analysis.

Example: Integrated toolkit

- Hierarchical components example.
- Arrows represent dependencies.

Each box has an associated CFSM and queue.

Example: Integrated toolkit

IT (stop procedure)

TΑ

What does happen when the system is stopped?

Experimental scenario

When trying to compute the configuration where IT is stopped, computation does not converge.

- 15 iterations
 → 2460 DFAs and 19096 states
- + Size Limit → 78 DFAs and 275 states
- Result: $ta = (\text{NewT}^* \cdot \text{EndReg}^* \cdot \text{EndT}^*)^*$
- Then one can check that a configuration where *ta* is not empty can be reached.

So TA can leave requests unsatisfied.

Summary

- Modeling of unbounded communication queues (FIFO).
- Reachability algorithm based on:
 - Automata representation of queues,
 - Acceleration operations for selected cycles.
- Implementation of this algorithm into a prototype.
- First experiments for practical usability

Future Work

- Improvements of exploration techniques.
- Comparisons with existing tools (LASH, TReX,...).
- Extension of the representation:
 - representation of non-regular sets of queues,
 - addition of data (ex: queues + counters)
- Combination with other techniques (parameterized sytems)

QUESTIONS ???

Add a letter (!a):

- Nothing to do with internal actions.
- Generalisation to sequences: just iterate!

Add a letter (!a):

- Nothing to do with internal actions.
- Generalisation to sequences: just iterate!

Add a letter (!a):

- Nothing to do with internal actions.
- Generalisation to sequences: just iterate!

Add a letter (!a):

- Nothing to do with internal actions.
- Generalisation to sequences: just iterate!

Cycle selection and acceleration

- All the material needed can be adapted from Boigelot's thesis.
 - exact characterisation of accelerable cycles,
 - computation of the acceleration.
- For every sequence of operations σ ,
 - $\sharp_!(\sigma)$ is the number of send operations,
 - $\sharp_{?}(\sigma)$ is the number of receive operations.
- A sequence involving only one queue is counting iff
 - $|\Sigma| = 1$ and $\sharp_!(\theta) > \sharp_?(\theta)$,
 - $|\Sigma| > 1$ and $\sharp_!(\theta) > 0$.
- Given a system with queues $\{c_1, \ldots, c_n\}$ and a cycle θ , $\theta_{|i}$ is the sub-sequence of transitions manipulating c_i .

Fundamental Results for acceleration

• For systems with only one queue, the result is the following.

Theorem (Single-queue systems)

For every set of configurations X and cycle θ , the set $\operatorname{Post}_{\theta}^*(X)$ is FUDFA representable.

• The result for systems with several queues is more restrictive.

Theorem (Multi-queue systems)

For every set of configurations X and cycle θ , the set $\operatorname{Post}_{\theta}^*(X)$ is FUDFA representable iff there do not exist i and j s.t $\theta_{|i}$ and $\theta_{|j}$ are counting.