
Tractable Enforcement of Declassification
Policies

Gilles Barthe1 Salvador Cavadini Tamara Rezk2

1 IMDEA Software, Madrid, Spain

2 INRIA Sophia-Antipolis Méditerranée, France

ReSeCo’08 Tractable Enforcement of Declassification Policies

Motivations

Information flow policies guarantee end-to-end security
Baseline policies (i.e. non-interference) can be enforced efficiently
via type systems
However baseline policies are too restrictive in practice
Declassification policies allow intentional information release

what
where
who

Existing enforcement mechanisms for source languages

ReSeCo’08 Tractable Enforcement of Declassification Policies

Information flow for JVM

Previous work proposes a lightweight information flow verifier for
sequential JVM (inc. objects, methods, and exceptions)
Transfer rules of the form (simplified)

P [i] = ins constraints
S, se, i ` st⇒ st′

Assumptions on control dependence regions
Proof follows from unwinding lemmas and inductive argument on
pairs of traces
Machine-checked implementation and verification in Coq
Type-preserving compilation
Extension to concurrency (for restricted fragment)

ReSeCo’08 Tractable Enforcement of Declassification Policies

Goal

Information flow policy that:
supports controlled release of information,
that can be enforced efficiently,
with a modular proof of soundness,
instantiable to bytecode (here: for restricted fragment)
can reuse machine-checked proofs (left for future work)

ReSeCo’08 Tractable Enforcement of Declassification Policies

Policy setting

Setting is heavily influenced by non-disclosure, but allows
declassification of a variable rather than of a principal.
Policy is local to each program point:

modeled as an indexed family (∼Γ[i])i∈P of relations on states
each ∼Γ[i] is symmetric and transitive
monotonicity of equivalence

Γ[i] ≤ Γ[j] ∧ s ∼Γ[i] t⇒ s ∼Γ[j] t

(properties hold when relations are induced by the security level
of variables)

ReSeCo’08 Tractable Enforcement of Declassification Policies

Delimited non-disclosure

P satisfies delimited non-disclosure (DND) iff entry R entry, where
R ⊆ P × P satisfies for every i, j ∈ P:

if i R j then j R j;
if i R j then for all si, tj and s′i′ s.t.

si s′i′ ∧ si ∼Γ[i] tj ∧ safe(tj)

there exists t′j′ such that:

tj
? t′j′ ∧ s′i′ ∼Γ[entry] t′j′ ∧ i′ R j′

ReSeCo’08 Tractable Enforcement of Declassification Policies

Local policies vs. declassify statements

One could use a construction declassify (e) in { c } and compute
local policies from program syntax:

[l1 := 0]1 ; declassify (h) in { [l2 := h]2 } ; [l3 := l2]3

yields
Γ[1](l1) = Γ[1](l2) = Γ[1](l3) = L
Γ[1](h) = H
Γ[2](l1) = Γ[2](l2) = Γ[2](l3) = L
Γ[2](h) = L
Γ[3] = Γ[1]

ReSeCo’08 Tractable Enforcement of Declassification Policies

Where is what?

Declassification of expressions through fresh local variables:

declassify (h > 0) in { [if (h > 0) then { [l := 0]2 }]1 }

becomes

[h′ := h > 0]1 ;
declassify (h′) in { [if (h′) then { [l := 0]3 }]2 }

ReSeCo’08 Tractable Enforcement of Declassification Policies

DND type system

Given a NI type system Γ, S, se ` i; think as a shorthand for

∃sj . Γ[i], S, se ` S(i)⇒ sj ∧ sj ≤ S(j)

Define a DND type system (Γ[j])j∈P , S, se ` i as

Γ[i], S, se ` i

(Note: not so easy for source languages)
Program P is typable w.r.t. policy (Γ[j])j∈P and type S iff for all
i

Γ[i], S, se ` i

Soundness

If (Γ[j])j∈P , S, se ` P then P satisfies DND.

Policies must respect no creep up, ie Γ[i](x) ≤ Γ[entry](x)

ReSeCo’08 Tractable Enforcement of Declassification Policies

Unwinding+Progress

Unwinding: if Γ, S `NI i then

(si ∼Γ ti ∧ si s′i′ ∧ ti t′j′)⇒ s′i′ ∼Γ t′j′

Progress: if i is not an exit point and safe(si) then there exists t
s.t. si t

(Γ[i])i∈P , S `DND P
si ∼Γ[i] ti
si s′i′
safe(ti)

⇒ ∃t′j′ . ti t′j′ ∧ s′i′ ∼Γ[entry] t′j′

ReSeCo’08 Tractable Enforcement of Declassification Policies

Instantiation to JVM fragment

Syntax:

instr ::= prim op primitive operation
| push v push value on top of stack
| load x load value of x on stack
| store x store top of stack in x
| ifeq j conditional jump
| goto j unconditional jump
| return return

Type system: transfer rules of the form

P [i] = ins constraints

i ` st⇒ st′
P [i] = ins constraints

i ` st⇒

where st, st′ ∈ S?

ReSeCo’08 Tractable Enforcement of Declassification Policies

Type system for JVM fragment

Rules:
P [i] = push n

i `DND st⇒ se(i) :: st

P [i] = binop op

i `DND k1 :: k2 :: st⇒ (k1 t k2) :: st

P [i] = store x se(i) t k ≤ Γi(x)

i `DND k :: st⇒ st

P [i] = load x

i `DND st⇒ (Γi(x) t se(i)) :: st

P [i] = goto j

i `DND st⇒ st

P [i] = return se(i) = L

i `DND k :: st⇒ ε

P [i] = ifeq j loop(i)⇒ k = L ∨ term(i) ∀j′ ∈ region(i), k ≤ se(j′)
i `DND k :: ε⇒ ε

Soundness uses unwinding and CDR properties (the latter can be
checked automatically)

ReSeCo’08 Tractable Enforcement of Declassification Policies

Laundering attacks

[h := h′]1 ; declassify (h) in { [l := h]2 }

Such programs are insecure w.r.t. policies such as localized
delimited release.
It is possible to define a simple effect system that prevents
laundering attacks:

judgments are of the form `LA c : U, V
U is the set of assigned variables
V is the set of declassified variables

ReSeCo’08 Tractable Enforcement of Declassification Policies

Conclusion

Modular method for enforcing information flow policies that
support controlled information release
Applicable to bytecode languages
Type-preserving compilation for language with declassify
statements
Future work

Formal comparison with other policies
Multi-threaded JVM
Machine-checked proofs in Coq

ReSeCo’08 Tractable Enforcement of Declassification Policies

