Towards formal verification of imperative concurrent data structures

{Alejandro, César} Sánchez IMDEA Software - Madrid - Spain

Workshop ReSeCo – FaMAF – Dec. 17, 2009

Imperative programs

P

Imperative programs

Concurrent data structures

 $P_1 \parallel \cdots \parallel P_n$

Imperative programs

Concurrent data structures

$$\begin{array}{c|c} P_1 \parallel \cdots \parallel P_n \\ \downarrow \\ \text{data structures} \\ \text{(heap)} \end{array}$$

Imperative programs

Concurrent data structures

Temporal property (safety, liveness)

$$P_1 \parallel \cdots \parallel P_n \models \varphi$$

$$\downarrow$$
data structures
(heap)

 \circ

Imperative programs
Concurrent data structures
Temporal property (safety, liveness)
Formal verification

$$P_1 \parallel \cdots \parallel P_n \models \varphi$$

$$\downarrow$$
data structures
(heap)

Imperative programs
Concurrent data structures
Temporal property (safety, liveness)
Formal verification

$$\begin{array}{c|c} P_1 \parallel \cdots \parallel P_n \models \varphi \end{array} LTL (\Box, \diamondsuit, \odot, \mathcal{U}) \\ \hline \\ \downarrow \\ data \ structures \\ (heap) \end{array}$$

Imperative programs
Concurrent data structures
Temporal property (safety, liveness)
Formal verification

 $\begin{array}{c|c} P_1 \parallel \cdots \parallel P_n \models \varphi \end{array} LTL (\Box, \diamondsuit, \odot, \mathcal{U}) \\ \hline & \downarrow \\ \\ \text{Regional} \left\{ \begin{array}{c} \text{data structures} \\ \text{(heap)} \end{array} \right. \end{array}$

Imperative programs
Concurrent data structures
Temporal property (safety, liveness)
Formal verification

 $\begin{array}{c|c} P_1 \parallel \cdots \parallel P_n \models \varphi \end{array} LTL (\Box, \diamondsuit, \bigcirc, \mathcal{U}) \\ \hline \downarrow \\ \\ \text{Regional} \left\{ \begin{array}{c} \text{data structures} \\ \text{(heap)} \end{array} \right. Verification \\ \\ \text{Diagram} \end{array} \right.$

Separation Logic

Hoare logic extension to reason about shared mutable data structure

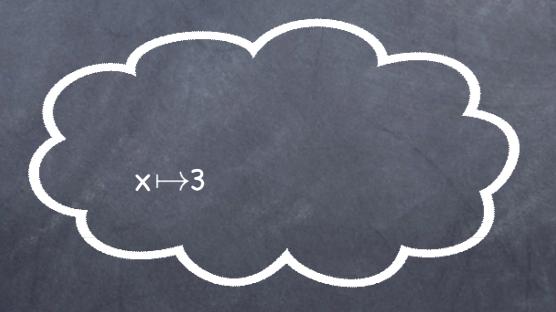
Separation Logic

Hoare logic extension to reason about shared mutable data structure

emp

Separation Logic

Hoare logic extension to reason about shared mutable data structure emp , \mapsto



Separation Logic

Hoare logic extension to reason about shared mutable data structure emp , \mapsto , \ast

 $[P_0 * P_1] s h \Leftrightarrow \exists h_0, h_1 \bullet h_0 \perp h_1 \wedge h_0.h_1 = h \wedge [P_0] s h_0 \wedge [P_1] s h_1$

Separation Logic

Hoare logic extension to reason about shared mutable data structure emp , \mapsto , \ast

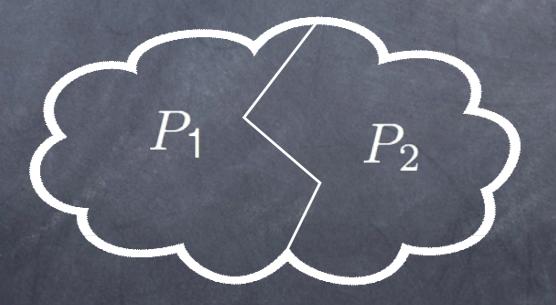


 $[P_0 * P_1] s h \Leftrightarrow \exists h_0, h_1 \bullet h_0 \perp h_1 \wedge h_0.h_1 = h \wedge [P_0] s h_0 \wedge [P_1] s h_1$

Separation Logic

Hoare logic extension to reason about shared mutable data structure

emp , \mapsto , *, -*



 $[P_0 * P_1] s h \Leftrightarrow \exists h_0, h_1 \bullet h_0 \perp h_1 \wedge h_0.h_1 = h \wedge [P_0] s h_0 \wedge [P_1] s h_1$

Regional Logic

Regional Logic
Classical first order logic

Regional Logic
 Classical first order logic
 Based on Hoare logic

Regional Logic
 Classical first order logic
 Based on Hoare logic
 Ghost fields/variables

Regional Logic

Classical first order logic Based on Hoare logic Ghost fields/variables Region manipulation language: emp,⟨⟩,∪,∩,-

Segional Logic
Classical first order logic
Based on Hoare logic
Ghost fields/variables
Region manipulation language: emp, $\langle \rangle, \cup, \cap, -$ Region assertion language: $R_1 \subseteq R_2$

Regional Logic
Classical first order logic
Based on Hoare logic
Ghost fields/variables

Region manipulation language: emp, $\langle \rangle, \cup, \cap, \neg$ Region assertion language: $R_1 \subseteq R_2, R_1 \# R_2$

Regional Logic

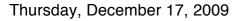
Classical first order logic Based on Hoare logic Ghost fields/variables Region manipulation language: emp, $\langle \rangle, \cup, \cap, \neg$ Region assertion language: $R_1 \subseteq R_2, R_1 \# R_2, R_1. f \subseteq R_2$

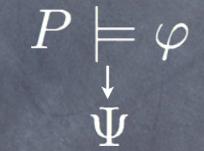
Regional Logic

Classical first order logic Based on Hoare logic Ghost fields/variables Region manipulation language: emp, $\langle \rangle$, \cup , \cap , \neg Region assertion language: $R_1 \subseteq R_2, R_1 \# R_2, R_1. f \subseteq R_2, R_1. f \# R_2$

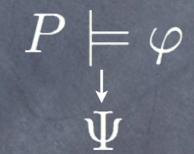
Regional Logic

Classical first order logic Based on Hoare logic Ghost fields/variables Region manipulation language: emp, $\langle \rangle$, \cup , \cap , \neg Region assertion language: $R_1 \subseteq R_2$, $R_1 \# R_2$, R_1 . $f \subseteq R_2$, R_1 . $f \# R_2$ $\forall x : K \in R \mid P$



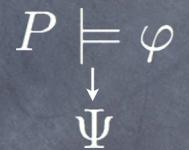


Representation of a system by FTS



Representation of a system by FTS

Sound & complete



Representation of a system by FTS

Sound & complete

 $\Psi = \langle N, N_0, E, \mu, \mathcal{F}, \eta, \Delta, f \rangle$

Representation of a system by FTS

Sound & complete

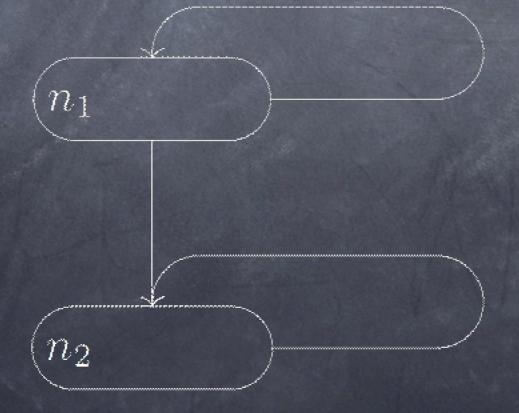
 $\Psi = \langle N, N_0, E, \mu, \mathcal{F}, \eta, \Delta, f \rangle$

 n_2

Representation of a system by FTS

Sound & complete

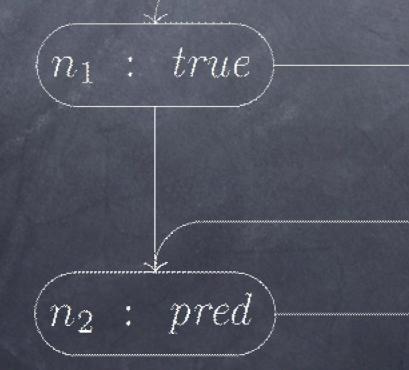
 $\Psi = \langle N, N_0, E, \mu, \mathcal{F}, \eta, \Delta, f \rangle$



Representation of a system by FTS

Sound & complete

 $\Psi = \langle N, N_0, E, \mu, \mathcal{F}, \eta, \Delta, f \rangle$



Verification Diagrams

Representation of a system by FTS

Sound & complete

 $\Psi = \langle N, N_0, E, \mu, \mathcal{F}, \eta, \Delta, f \rangle$

 $(n_1 : true)$

 n_2

pred

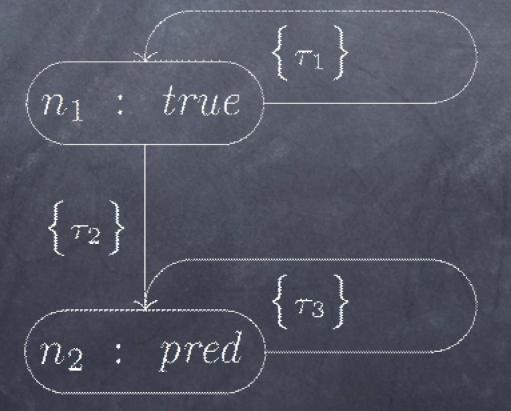
 $\bigcirc \Box pred$

Verification Diagrams

Representation of a system by FTS

Sound & complete

 $\Psi = \langle N, N_0, E, \mu, \mathcal{F}, \eta, \Delta, \overline{f} \rangle$



Concurrent Data Structure

Concurrent Data Structure

 φ

Concurrent Data Structure

 φ

Most General Client [N] (extended with GV)

Concurrent Data Structure

 Ψ

 φ

Most General Client [N] (extended with GV)

Concurrent Data Structure

Most General Client [N] (extended with GV)

Verification conditions like: initialization, consecution, acceptance, fairness, satisfaction...

 Ψ

 \mathcal{Q}

Concurrent Data Structure

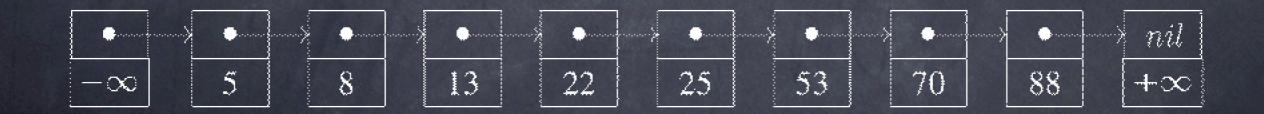
Verification conditions like: initialization, consecution, acceptance, fairness, satisfaction...

Sorted list of elements

Sorted list of elements

head

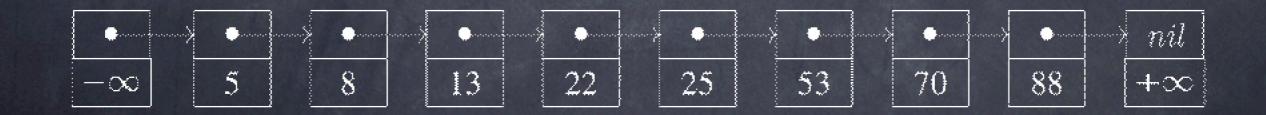
last



Sorted list of elementsHierarchy of linked lists

head

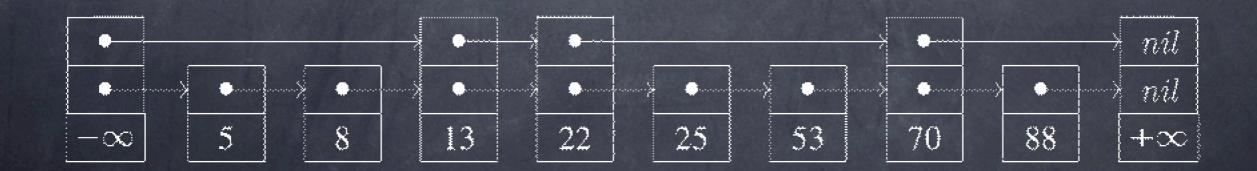
last



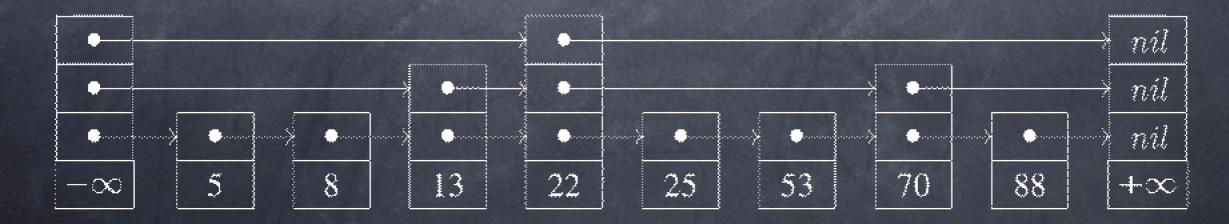
Sorted list of elementsHierarchy of linked lists

head

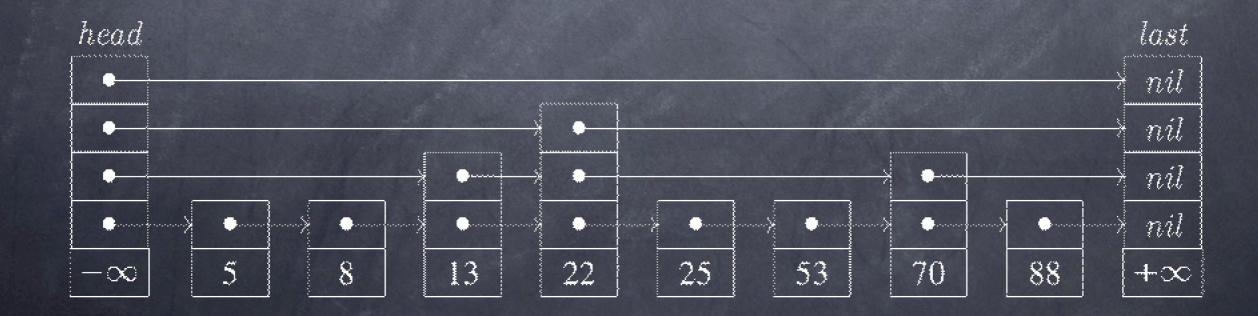
last



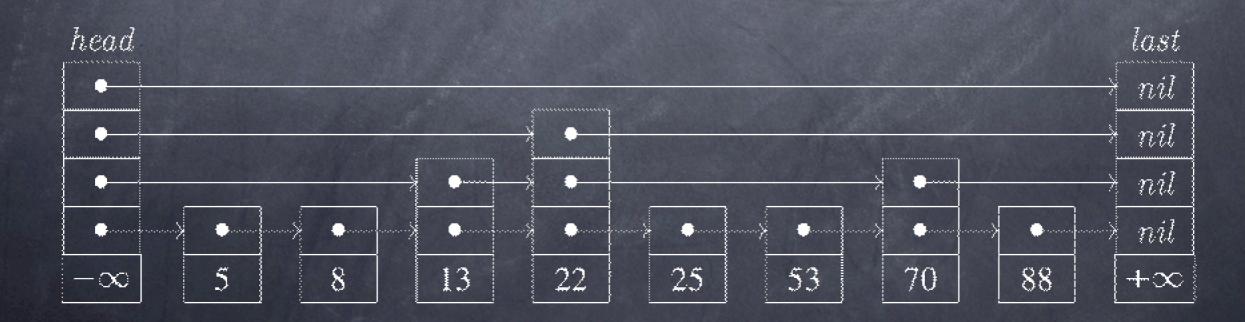
Sorted list of elementsHierarchy of linked lists



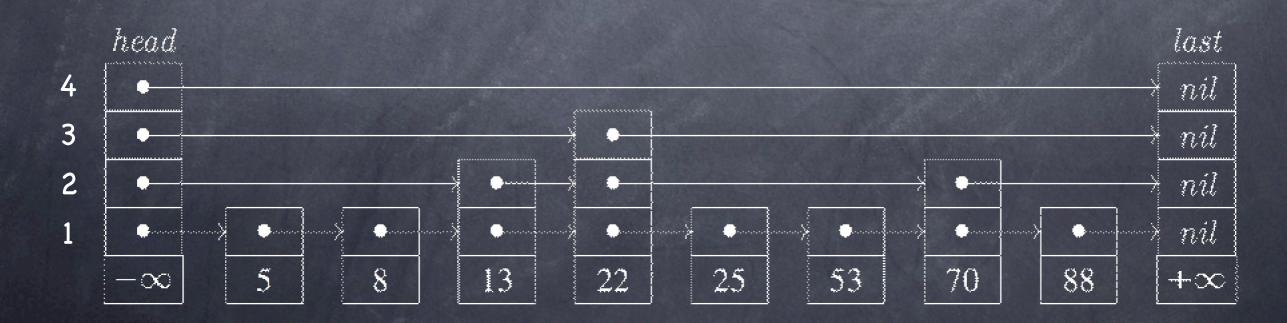
Sorted list of elementsHierarchy of linked lists



- Sorted list of elements
- Hierarchy of linked lists
- Search trees
 Search trees



- Sorted list of elements
- Hierarchy of linked lists
- Search trees
 Search trees



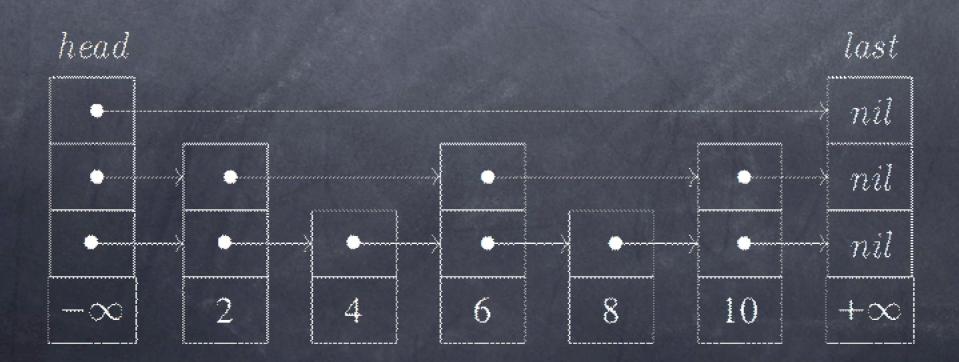
Reduce granularity of locks

Reduce granularity of locks

Locks acquired and released in climbing fashion

Reduce granularity of locks

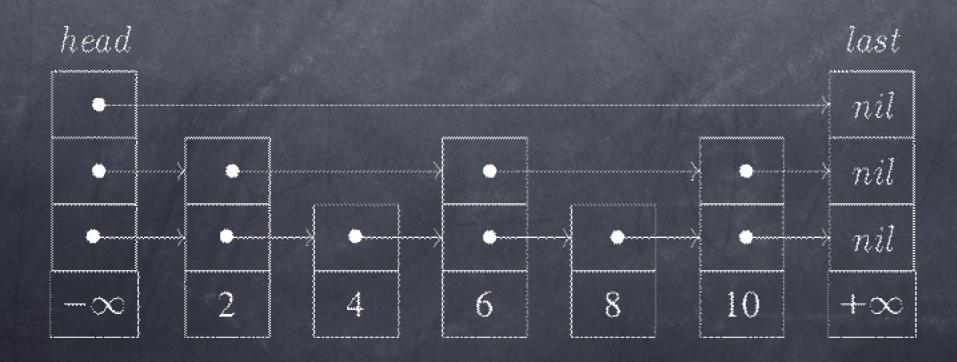
Locks acquired and released in climbing fashion



Reduce granularity of locks

Locks acquired and released in climbing fashion

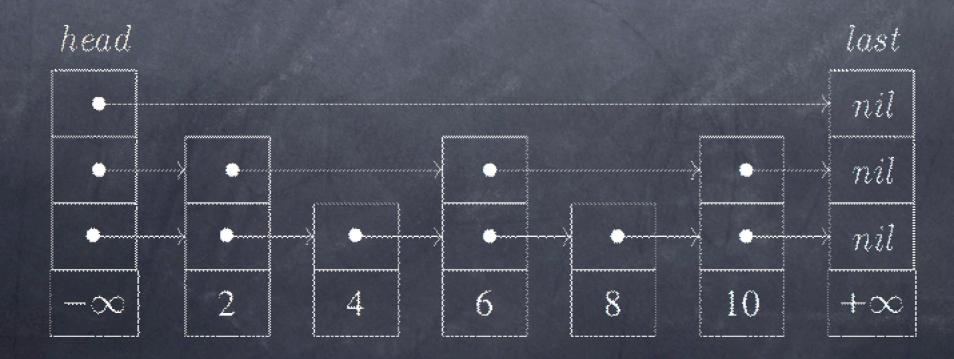
 $insert^{[k]}(9)$



Reduce granularity of locks

Locks acquired and released in climbing fashion

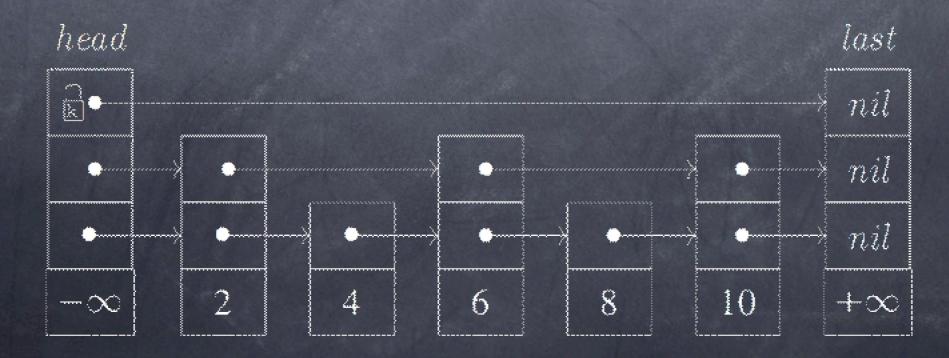
 $insert^{[k]}(9)$ level = 2



Reduce granularity of locks

Locks acquired and released in climbing fashion

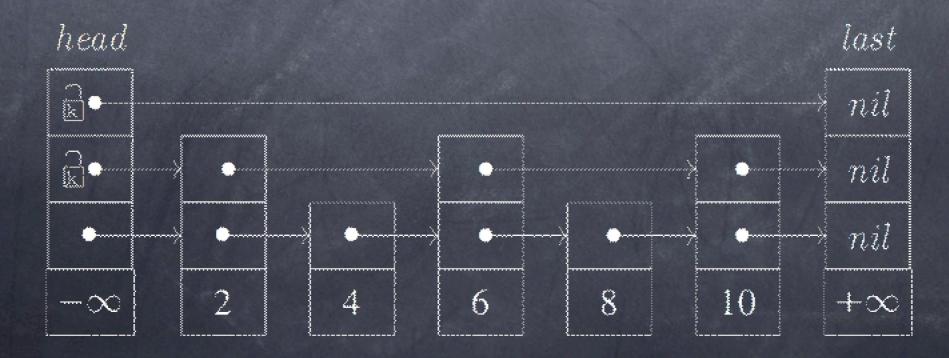
 $insert^{[k]}(9)$ level = 2



Reduce granularity of locks

Locks acquired and released in climbing fashion

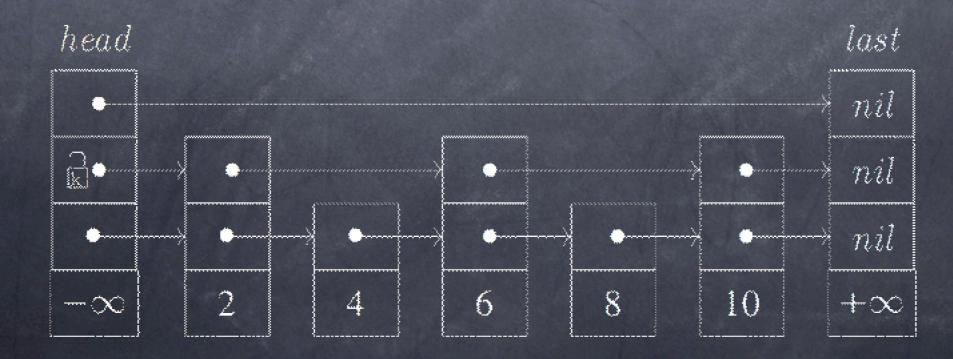
 $insert^{[k]}(9)$ level = 2



Reduce granularity of locks

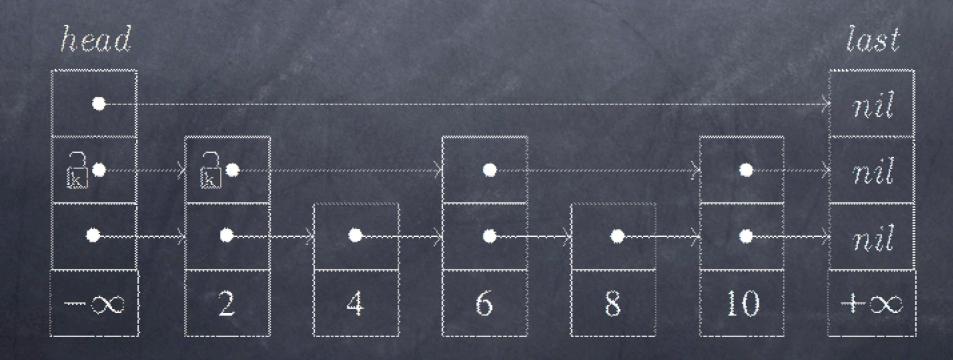
Locks acquired and released in climbing fashion

 $insert^{[k]}(9)$ level = 2



Reduce granularity of locks

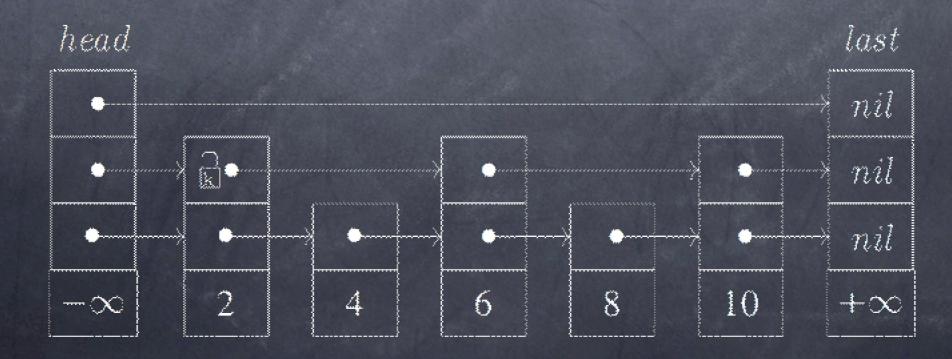
Locks acquired and released in climbing fashion



Reduce granularity of locks

Locks acquired and released in climbing fashion

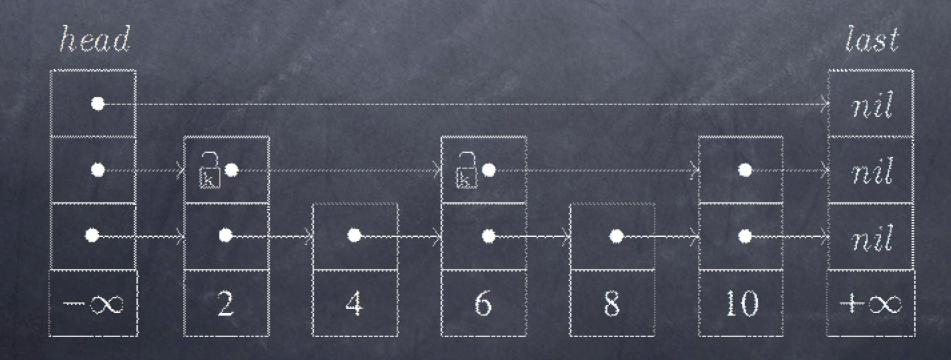
 $insert^{[k]}(9)$ level = 2



Reduce granularity of locks

Locks acquired and released in climbing fashion

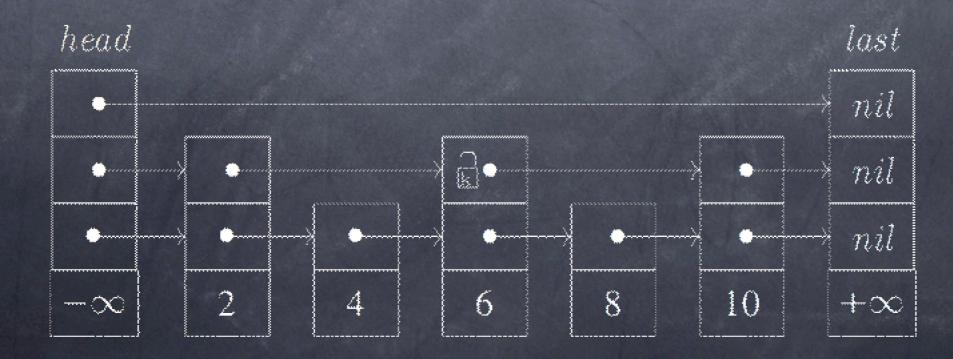
 $insert^{[k]}(9)$ level = 2



Reduce granularity of locks

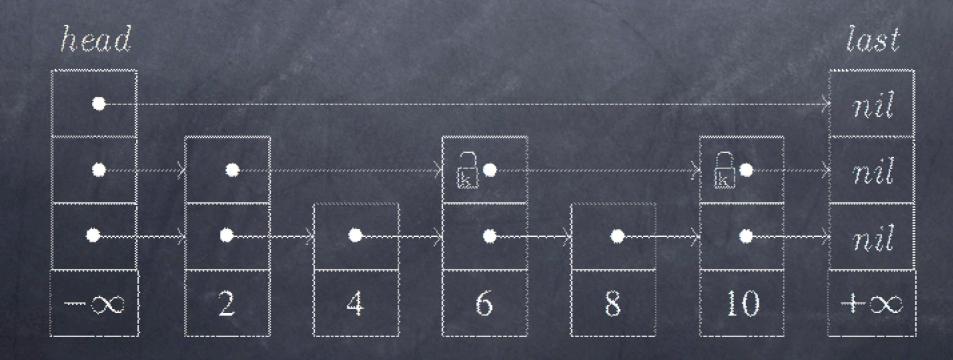
Locks acquired and released in climbing fashion

 $insert^{[k]}(9)$ level = 2



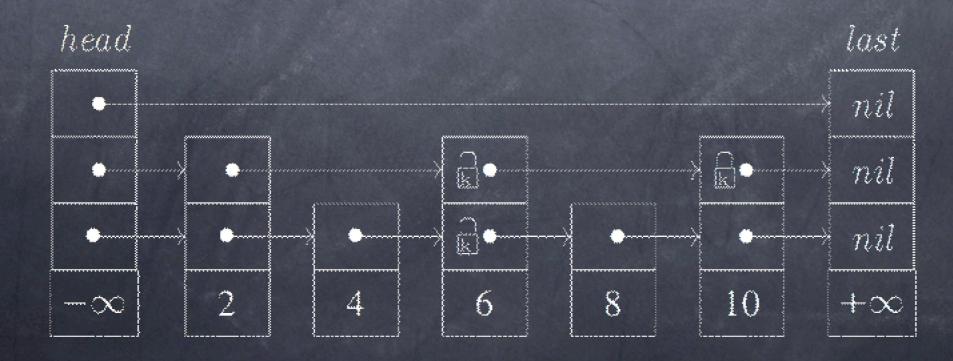
Reduce granularity of locks

Locks acquired and released in climbing fashion



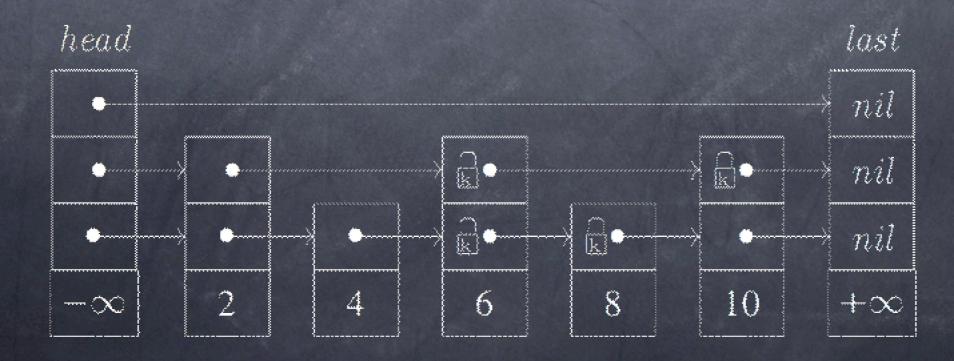
Reduce granularity of locks

Locks acquired and released in climbing fashion



Reduce granularity of locks

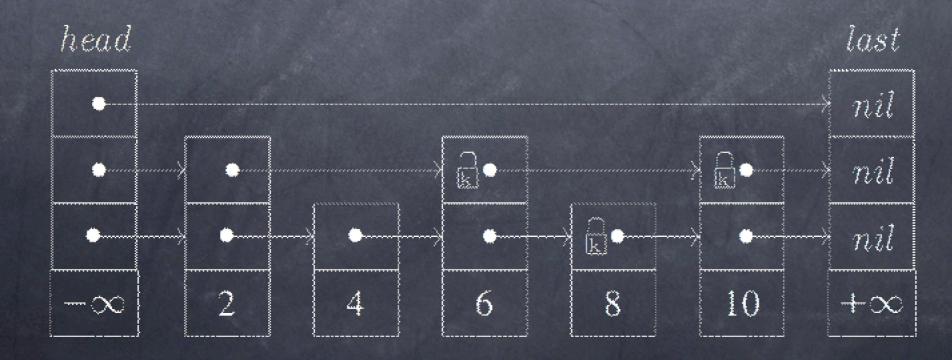
Locks acquired and released in climbing fashion



Reduce granularity of locks

Locks acquired and released in climbing fashion

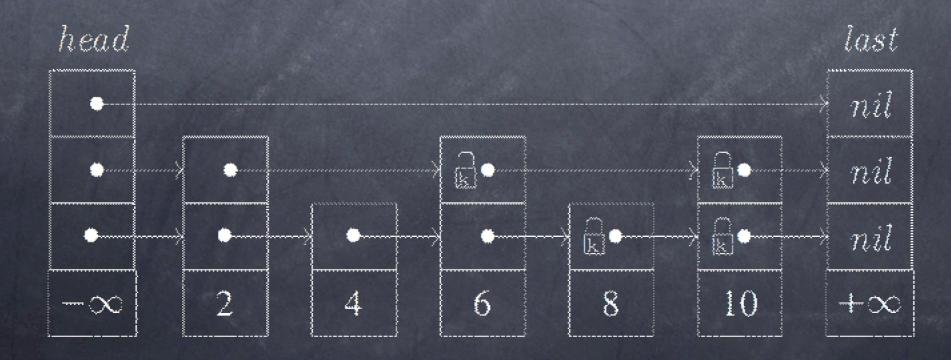
 $insert^{[k]}(9)$ level = 2



Reduce granularity of locks

Locks acquired and released in climbing fashion

 $insert^{[k]}(9)$ level = 2



insert(sl, v)

Algorithm 4 Insertion on a lock-coupling concurrent skiplist

1: 1	procedure INSERT(SkipList sl, Key k,	Value newval)
2:	Vector < Node* > update[1sl.max]	$Level] = //@ \operatorname{\mathbf{mrgn}} m_r := \operatorname{\mathbf{emp}}$
3:	lvl := randomLevel()	
4:	Node * pred := sl.head	
	pred.locks[lvl].lock()	$//@ m_r := m_r \cup (pred, forward[lvl])$
6:	Node * curr := pred.forward[lvl]	
	curr.locks[lvl].lock()	$//@~m_r:=m_r\cup(\mathit{curr},\mathit{forward}[lvl])$
8:	for $i := lvl$ downto 1 do	
9:	$ if \ i < lvl \ then $	
10:	pred.locks[i].lock()	$// @ m_r := m_r \cup (pred, forward[i])$
	curr := pred.forward[i]	
12:	curr.locks[i].lock()	$//@~m_r := m_r \cup (curr, forward[i])$
13:	end if	
14:	while $curr.key < k$ do	
	pred.locks[i].unlock()	$// @ m_r := m_r - (pred, forward[i])$
16:	pred := curr	
17:	curr := pred.forward[i]	
18:	curr.locks[i].lock()	$//@ m_r := m_r \cup (curr.forward[i])$
19:	end while	
20:	update[i] := pred	
21:	end for	
22:	$if \ curr.key = k \ then$	
23:	curr.val = newval	
24:	for $i := 1$ to lvl do	
25:	update[i].forward[i].locks[i].update[i].interval = 0.0000000000000000000000000000000000	nlock()
	$//@~m_{ au}:=$	$= m_r - (update[i].forward[i], forward[i])$
26:	update[i].locks[i].unlock()	$// @ m_r := m_r - (update[i], forward[i])$
27:	end for	
28:	else	
29:	x := CreateNode(lvl, k, newval)	
30:	for $i := 1$ to lvl do	
31:	x.forward[i] := update[i].foru	
32:		$// @ \ sl.r := sl.r \cup \langle x \rangle$
33:		$// @ m_r := m_r - (x.\textit{forward}[i],\textit{forward}[i])$
34:		$//@ m_r := m_r - (update[i], forward[i])$
35:	end for	
36: end if		
37: end procedure		

insert(sl, v)

Algorithm 4 Insertion on a lock-coupling concurrent skiplist

1: procedure INSERT(SkipList sl. Key k. Value newval) $Vector < Node* > update[1..sl.maxLevel] = //@ mrgn m_r := emp$ for i := lvl downto 1 do if i < lvl then end if while curr.key < k do end while

update[i] := predend for

while curr.key < k do pred.locks[i].unlock()pred := currcurr := pred.forward[i]curr.locks[i].lock()end while

 $//@ m_r := m_r - (pred, forward[i])$

 $//@ m_r := m_r \cup (curr, forward[i])$

 $insert(sl, v) \quad search(sl, v) \quad remove(sl, v)$

while curr.key < k do
 pred.locks[i].unlock()
 pred := curr
 curr := pred.forward[i]
 curr.locks[i].lock()
end while</pre>

 $//@ m_r := m_r - (pred, forward[i])$

 $//@ m_r := m_r \cup (curr, forward[i])$

insert(sl, v) search(sl, v) remove(sl, v) decide(sl)

while curr.key < k do
 pred.locks[i].unlock()
 pred := curr
 curr := pred.forward[i]
 curr.locks[i].lock()
end while</pre>

 $//@ m_r := m_r - (pred, forward[i])$

 $//@ m_r := m_r \cup (curr, forward[i])$

insert(sl, v) search(sl, v) remove(sl, v) decide(sl)

insert(sl, v) search(sl, v) remove(sl, v) decide(sl)

 T_i

insert(sl, v) search(sl, v) remove(sl, v) decide(sl)

 $T_i \models \Box \varphi_{insert}(i)$

$$\varphi_{insert}(i) = at_{insert}^{[i]}_{8..36} \rightarrow at_{insert}^{[i]}_{8..36} \mathcal{U}at_{insert}^{[i]}_{37}$$

insert(sl, v) search(sl, v) remove(sl, v) decide(sl)

$||_{j \in T_{ID} - \{i\}} T_j || T_i \models \Box \varphi_{insert}(i)$

 $\varphi_{insert}(i) = at_{-}insert^{[i]}_{8..36} \rightarrow at_{-}insert^{[i]}_{8..36} \mathcal{U}at_{-}insert^{[i]}_{37}$

insert(sl, v) search(sl, v) remove(sl, v) decide(sl)

 $||_{j \in T_{ID} - \{i\}} T_j || T_i \models \Box \varphi_{insert}(i)$

 $\varphi_{insert}(i) \doteq at_insert_{8..36}^{[i]} \rightarrow at_insert_{8..36}^{[i]} \mathcal{U}at_insert_{37}^{[i]}$

$$\left\{ \tau_{insert_{9,13}}^{[1]} \right\} \left\{ \tau_{insert_{14,15,18,19}}^{[j]}, \tau_{-}^{[j]} \right\}$$

$$\left\{ n_{3} : at_insert_{14,.16,18,19,20}^{[i]} \land \mathbf{I}_{insert}^{[i]} \right\}$$

$$\left\{ \tau_{insert_{17}}^{[i]} \right\} \left\{ \tau_{insert_{16}}^{[1]} \right\} \left\{ \tau_{-}^{[j]} \right\}$$

$$\left\{ n_{4} : at_insert_{17}^{[i]} \land \mathbf{I}_{insert}^{[i]} \right\}$$

14: while curr.key < k do

- 15: pred.locks[i].unlock()
- 16: pred := curr
- 17: curr := pred.forward[i]

n4

18: curr.locks[i].lock()

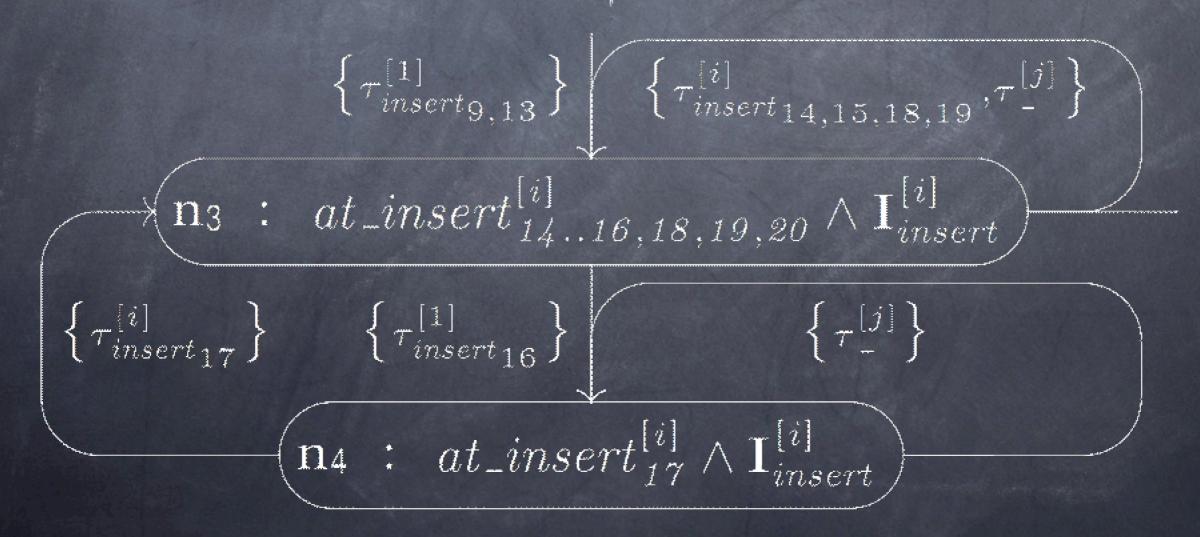
19: end while

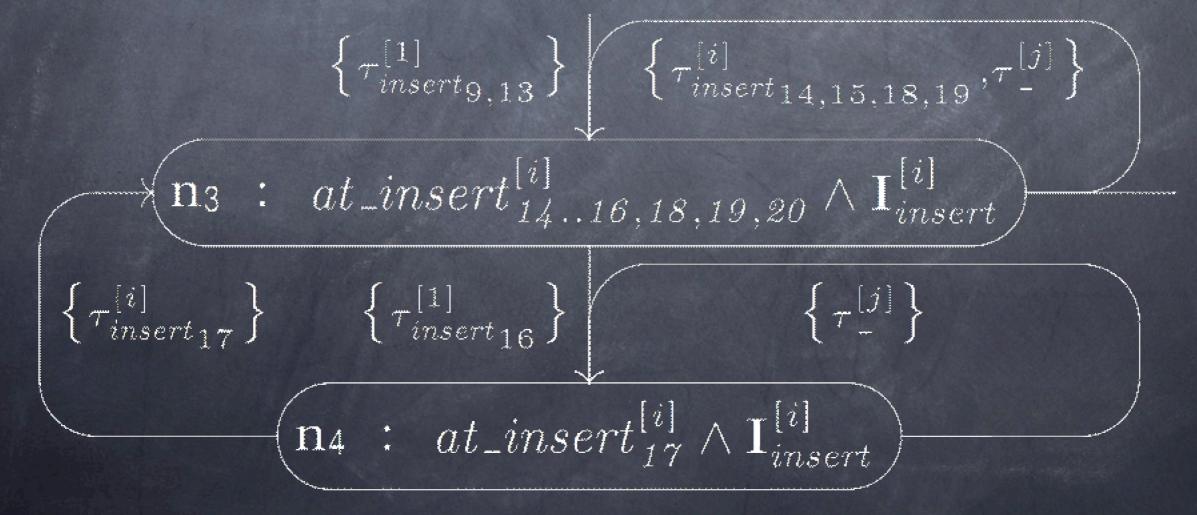
 $//@ m_r := m_r - (pred, forward[i])$

$$\begin{cases} \tau_{insert_{9,13}}^{[1]} \} & \{\tau_{insert_{14,15,18,19}}^{[j]}, \tau_{-}^{[j]} \} \\ \mathbf{n}_{3} : at_insert_{14\dots16,18,19,20}^{[i]} \land \mathbf{I}_{insert}^{[i]} \\ \\ \tau_{t_{17}}^{[1]} \} & \{\tau_{insert_{16}}^{[1]} \} & \{\tau_{-}^{[j]} \} \end{cases}$$

 $at_insert^{[i]}_{17} \wedge \mathbf{I}^{[i]}_{insert}$

Verification conditions





Verification conditions \checkmark

Ψ

$\|_{j\in T_{ID}-\{i\}} T_j \| T_i \models \varphi_{insert}(i)$

Verification conditions \checkmark

$\begin{aligned} \Psi \\ \downarrow \\ \|_{j \in T_{ID} - \{i\}} T_j \| T_i \models \varphi_{insert}(i) \end{aligned}$

A method to formally verify temporal properties over concurrent data structures

A method to formally verify temporal properties over concurrent data structures

Not just limited to safety properties

- A method to formally verify temporal properties over concurrent data structures
- Not just limited to safety properties
- A different approach to Separation Logic

A method to formally verify temporal properties over concurrent data structures
Not just limited to safety properties
A different approach to Separation Logic
Good results over many mutable data structures

- A method to formally verify temporal properties over concurrent data structures
- Not just limited to safety properties
- A different approach to Separation Logic
- Good results over many mutable data structures
- Experience shows possibility of working with parameterized VD

Structures
Structures

- Structures
 Structures
- Enrich verifications diagrams

- Structures
 Structures
- Service Ser
- Automatic generation of verification conditions

- Structures
 Structures
- Service Ser
- Automatic generation of verification conditions
- Analyze decidability of involved logics

- Structures
 Structures
- Service Ser
- Automatic generation of verification conditions

Analyze decidability of involved logics

Development of assisted decision procedures

- Structures
 Structures
- Service Ser
- Automatic generation of verification conditions
- Analyze decidability of involved logics
 Development of assisted decision procedures
 This is just the beginning

Questions ?