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Motivations

Information flow policies guarantee end-to-end security
Baseline policies (i.e. non-interference) can be enforced efficiently
via type systems
However baseline policies are too restrictive in practice
Declassification policies allow intentional information release

what
where
who

Existing enforcement mechanisms for source languages
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Information flow for JVM

Previous work proposes a lightweight information flow verifier for
sequential JVM (inc. objects, methods, and exceptions)
Transfer rules of the form (simplified)

P [i] = ins constraints
S, se, i ` st⇒ st′

Assumptions on control dependence regions
Proof follows from unwinding lemmas and inductive argument on
pairs of traces
Machine-checked implementation and verification in Coq
Type-preserving compilation
Extension to concurrency (for restricted fragment)
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Goal

Information flow policy that:
supports controlled release of information,
that can be enforced efficiently,
with a modular proof of soundness,
instantiable to bytecode (here: for restricted fragment)
can reuse machine-checked proofs (left for future work)
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Policy setting

Setting is heavily influenced by non-disclosure, but allows
declassification of a variable rather than of a principal.
Policy is local to each program point:

modeled as an indexed family (∼Γ[i])i∈P of relations on states
each ∼Γ[i] is symmetric and transitive
monotonicity of equivalence

Γ[i] ≤ Γ[j] ∧ s ∼Γ[i] t⇒ s ∼Γ[j] t

(properties hold when relations are induced by the security level
of variables)
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Delimited non-disclosure

P satisfies delimited non-disclosure (DND) iff entry R entry, where
R ⊆ P × P satisfies for every i, j ∈ P:

if i R j then j R j;
if i R j then for all si, tj and s′i′ s.t.

si  s′i′ ∧ si ∼Γ[i] tj ∧ safe(tj)

there exists t′j′ such that:

tj  
? t′j′ ∧ s′i′ ∼Γ[entry] t′j′ ∧ i′ R j′
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Local policies vs. declassify statements

One could use a construction declassify (e) in { c } and compute
local policies from program syntax:

[l1 := 0]1 ; declassify (h) in { [l2 := h]2 } ; [l3 := l2]3

yields
Γ[1](l1) = Γ[1](l2) = Γ[1](l3) = L
Γ[1](h) = H
Γ[2](l1) = Γ[2](l2) = Γ[2](l3) = L
Γ[2](h) = L
Γ[3] = Γ[1]
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Where is what?

Declassification of expressions through fresh local variables:

declassify (h > 0) in { [if ( h > 0 ) then { [l := 0]2 }]1 }

becomes

[h′ := h > 0]1 ;
declassify (h′) in { [if ( h′ ) then { [l := 0]3 }]2 }
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DND type system

Given a NI type system Γ, S, se ` i; think as a shorthand for

∃sj . Γ[i], S, se ` S(i)⇒ sj ∧ sj ≤ S(j)

Define a DND type system (Γ[j])j∈P , S, se ` i as

Γ[i], S, se ` i

(Note: not so easy for source languages)
Program P is typable w.r.t. policy (Γ[j])j∈P and type S iff for all
i

Γ[i], S, se ` i

Soundness

If (Γ[j])j∈P , S, se ` P then P satisfies DND.

Policies must respect no creep up, ie Γ[i](x) ≤ Γ[entry](x)
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Unwinding+Progress

Unwinding: if Γ, S `NI i then

(si ∼Γ ti ∧ si  s′i′ ∧ ti  t′j′)⇒ s′i′ ∼Γ t′j′

Progress: if i is not an exit point and safe(si) then there exists t
s.t. si  t

(Γ[i])i∈P , S `DND P
si ∼Γ[i] ti
si  s′i′
safe(ti)

⇒ ∃t′j′ . ti  t′j′ ∧ s′i′ ∼Γ[entry] t′j′
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Instantiation to JVM fragment

Syntax:

instr ::= prim op primitive operation
| push v push value on top of stack
| load x load value of x on stack
| store x store top of stack in x
| ifeq j conditional jump
| goto j unconditional jump
| return return

Type system: transfer rules of the form

P [i] = ins constraints

i ` st⇒ st′
P [i] = ins constraints

i ` st⇒

where st, st′ ∈ S?
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Type system for JVM fragment

Rules:
P [i] = push n

i `DND st⇒ se(i) :: st

P [i] = binop op

i `DND k1 :: k2 :: st⇒ (k1 t k2) :: st

P [i] = store x se(i) t k ≤ Γi(x)

i `DND k :: st⇒ st

P [i] = load x

i `DND st⇒ (Γi(x) t se(i)) :: st

P [i] = goto j

i `DND st⇒ st

P [i] = return se(i) = L

i `DND k :: st⇒ ε

P [i] = ifeq j loop(i)⇒ k = L ∨ term(i) ∀j′ ∈ region(i), k ≤ se(j′)
i `DND k :: ε⇒ ε

Soundness uses unwinding and CDR properties (the latter can be
checked automatically)
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Laundering attacks

[h := h′]1 ; declassify (h) in { [l := h]2 }

Such programs are insecure w.r.t. policies such as localized
delimited release.
It is possible to define a simple effect system that prevents
laundering attacks:

judgments are of the form `LA c : U, V
U is the set of assigned variables
V is the set of declassified variables
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Conclusion

Modular method for enforcing information flow policies that
support controlled information release
Applicable to bytecode languages
Type-preserving compilation for language with declassify
statements
Future work

Formal comparison with other policies
Multi-threaded JVM
Machine-checked proofs in Coq
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