Towards Secure Distributed Computations

Towards Secure Distributed Computations

[l ReSeCo Workshop

Felipe Zipitria

Grupo de Seguridad
Instituto de Computacién
Facultad de Ingenieria - UdelaR

November 25th, 2008

Towards Secure Distributed Computations

Outline

Motivation
m Introduction
m Context
m Programming languages
m Security

Proposal
m Introduction
m Certifying algorithms

A PCR Infrastructure
m Protocol and model
m Certified result communication

Contributions
Conclusions & Future Work @

Towards Secure Distributed Computations
L Motivation

L introduction

Outline

Motivation
m Introduction

Towards Secure Distributed Computations
L Motivation

L introduction

This talk will be about

Distributed computations

Distributed programming methodology

[
[

m Proof checking
m Proof Carrying Results
[

Security

Towards Secure Distributed Computations
L Motivation
L Context

Outline

Motivation

m Context

Towards Secure Distributed Computations
L Motivation
L Context

Distributed computations

m Grids - Volunteer computing

| @

m Distributed.NET (RC5)
m PrimeGrid (Mersenne #45 and #46 < 2 weeks!)

Towards Secure Distributed Computations

L Motivation

L Context

Distributed computations

m Grids - Volunteer computing

| @

m Distributed.NET (RC5)
m PrimeGrid (Mersenne #45 and #46 < 2 weeks!)

SETI Detected problems

Incorrect results were returned!

m from overclockers

m from modified algorithms

Towards Secure Distributed Computations

L Motivation

L Context

Distributed computations

m Grids - Volunteer computing

| @

m Distributed.NET (RC5)
m PrimeGrid (Mersenne #45 and #46 < 2 weeks!)

SETI Detected problems

Incorrect results were returned!

m from overclockers

m from modified algorithms

Verification technique

Result checking L

Towards Secure Distributed Computations
L Motivation
L Context

Distributed programming methodology

m Computational framework
m Components
m Modularisation

m Abstraction

Towards Secure Distributed Computations
L Motivation

L Programming languages

Outline

Motivation

m Programming languages

Towards Secure Distributed Computations
L Motivation

L Programming languages

Distributed programming languages

Common/Desirable properties

m A language with a module system which permits us 7to model
ADTs

m Simplified communication of arbitrary values between different
processes

m Safety along the distributed infrastructure/runtime

Towards Secure Distributed Computations

L Motivation

L Programming languages

Safety

Relevant for our distributed infrastructure

We will focus on:

Type-safety

(Progress + preservation) a.k.a. Soundness

Towards Secure Distributed Computations

L Motivation

L Programming languages

Safety

Relevant for our distributed infrastructure

We will focus on:

Type-safety

(Progress + preservation) a.k.a. Soundness

Abstraction-safety

Semantics and type system of the programming language guarantee
abstraction protection

Towards Secure Distributed Computations
L Motivation

L Programming languages

Simplified communication

Definitions

Marshalling The process of gathering data and transforming it into
a standard format before it is transmitted over a
network or saved to a permanent format.

Unmarshalling Reverse process, which transforms data from
standard format back to its original form.

Towards Secure Distributed Computations
L Motivation

L Programming languages

Introducing Acute

m Research language: INRIA Rocquencourt + University of
Cambridge

m ML-like core, with extensions to support distributed
development

m Provides safe and robust mechanisms to develop and execute
separately-built programmes

Towards Secure Distributed Computations
L Motivation

L Programming languages

Acute features

m Allows cooperating programmes to send and receive values
through (untyped) communication channels

m Supports distributed computation of values providing
(un)marshalling procedures

m Primitives for type-safe (un)marshalling

e = .. |marshal e; &o: T | unmarshal e: T | ...

Towards Secure Distributed Computations
L Motivation

L Programming languages

Particular Acute features
Type-safe (un)marshalling

Types are hashed to be used by the type checker
Dynamic type-check at unmarshal time

Type equality is defined simply by equality on hashes
Guarantees both type-safety and abstraction-safety

Towards Secure Distributed Computations
L Motivation

L Programming languages

Acute modularisation

Signatures (Interfaces)
module Prime:
sig
type t
val start: t
val get: t-> int
val next: t->t
end

Structures (Modules)
struct
type t = int
let start = seed
let get x = x
let next x = some_alg x
end

Towards Secure Distributed Computations
L Motivation

L Programming languages

Extending on Acute type equality
Hashing

m A notion of type equality that makes sense is needed across the
entire distributed system

m Type Prime.t is compiled to h.t, where the hash h is (roughly)

module Prime:

3 struct .
e type t = Int
. let start = seed
h = hash (val start:t let get x = x)
val get: t -> int 5 oo s
val next: t ->t o sl

end

end ﬁ

Towards Secure Distributed Computations
L Motivation

L Programming languages

Acute respects abstractions

Example A

proga= send(marshal 5:int)
prog b= module Prime =
: sig struct
val init: t type t = int
val get: t -> int let init = (a seed)
val next: t -> t let get x = x
end let next x = some_alg(x)

end
print_int(Prime.get (unmarshal (receive():Prime.t))

Towards Secure Distributed Computations

L Motivation

L Programming languages

Acute respects abstractions

Example A

proga= send(marshal 5:int)
prog b= module Prime =
: sig struct
val init: t type t = int
val get: t -> int let init = (a seed)
val next: t -> t let get x = x
end let next x = some_alg(x)

end
print_int(Prime.get (unmarshal (receive():Prime.t))

This computation should fail

machineA[prog a] | machineB[prog b] =

Towards Secure Distributed Computations
L Motivation
LSecurity

Outline

Motivation

m Security

Towards Secure Distributed Computations
L Motivation
LSecurity

Active adversary

m An entity who tampers with data

Towards Secure Distributed Computations

L Motivation

LSecurity

Who to trust...

What happens if some attacker steals our type hash?

m Typecheck is made by the sender, before marshal

In the context of active adversaries in our network

prog a = send (raw_marshal {8,hash(module Prime)})
prog b = (same as example A)

Towards Secure Distributed Computations

L Motivation

LSecurity

Who to trust...

What happens if some attacker steals our type hash?

m Typecheck is made by the sender, before marshal

In the context of active adversaries in our network

prog a = send (raw_marshal {8,hash(module Prime)})
prog b = (same as example A)

Invariant of ADT Prime broken!

print_int (Prime.get (unmarshal (receive ()):Prime.t))

Towards Secure Distributed Computations

L Motivation

LSecurity

Who to trust...

What happens if some attacker steals our type hash?

m Typecheck is made by the sender, before marshal

In the context of active adversaries in our network

prog a = send (raw_marshal {8,hash(module Prime)})
prog b = (same as example A)

Invariant of ADT Prime broken!

print_int (Prime.get (unmarshal (receive ()):Prime.t))

m There is no typechecking of values of abstract data types
(other than hash equality)

Towards Secure Distributed Computations
L Motivation
LSecurity

What happens in Acute?

m It is type-safe in a trusted setting
m Works well if we can typecheck our values correctly

m What happens with values of abstract data types?
Representation, for checking, is not available

Towards Secure Distributed Computations

L Motivation

LSecurity

Summary

Context

Distributed programming languages
Abstract data types
Communications are made with primitives (un)marshal

Objective

Definition and experimentation with mechanisms that permit us to
strengthen abstraction-safety properties

Towards Secure Distributed Computations
L Proposal

L introduction

Outline

Proposal
m Introduction

s TE e BT

Towards Secure Distributed Computations
L Proposal

L introduction

Maze example
Can you find the way out?

B

e Y

m Can you do it faster? e

Towards Secure Distributed Computations
L Proposal

L introduction

Approach

Maze solved!

= Mﬁ%ﬁ

m What if we follow the blue dots? = trivial to find the way =
out... @

Towards Secure Distributed Computations

L Proposal

L introduction

Proof Carrying Code

Example

Producer Consumer

if (check

code:

(certificate))

q

(code + certificate)

specification:
use code

else
error

—s certificate

m Code sent to a remote consumer has a certificate
m Certificate is a formal safety proof

m Shows that the code complies with certain specification of
safety rules @

Towards Secure Distributed Computations

L Proposal

L introduction

Proof Carrying Result
Approach & Scheme

m Reuses concepts from PCC
m Based on verification
m Distributed computation among untrusted hosts

computes

Isb = f(a)? <

returns

Untrusted part

Towards Secure Distributed Computations

L Proposal

L introduction

Proof Carrying Result
Approach & Scheme

m Reuses concepts from PCC
m Based on verification
m Distributed computation among untrusted hosts

computes

Isb = f(a)? <

returns

Untrusted part

m We need a way to check that f(a) = b ... but without
computing f(a)
m A certificate

Towards Secure Distributed Computations
L Proposal

L introduction

Proof Carrying Result

More Formally

feA—B,acA
f(a) is delegated to an untrusted party

Towards Secure Distributed Computations
L Proposal

L introduction

Proof Carrying Result

More Formally

Some Definitions

feA—B,acA
f(a) is delegated to an untrusted party

We must have a function

checks € AxB — bool | V(a, b) € AxB, check¢(a, b) = true = b= f(a)

Towards Secure Distributed Computations
L Proposal

L introduction

Proof Carrying Result

More Formally

Some Definitions

feA—B,acA
f(a) is delegated to an untrusted party

We must have a function

checks € AxB — bool | V(a, b) € AxB, check¢(a, b) = true = b= f(a)

m Every function f?

Towards Secure Distributed Computations
L Proposal

L Certifying algorithms

Outline

Proposal

m Certifying algorithms

Towards Secure Distributed Computations
L Proposal

L Certifying algorithms

Approach

function f

O)

certified
function f

checker

-/

accept

reject

Towards Secure Distributed Computations
L Proposal

L Certifying algorithms

Approach

function f

b (\ accept
—

checker .
W reject
| Teject o

N

certified
function f

Fact
Not every algorithm is certifying

Towards Secure Distributed Computations

L Proposal

L Certifying algorithms

Simple examples

GCD(x,y) =dwhered | xAd |y A(Vd',d" | xAd" |y =d|d)

— ExtendedGCD(x,y) = (u,v,d)whered|x Nd|y Nd = ux+ vy

Sorting a list L

— Sorting a List L, and giving its sort order

Towards Secure Distributed Computations
L Proposal

L Certifying algorithms

Adding PCR

m In order to add this technique, we must define an infrastructure
for it

m Certified result communication

Towards Secure Distributed Computations
LA PCR Infrastructure

L Protocol and model

Outline

A PCR Infrastructure
m Protocol and model

Towards Secure Distributed Computations
LA PCR Infrastructure

L Protocol and model

PCR Protocol

Alice a consumer of remote computations
Bob an untrusted producer

Trent a trusted arbitrator

Trent Alice Bob

b= ¢(a),w if ok

error not ok:

A A

b, w

We defined a protocol for doing PCR computations ﬁ
-

Towards Secure Distributed Computations
LA PCR Infrastructure

L Protocol and model

Infrastructure model

A4

v:T|v:T, @ Bob

v:T,w?

v:T|v:T, @
Z | error

Towards Secure Distributed Computations
LA PCR Infrastructure

L Protocol and model

Infrastructure model

A4

v:T|v:T, @ Bob

v:T,w?

v:T|v: T
Z | error

m Simplifying, Alice = Trent

m We will focus on - @

Towards Secure Distributed Computations
LA PCR Infrastructure

L Certified result communication

Outline

A PCR Infrastructure

m Certified result communication

Towards Secure Distributed Computations

LA PCR Infrastructure

L Certified result communication

Current (un)marshal primitives

Syntax and semantics

marshaleie; : T
unmarshale : T'

unmarshal (v:T")
if (T=T") then

marshal (v:T)

> v
else
UnmarshalFailure

Towards Secure Distributed Computations
LA PCR Infrastructure

L Certified result communication

New (un)marshal primitives

Syntax and semantics

Extended with certificate

marshal e; e, : T < certificate >
unmarshal e : T' < certificate >

unmarshal (v:T’cert)
if (T=T" && check(v,T,cert))
marshal (v:T,cert) »| then
v
else
UnmarshalFailure

Towards Secure Distributed Computations
LA PCR Infrastructure

L Certified result communication

How was the language modified?

m Core modifications:

m Lexer
m Parser
m Abstract Syntax Tree

m Contact point with the PCR infrastructure

m A way to check certificates

Towards Secure Distributed Computations
LA PCR Infrastructure
L Certified result communication

What is a certificate?

Our certificate In the implementation

Assertion for a property type assertion = string
Proof of that assertion type proof = string
Another assertion... type certificate = (assertion * proof) list

Towards Secure Distributed Computations

LA PCR Infrastructure

L Certified result communication

Extension of the Acute language

Increase abstraction-safety

Towards Secure Distributed Computations

LA PCR Infrastructure

L Certified result communication

Extension of the Acute language

Increase abstraction-safety

— It will be added at unmarshal time

Towards Secure Distributed Computations

LA PCR Infrastructure

L Certified result communication

Extension of the Acute language

Objective

Increase abstraction-safety

— It will be added at unmarshal time

Means

Checking for a certificate

Towards Secure Distributed Computations
LA PCR Infrastructure

L Certified result communication

Checking certificates

m Proof verification process of the result certification was
performed using COQ

m theoretic support
m large user community

m COQ usage

m the value, its type and certificate are written to a file
m call the COQ compiler on this file

Towards Secure Distributed Computations
LA PCR Infrastructure
L Certified result communication

Full proof sequence

Bob Alice

-~ R - ™
@ @ let (v,C) = unmarshal @

let (v,w) = compute(p) in)
I0.send (marshal v O); marshal (v, C) (IO.recv()) in

TCP/IP

Acute internals @ Acute internals @

Parse certificate C - Send v,C to temp_file
Append parsed certificat - Fork Unix process
to marshal - Invoke COQ prover

Modified Acute
runtime

@ @ return (retval,
output)

A 4

Modified Acute runtime \

<retval, output> =
CcOoQ system cogc -I <DIR> temp_file.v

Towards Secure Distributed Computations
LA PCR Infrastructure

L Certified result communication

Some Details

To be taken into account

m COQ

m <DIR> is not arbitrary: it must be part of the Trusted
Computing Base

| it is a list of filesystem directories that have COQ properties

m Unwanted or problematic commands are filtered out (e.g.
Axiom, Parameter)

m The certificate must prove required properties

m Authenticity of results

Towards Secure Distributed Computations
LA PCR Infrastructure

L Certified result communication

Case study: Certified prime number generation

Pocklington's criteria

Given a natural number n > 1, a witness a, and some pairs
(p1,01),...,(pk,ax), it is sufficient for n to be prime that the
following conditions hold:

P1...pk are prime numbers (1)
(p..p%) | (n—1))

a" ! =1(modn) (3)
Vie{l,.. klged(a® —1,n)=1 (4)

pit..pc >+/n (5) b

Towards Secure Distributed Computations
LA PCR Infrastructure

L Certified result communication

Pocklington's criteria

Certificate

The numbers a, p1,0Q1,..., pk, Ak constitute a Pocklington
certificate.

m Used by the CoqPrime project to certify primes

In the previous example

prog @ = send (raw_marshal {8,hash(module Prime), <cert?>})
prog b = (same as example A)

m A certificate cannot be constructed for that value of abstract
type v/

Towards Secure Distributed Computations

L Contributions

Contributions

m An infrastructure has been defined and implemented for
supporting the technique of proof carrying results,

m the Acute distributed programming language has been
extended, with a mechanism that permits the exchange of
values of abstract types in a certified way, and

m for performing the verification of the results, this infrastructure
has been connected with COQ.

Towards Secure Distributed Computations

L Conclusions & Future Work

Conclusions

We have defined and implemented an infrastructure for doing
proof carrying results

The infrastructure is independent of the language

Working with a proof checker is a good way of delegating the
checking process

m Proof Carrying Results is a new approach

m lts progress depends on the development of certifying algorithms

Extending the chosen language was a complex task

Towards Secure Distributed Computations

L Conclusions & Future Work

Future work

m Distribute certificate checking/generation

m Integrate the infrastructure defined with other distributed
languages

m Only perform the certificate check if the type of the received
value is abstract

m COQ proof checker: have a proof “server”

Towards Secure Distributed Computations

L Conclusions & Future Work

Towards a distributed certifying infrastructure
Distributing work

m A certificate is a vector w = (wy,wa,...,w,), where each of
the w; is an assertion
m And for all of these assertions, we have
4

wy proved = Prop(pi,wi)
ws has not been proved

w; proved = Prop(pj,w;)

w, has not been proved

Towards Secure Distributed Computations

L Conclusions & Future Work

Towards a distributed certifying infrastructure
Distributing work

m A certificate is a vector w = (wy,wa,...,w,), where each of
the w; is an assertion
m And for all of these assertions, we have
4

wy proved = Prop(pi,wi)

ws has not been proved
w; proved = Prop(pj,w;)

w, has not been proved

Distribution

We can distribute verification between hosts ﬁ
N

m Proof oblications cenerator?

Towards Secure Distributed Computations

L Conclusions & Future Work

Questions?

	Motivation
	Introduction
	Context
	Programming languages
	Security

	Proposal
	Introduction
	Certifying algorithms

	A PCR Infrastructure
	Protocol and model
	Certified result communication

	Contributions
	Conclusions & Future Work

