Towards formal verification
of imperative concurrent
data structures

{Alejandro, Cesar} Sanchez

IMDEA Software - Madrid - Spain

Workshop ReSeCo - FaMAF - Dec. 17, 2009

What are we interested in?

What are we interested in?

@ Imperative programs

What are we interested in?

@ Imperative programs

® Concurrent data structures

Fapesffaly

What are we interested in?

@ Imperative programs

® Concurrent data structures

Fapesoljay

l

data structures
(heap)

What are we interested in?

@ Imperative programs
® Concurrent data structures

@ Temporal property (safety, liveness)

Pl Prle
|

data structures
(heap)

Thursday, December 17, 2009

What are we interested in?

@ Imperative programs
@ Concurrent data structures
@ Temporal property (safety, liveness)

® Formal verification

Pl Prle
|

data structures
(heap)

Thursday, December 17, 2009

What are we interested in?

@ Imperative programs
@ Concurrent data structures
@ Temporal property (safety, liveness)

® Formal verification

Pii|:-- || Pn E @} LTL(O.0,0U)
| | .

data structures
(heap)

Thursday, December 17, 2009

What are we interested in?

@ Imperative programs
@ Concurrent data structures
@ Temporal property (safety, liveness)

® Formal verification

Pii|:-- || Pn E @} LTL(O.0,0U)
| | .

Regional { data structures
Logic (heap)

Thursday, December 17, 2009

What are we interested in?

@ Imperative programs
@ Concurrent data structures
@ Temporal property (safety, liveness)

® Formal verification

Pii|:-- || Pn E @} LTL(O.0,0U)
Sy
Regional { datfa structures Verification
Logic (heap) Diagram

Thursday, December 17, 2009

Reasoning about the heap

Reasoning about the heap

@ Separation Logic

Hoare logic extension fo reason about shared mutable data structure

Thursday, December 17, 2009

Reasoning about the heap

@ Separation Logic

Hoare logic extension fo reason about shared mutable data structure

emp

Thursday, December 17, 2009

Reasoning about the heap

@ Separation Logic

Hoare logic extension fo reason about shared mutable data structure

emp ,—

X3

Thursday, December 17, 2009

Reasoning about the heap

@ Separation Logic

Hoare logic extension fo reason about shared mutable data structure

emp ,—> , %

B s S ol

[Pox P1]sh < dhg,h1ehg L h1 Ahg.h1 = h A[Py] sho A[P1] s hq

Thursday, December 17, 2009

Reasoning about the heap

@ Separation Logic

Hoare logic extension fo reason about shared mutable data structure

emp ,—> , %

[Pox Pi]sh < Fhg,h1ehg L hi Ahg.hy = h A[Py] s ho A[Pi] s hq

Thursday, December 17, 2009

Reasoning about the heap

@ Separation Logic

Hoare logic extension fo reason about shared mutable data structure

emp ,—> , %, —*

[Pox Pi]sh < Fhg,h1ehg L hi Ahg.hy = h A[Py] s ho A[Pi] s hq

Thursday, December 17, 2009

Reasoning about the heap

@ Regional Logic

Reasoning about the heap

@ Regional Logic

Classical first order logic

Reasoning about the heap

@ Regional Logic

Classical first order logic

Based on Hoare logic

Reasoning about the heap

@ Regional Logic

Classical first order logic
Based on Hoare logic

Ghost fields/variables

Thursday, December 17, 2009

Reasoning about the heap

@ Regional Logic

Classical first order logic
Based on Hoare logic

Ghost fields/variables

Region manipulation language: emp, (), U,N, -

Thursday, December 17, 2009

Reasoning about the heap

@ Regional Logic

Classical first order logic

Based on Hoare logic

Ghost fields/variables

Region manipulation language: emp, (), U,N, -

Region assertion language: R; C Ry

Thursday, December 17, 2009

Reasoning about the heap

@ Regional Logic

Classical first order logic

Based on Hoare logic

Ghost fields/variables

Region manipulation language: emp, (), U,N, -

Region assertion language: R; C Ry, R1#R>

Thursday, December 17, 2009

Reasoning about the heap

@ Regional Logic

Classical first order logic

Based on Hoare logic

Ghost fields/variables

Region manipulation language: emp, (), U,N, -

Region assertion language: R1 C Ro,R1#R2.R1.f C R»

Thursday, December 17, 2009

Reasoning about the heap

@ Regional Logic

Classical first order logic

Based on Hoare logic

Ghost fields/variables

Region manipulation language: emp, (), U,N, -

Region assertion language: R1 C Ry, Ri#Ro.R1.f C Ro, R1.f#R>

Thursday, December 17, 2009

Reasoning about the heap

@ Regional Logic

Classical first order logic

Based on Hoare logic

Ghost fields/variables

Region manipulation language: emp, (), U,N, -

Region assertion language: R1 C Ry, Ri#Ro.R1.f C Ro, R1.f#R>
Vx: Ke R|P

Thursday, December 17, 2009

Verification Diagrams

Verification Diagrams

Verification Diagrams

Verification Diagrams

@ Representation of a system by FTS

Vs

P

"
/

Verification Diagrams

@ Representation of a system by FTS

@ Sound & complete

Vs

P

"
/

Verification Diagrams

@ Representation of a system by FTS

@ Sound & complete

U = <N,N0;Ea/1'afanaAaf>

Verification Diagrams

@ Representation of a system by FTS

@ Sound & complete

U = <N,N0;Ea/1'afanaAaf>

‘4 %
VT .
N i
B o
L Tio J
o i

Thursday, December 17, 2009

Verification Diagrams

@ Representation of a system by FTS

@ Sound & complete

U = <N,N0;Ea/1'afanaAaf>

;"’/fp Eﬁ‘g
e :
f/” ““xﬂ f_f
L T8 '1 T
Nl 3
e —————— S
1)
/F 2 e H\ f,f"
i;‘ ’;rzz ‘-J:, ... o
"—“H_‘_‘_ f‘_.g

Thursday, December 17, 2009

Verification Diagrams

@ Representation of a system by FTS

@ Sound & complete

U = <N,N0;Ea/1'afanaAaf>

p o

Thursday, December 17, 2009

Verification Diagrams

@ Representation of a system by FTS

@ Sound & complete

U = <N,N0;Ea/1'afanaAaf>

A o
i Wt ~ /
bt 2 ihe) i

OO pred

Thursday, December 17, 2009

Verification Diagrams

@ Representation of a system by FTS

@ Sound & complete

U = <N,NO>E3/1'VF977)A9]C>

e T
afager “xh{ s } J
e LT) .
3
{7}
.. ~.
.............. _ii’f {) } ﬁﬁ
alt ;S /
71 9 p ?"'E’d ,, ... i
i Pl

Main Idea

Thursday, December 17, 2009

Main Idea

Concurrent Data Structure

Main Idea

Concurrent Data Structure

Main Idea

Concurrent D/a’ra Structure

Most General Client [N] 0

(extended with GV)

Main Idea

Concurrent D/a’ra Structure

Most General Client [N] V] P

(extended with GV)

Main Idea

Concurrent D/a’ra Structure

Most General Client [N] V] P

(extended with GV)

@ Verification conditions like: initialization,
consecution, acceptance, fairness, satisfaction...

Thursday, December 17, 2009

Main Idea

Concurrent D/a’ra Structure

Most General Client [N] «——

(extended with GV)

@ Verification conditions like: initialization, \/
consecution, acceptance, fairness, satisfaction...

Thursday, December 17, 2009

Skiplists

Thursday, December 17, 2009

Skiplists

® Sorted list of elements

Skiplists

® Sorted list of elements

fread fast
R e g 5 e ! e e gy
—o0| | S 8 | L ABHT oot TR S i R8sl | oo |

Thursday, December 17, 2009

Skiplists

® Sorted list of elements

@ Hierarchy of linked lists

nead Lat

P IS R el e e e S
—o0| | S g | L ABFT oot TS Sl R8s, | oo)

Thursday, December 17, 2009

Skiplists

® Sorted list of elements

@ Hierarchy of linked lists

nead Lat

» :E o5 ® A . il
| | :

| eded el }. e } §=r |)E ‘ S il F. e E ____________ ;. .o g __________ } F R B S :} ;F ﬁ?g

—oo| {5 | 18] BT 22] (290 oM ENOY |88 |roc)

Thursday, December 17, 2009

Skiplists

® Sorted list of elements

@ Hierarchy of linked lists

nead Lat

%%%%%%%%%%%%%%%%%
3 =
* SREl ¥ il
2
.

. ;E G e *u ® 1
:

P R L el e e e S
—oo| 15| hgd (NEEE D RS e i

Thursday, December 17, 2009

Skiplists

® Sorted list of elements

@ Hierarchy of linked lists

fread st

. 1

" .. i
____________________________ fhdt

y s e Ny il

| eded el B! e 5 §=r |)% [SR B G e l._._....F. e E ____________ > .o g __________ 5 F R B B L :} F ﬁ?g

e § o JBNT 22 1290 as o 88 |+

Thursday, December 17, 2009

Skiplists

® Sorted list of elements
@ Hierarchy of linked lists

@ Efficiency comparable to balanced binary
search trees

fread st

. 1

" .. i
____________________________ fhdt

y s e Ny il

| eded el B! e 5 §=r |)% [SR B G e l._._....F. e E ____________ > .o g __________ 5 F R B B L :} F ﬁ?g

e § o JBNT 22 1290 as o 88 |+

Thursday, December 17, 2009

Skiplists

® Sorted list of elements
@ Hierarchy of linked lists

@ Efficiency comparable to balanced binary
search trees

feead last

A il

3 " .. i
............................ %.._.....w

2 * } i » X . il

1 | eded el B! e 5 §=r |)% [SR B G e l._._....F. e E ____________ > .o g ___________ 5 F R B B L :} F ﬁ?g

—| | 5 8 | JBHT oo oo S O R Rs | o

Thursday, December 17, 2009

Fine-grained lock-coupling
concurrent skiplists

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

Thursday, December 17, 2009

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

insert*(9)

Thursday, December 17, 2009

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

insert'®(9) level = 2

Thursday, December 17, 2009

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

insert'®(9) level = 2

Thursday, December 17, 2009

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

insert'®(9) level = 2

Thursday, December 17, 2009

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

insert'®(9) level = 2

Thursday, December 17, 2009

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

insert'®(9) level = 2

Thursday, December 17, 2009

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

insert'®(9) level = 2

Thursday, December 17, 2009

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

insert'®(9) level = 2

Thursday, December 17, 2009

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

insert'®(9) level = 2

Thursday, December 17, 2009

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

insert'®(9) level = 2

Thursday, December 17, 2009

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

insert'®(9) level = 2

Thursday, December 17, 2009

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

insert'®(9) level = 2

Thursday, December 17, 2009

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

insert'®(9) level = 2

Thursday, December 17, 2009

Fine-grained lock-coupling
concurrent skiplists

@ Reduce granularity of locks

@ Locks acquired and released in climbing
fashion

insert'®(9) level = 2

Thursday, December 17, 2009

Fine-grained lock-coupling CSL

Fine-grained lock-coupling CSL

Alporithm 4 Insertion on a2 lock-coupling concurrent skiplist

L: procedure Ixspwr{SkipLost =f, Key k, Value neweol)
Veclor <0 Nodes > wpdele[l..sLmgzlevel] /8 mren m,. — emnp

insert(sl, v

S B

el ;= randoriLevel()
Node = prad - — &8 head

55 pred locks Tel lock () i— e U (pred, forwand [Tnl])

Fed]

i Node = curr = pred, foruward
[Ful]. fuck()

H: for ¢ i— [ef downte 1 do

i if ¢ < lul Lhen

18 meed ocks i dockl)
) L

= e U fourr, forward [fel]}

€

e i— e i (pred, forwerd [t
BE; curr :— pred. forward (]

5 cwrr Jocks [lock() £ AGE e e U (curr, forward(E])
%5 end if

i while curr ke
§ = I iz
Ban el loch

y < kdo

i urdock()

=

. i— e — (pred, forward i)
Efy; predd = ourr
IV curr :— pred forward (]

N cuiT docks

i ok SO e o= e O curr, forward (i)}
i end while

2k update] i — pred

oif end for

22 if cwrr.key — & then

2k curr ped — newval

24 for i ;= 1 to o do
2 update [¢ forward (7] locks i) unlock(}

FA8 e = e, — (update[i forwand 5], forward i)
£ update i Jocks[i unlock{) SEE e = e — (epdale [i], forward|[2])
. end for
28 else
25 i« o= ChreafeNode (lel, b newval)
Ak fori:= 1 wizl do
ik i« Jorward|i] = updateld forward <]
32 update [¢ forwardii] ;= ¢ (i

| SN S
___'I ol

G B f Ao S

e

L

! rre, = e, — (o forward [, forwand i)
E e i e — (updale i), forward[])

% i forwerd|i] ¢ wrlock{) //
3L update [¢ Jocks[i unloek!)
33 end for

135 end if

47 end procedure

Thursday, December 17, 2009

Fine-grained lock-coupling CSL

Alporithm 4 Insertion on a2 lock-coupling concurrent skiplist

= L: procedure Ixspwr{SkipLost =f, Key k, Value neweol)
Zns ert Sl v 74 Veclor <0 Nodes > wpdele[l..sLmgzlevel] /8 mren m,. — emnp
) Az el ;= randoriLevel()

1 Noude = pred (— s head
&3 pred locks Tel lock () A e = e U (pred, forwand (Mol)
Node = curr i— pred . forward [Led]
curr doeks[fol] doek () A8 e s e L e, forwerd [Fol])
B for ¢ :— [vf downto 1 do

i if @ = ol then
305 pred docks|i dock() SEE e i— e U (pred, forward[i)
BE; curr :— pred. forward (]
B curr locks[i loek{) SAE e = e U curr, forward (]
L end 1f
i while curr key = £ do
B vred . locks [t unlock{) SO g i— . — {pred, forward 8]
Efy; predd = ourr

IV curr :— pred forward (]

M curr docks[i doek() SO e o= e O curr, forward (i)}

< I end while
2k update] i — pred
ol - end for

[while curr.key < k do
pred.locks i .unlock() //Q m, = m, — (pred, forward i)
pred = SCUnr

curr := pred.forwardly
curr.locks i-.lock{) i e S e umr forward |1
end while

Thursday, December 17, 2009

Fine-grained lock-coupling CSL

insert(sl,v) search(sl,v) remove(sl,v)

[while curr.key < k do

pred.locks i .unlock() //@ m, = m, — {pred, forwardi)
pred = SCUnr

curr := pred.forwardly

curr.locks i..lock() Sl =S R cUEr Sforward 11)
| end while

Thursday, December 17, 2009

Fine-grained lock-coupling CSL

insert(sl,v) search(sl,v) remove(sl,v) decide(sl)

[while curr.key < k do

pred.locks i .unlock() //@ m, = m, — {pred, forwardi)
pred = SCUnr

curr := pred.forwardly

curr.locks i..lock() Sl =S R cUEr Sforward 11)
| end while

Thursday, December 17, 2009

Fine-grained lock-coupling CSL

insert(sl,v) search(sl,v) remove(sl,v) decide(sl)

Fine-grained lock-coupling CSL

insert(sl,v) search(sl,v) remove(sl,v) decide(sl)

1;

Fine-grained lock-coupling CSL

insert(sl,v) search(sl,v) remove(sl,v) decide(sl)

Ti Pinsert (Z)

id 3] [4]

Pinsert(1) = At ANSETts op' 2 GLAINSETL S " o UL AL_INSETT o

Fine-grained lock-coupling CSL

insert(sl,v) search(sl,v) remove(sl,v) decide(sl)

HjeTID—{i} Tj H 1; @insert(i)

id 3] [4]

Pinsert(1) = At ANSETts op' 2 GLAINSETL S " o UL AL_INSETT o

Fine-grained lock-coupling CSL

insert(sl,v) search(sl,v) remove(sl,v) decide(sl)

HjeTID—{i} Tj H 1; @insert(i)

I

L

I

id 3] [4]

Pinsert(1) = At ANSETts op' 2 GLAINSETL S " o UL AL_INSETT o

Fine-grained lock-coupling CSL

Fine-grained lock-coupling CSL

-~ -

5 "~

i 5

|]

H
- - -

o w8 i
¥ J
h. 0 "
e LA A]

o -

i .
N -\‘ K P
- Y 3 L) o
& . A |
=
= 1
' &

- B ! . et o |5 =
F v = = R s
— ..
r LY
iy o 1
: [:
i . -

Thursday, December 17, 2

Fine-grained lock-coupling CSL

-~ -

5 "~

i 5

|]

H
- - -

o w8 i
¥ J
h. 0 "
e LA A]

o -

i .
N -\‘ K P
- Y 3 L) o
& . A |
=
= 1
' &

- B ! . et o |5 =
F v = = R s
— ..
r LY
iy o 1
: [:
i . -

Thursday, December 17, 2

Fine-grained lock-coupling CSL

{#r?l] } f’ {mi'ﬁJ ,__l;:rj}
insertg 13 gsrniva 15 iR AN -
s o gl AL
/ 3 gt s 14..16.18.19.20 L”Mry
554 i

{ T‘eil ErLaEs } { Ti[éj erty 6 } i { ; Lj } NH‘
\ @ - \ ./j

4. e mseﬁi;/\l

1S EeTt x’

,_-*

Thursday, December 17, 2009

Fine-grained lock-coupling CSL

14: while curr. Ley < k do

15 pred.locks i .unlock() 1@ m, .= m, —(pred, forwardi)
16: Dredsi=r il

7 CURT & p-red forward i

18: curr.locks i-.lock() /e -\ BEtlrr, forward (i)
9. end while

{#r?” } f’ { & ,._L;:rj}
nserio 4 “insert14,15.18,19" -

N

s (4] o
/"'5'}\1’13 . axt ??’?Jbﬁrﬁ:{f’é Eﬁ' 18 _E f} JU /\‘ IL”&f 'ry G
i &
{T'ﬁ;?”tiﬁ??“t e } {Ti[?gﬁrt 16 } { Y, [:j -. } ’“‘
-
2 , i Al) ot
1\1:}4 b QLGB CRE g7 Im sert]

Thursday, December 17, 2009

Fine-grained lock-coupling CSL

Verification conditions

I

” 7 //r kU
{Tl] } / {Ti'ﬁJ A }
linsertg 13 @EeTE 14, 15,18 185 -

/o i) . Rl
/ﬁﬂg : at ??v?bf:l}”"tjé Iﬁr 18 Ef} JU /\\ I.{,”i‘)f .ry

BT _H“\H

] } { 1] } / {,,_U} \
{ Tinsert s Tinsert 16 ! ’u‘

N /
b @4 . at_insertt ,1, /\Im “D i

Thursday, December 17, 2009

Fine-grained lock-coupling CSL

Verification conditions v

I

” 7 //r kU
{Tl] } / {Ti'ﬁJ A }
linsertg 13 @EeTE 14, 15,18 185 -

/o i) . Rl
/ﬁﬂg : at ??v?bf:l}”"tjé Iﬁr 18 Ef} JU /\\ I.{,”i‘)f .ry

BT _H“\H

] } { 1] } / {,,_U} \
{ Tinsert s Tinsert 16 ! ’u‘

N /
b @4 . at_insertt ,1, /\Im “D i

Thursday, December 17, 2009

Fine-grained lock-coupling CSL

Verification conditions v

I'jeTID—{i} Tj H 1; Soinsert(i)

Fine-grained lock-coupling CSL

Verification conditions v

7
!

I'jeTID—{i} Tj H 1; Soinsert(i)

Conclusions

Conclusions

@ A method to formally verify temporal
properties over concurrent data structures

Thursday, December 17, 2009

Conclusions

@ A method to formally verify temporal
properties over concurrent data structures

@ Not just limited fo safety properties

Thursday, December 17, 2009

Conclusions

@ A method to formally verify temporal
properties over concurrent data structures

@ Not just limited fo safety properties

@ A different approach to Separation Logic

Thursday, December 17, 2009

Conclusions

@ A method to formally verify temporal
properties over concurrent data structures

@ Not just limited fo safety properties
@ A different approach to Separation Logic

@ Good results over many mutable data
structures

Thursday, December 17, 2009

Conclusions

@ A method to formally verify temporal
properties over concurrent data structures

@ Not just limited fo safety properties
@ A different approach to Separation Logic

@ Good results over many mutable data
structures

@ Experience shows possibility of working with
parameterized VD

Thursday, December 17, 2009

Future work

Future work

® Extend the work over other concurrent data
structures

Thursday, December 17, 2009

Future work

® Extend the work over other concurrent data
structures

@ Enrich verifications diagrams

Thursday, December 17, 2009

Future work

® Extend the work over other concurrent data
structures

@ Enrich verifications diagrams

@ Automatic generation of verification
conditions

Thursday, December 17, 2009

Future work

® Extend the work over other concurrent data
structures

@ Enrich verifications diagrams

@ Automatic generation of verification
conditions

@ Analyze decidability of involved logics

Thursday, December 17, 2009

Future work

® Extend the work over other concurrent data
structures

@ Enrich verifications diagrams

@ Automatic generation of verification
conditions

@ Analyze decidability of involved logics

@ Development of assisted decision procedures

Thursday, December 17, 2009

Future work

® Extend the work over other concurrent data
structures

@ Enrich verifications diagrams

@ Automatic generation of verification
conditions

@ Analyze decidability of involved logics
@ Development of assisted decision procedures

@ This Is just the beginning

Thursday, December 17, 2009

Questions ?

