Tractable Enforcement of Declassification Policies

Gilles Barthe¹ Salvador Cavadini Tamara Rezk²

¹ IMDEA Software, Madrid, Spain

² INRIA Sophia-Antipolis Méditerranée, France

- Information flow policies guarantee end-to-end security
- Baseline policies (i.e. non-interference) can be enforced efficiently via type systems
- However baseline policies are too restrictive in practice
- Declassification policies allow intentional information release
 - what
 - where
 - $\bullet~{\rm who}$
- Existing enforcement mechanisms for source languages

Information flow for JVM

- Previous work proposes a lightweight information flow verifier for sequential JVM (inc. objects, methods, and exceptions)
- Transfer rules of the form (simplified)

 $\frac{P[i] = ins \quad \text{constraints}}{S, se, i \vdash st \Rightarrow st'}$

- Assumptions on control dependence regions
- Proof follows from unwinding lemmas and inductive argument on pairs of traces
- Machine-checked implementation and verification in Coq
- Type-preserving compilation
- Extension to concurrency (for restricted fragment)

Information flow policy that:

- supports controlled release of information,
- that can be enforced efficiently,
- with a modular proof of soundness,
- instantiable to bytecode (here: for restricted fragment)
- can reuse machine-checked proofs (left for future work)

- Setting is heavily influenced by non-disclosure, but allows declassification of a variable rather than of a principal.
- Policy is local to each program point:
 - modeled as an indexed family $(\sim_{\Gamma[i]})_{i\in\mathcal{P}}$ of relations on states
 - each $\sim_{\Gamma[i]}$ is symmetric and transitive
 - monotonicity of equivalence

$$\Gamma[i] \leq \Gamma[j] \wedge s \sim_{\Gamma[i]} t \Rightarrow s \sim_{\Gamma[j]} t$$

(properties hold when relations are induced by the security level of variables)

P satisfies delimited non-disclosure (DND) iff entry \mathcal{R} entry, where $\mathcal{R} \subseteq \mathcal{P} \times \mathcal{P}$ satisfies for every $i, j \in \mathcal{P}$:

- if $i \mathcal{R} j$ then $j \mathcal{R} j$;
- if $i \mathcal{R} j$ then for all s_i, t_j and $s'_{i'}$ s.t.

$$s_i \rightsquigarrow s'_{i'} \land s_i \sim_{\Gamma[i]} t_j \land \operatorname{safe}(t_j)$$

there exists $t'_{j'}$ such that:

$$t_j \rightsquigarrow^{\star} t'_{j'} \land s'_{i'} \sim_{\Gamma[\mathsf{entry}]} t'_{j'} \land i' \ \mathcal{R} \ j'$$

One could use a construction declassify (e) in $\{c\}$ and compute local policies from program syntax:

$$[l_1:=0]^1 \ ; \ {\tt declassify} \ (h) \ {\tt in} \ \{ \ [l_2:=h]^2 \ \} \ ; \ [l_3:=l_2]^3$$

yields

$$\begin{split} &\Gamma[1](l_1) = \Gamma[1](l_2) = \Gamma[1](l_3) = L \\ &\Gamma[1](h) = H \\ &\Gamma[2](l_1) = \Gamma[2](l_2) = \Gamma[2](l_3) = L \\ &\Gamma[2](h) = L \\ &\Gamma[3] = \Gamma[1] \end{split}$$

Declassification of expressions through fresh local variables:

declassify (h>0) in { [if (h>0) then { $[l:=0]^2$ }] 1 }

becomes

$$[h':=h>0]^1$$
;
declassify (h') in { [if (h') then { $[l:=0]^3$ }]² }

.

DND type system

• Given a NI type system $\Gamma, S, se \vdash i$; think as a shorthand for

$$\exists s_j. \ \Gamma[i], S, se \vdash S(i) \Rightarrow s_j \land s_j \le S(j)$$

• Define a DND type system $(\Gamma[j])_{j\in\mathcal{P}}, S, se \vdash i$ as

 $\Gamma[i], S, se \vdash i$

(Note: not so easy for source languages)

• Program P is typable w.r.t. policy $(\Gamma[j])_{j \in \mathcal{P}}$ and type S iff for all i

 $\Gamma[i], S, se \vdash i$

Soundness

If $(\Gamma[j])_{j \in \mathcal{P}}, S, se \vdash P$ then P satisfies DND.

• Policies must respect no creep up, ie $\Gamma[i](x) \leq \Gamma[\mathsf{entry}](x)$

Unwinding+Progress

• Unwinding: if $\Gamma, S \vdash_{NI} i$ then

$$(s_i \sim_{\Gamma} t_i \wedge s_i \rightsquigarrow s'_{i'} \wedge t_i \rightsquigarrow t'_{j'}) \Rightarrow s'_{i'} \sim_{\Gamma} t'_{j'}$$

• Progress: if i is not an exit point and safe(s_i) then there exists t s.t. $s_i \rightsquigarrow t$

$$\left. \begin{array}{c} (\Gamma[i])_{i \in \mathcal{P}}, S \vdash_{DND} P \\ s_i \sim_{\Gamma[i]} t_i \\ s_i \rightsquigarrow s'_{i'} \\ \mathrm{safe}(t_i) \end{array} \right\} \Rightarrow \exists t'_{j'}. \ t_i \rightsquigarrow t'_{j'} \land s'_{i'} \sim_{\Gamma[\mathsf{entry}]} t'_{j'}$$

• Syntax:

instr	::=	prim op	primitive operation
		push v	push value on top of stack
	Í	load x	load value of x on stack
	Í	store x	store top of stack in x
	Í	ifeq j	conditional jump
	Í	goto j	unconditional jump
	İ	return	return

• Type system: transfer rules of the form

$$\frac{P[i] = ins \quad constraints}{i \vdash st \Rightarrow st'} \qquad \frac{P[i] = ins \quad constraints}{i \vdash st \Rightarrow}$$

where $st, st' \in \mathcal{S}^*$

Type system for JVM fragment

• Rules:

$$\frac{P[i] = \text{push } n}{i \vdash_{DND} st \Rightarrow se(i) :: st}} \qquad P[i] = \text{binop } op}{i \vdash_{DND} k_1 :: k_2 :: st \Rightarrow (k_1 \sqcup k_2) :: st}} \\
\frac{P[i] = \text{store } x \quad se(i) \sqcup k \leq \Gamma_i(x)}{i \vdash_{DND} k :: st \Rightarrow st} \qquad P[i] = \text{load } x}{i \vdash_{DND} st \Rightarrow (\Gamma_i(x) \sqcup se(i))} \\
\frac{P[i] = \text{goto } j}{i \vdash_{DND} st \Rightarrow st} \qquad P[i] = \text{return } se(i) = L \\
\frac{P[i] = \text{ifeq } j \quad \text{loop}(i) \Rightarrow k = L \lor \text{term}(i) \quad \forall j' \in \text{region}(i), \ k \leq se(j') \\
i \vdash_{DND} k :: \epsilon \Rightarrow \epsilon
\end{aligned}$$
• Soundness uses unwinding and CDB properties (the latter can be

• Soundness uses unwinding and CDR properties (the latter can be checked automatically)

.

$[h:=h']^1$; declassify (h) in { $[l:=h]^2$ }

- Such programs are insecure w.r.t. policies such as localized delimited release.
- It is possible to define a simple effect system that prevents laundering attacks:
 - judgments are of the form $\vdash_{LA} c : U, V$
 - U is the set of assigned variables
 - V is the set of declassified variables

- Modular method for enforcing information flow policies that support controlled information release
- Applicable to bytecode languages
- Type-preserving compilation for language with declassify statements
- Future work
 - Formal comparison with other policies
 - Multi-threaded JVM
 - Machine-checked proofs in Coq