
Towards Secure Distributed Computations

Towards Secure Distributed Computations
III ReSeCo Workshop

Felipe Zipitŕıa

Grupo de Seguridad
Instituto de Computación

Facultad de Ingenieŕıa - UdelaR

November 25th, 2008

Towards Secure Distributed Computations

Outline

1 Motivation
Introduction
Context
Programming languages
Security

2 Proposal
Introduction
Certifying algorithms

3 A PCR Infrastructure
Protocol and model
Certified result communication

4 Contributions

5 Conclusions & Future Work

Towards Secure Distributed Computations

Motivation

Introduction

Outline

1 Motivation
Introduction
Context
Programming languages
Security

2 Proposal
Introduction
Certifying algorithms

3 A PCR Infrastructure
Protocol and model
Certified result communication

4 Contributions

5 Conclusions & Future Work

Towards Secure Distributed Computations

Motivation

Introduction

This talk will be about

Distributed computations

Distributed programming methodology

Proof checking

Proof Carrying Results

Security

Towards Secure Distributed Computations

Motivation

Context

Outline

1 Motivation
Introduction
Context
Programming languages
Security

2 Proposal
Introduction
Certifying algorithms

3 A PCR Infrastructure
Protocol and model
Certified result communication

4 Contributions

5 Conclusions & Future Work

Towards Secure Distributed Computations

Motivation

Context

Distributed computations

Grids - Volunteer computing

Distributed.NET (RC5)
PrimeGrid (Mersenne #45 and #46 < 2 weeks!)

SETI Detected problems

Incorrect results were returned!

from overclockers

from modified algorithms

Verification technique

Result checking

Towards Secure Distributed Computations

Motivation

Context

Distributed computations

Grids - Volunteer computing

Distributed.NET (RC5)
PrimeGrid (Mersenne #45 and #46 < 2 weeks!)

SETI Detected problems

Incorrect results were returned!

from overclockers

from modified algorithms

Verification technique

Result checking

Towards Secure Distributed Computations

Motivation

Context

Distributed computations

Grids - Volunteer computing

Distributed.NET (RC5)
PrimeGrid (Mersenne #45 and #46 < 2 weeks!)

SETI Detected problems

Incorrect results were returned!

from overclockers

from modified algorithms

Verification technique

Result checking

Towards Secure Distributed Computations

Motivation

Context

Distributed programming methodology

Computational framework

Components

Modularisation

Abstraction

Towards Secure Distributed Computations

Motivation

Programming languages

Outline

1 Motivation
Introduction
Context
Programming languages
Security

2 Proposal
Introduction
Certifying algorithms

3 A PCR Infrastructure
Protocol and model
Certified result communication

4 Contributions

5 Conclusions & Future Work

Towards Secure Distributed Computations

Motivation

Programming languages

Distributed programming languages
Common/Desirable properties

A language with a module system which permits us ?to model
ADTs

Simplified communication of arbitrary values between different
processes

Safety along the distributed infrastructure/runtime

Towards Secure Distributed Computations

Motivation

Programming languages

Safety
Relevant for our distributed infrastructure

We will focus on:

Type-safety

(Progress + preservation) a.k.a. Soundness

Abstraction-safety

Semantics and type system of the programming language guarantee
abstraction protection

Towards Secure Distributed Computations

Motivation

Programming languages

Safety
Relevant for our distributed infrastructure

We will focus on:

Type-safety

(Progress + preservation) a.k.a. Soundness

Abstraction-safety

Semantics and type system of the programming language guarantee
abstraction protection

Towards Secure Distributed Computations

Motivation

Programming languages

Simplified communication
Definitions

Marshalling The process of gathering data and transforming it into
a standard format before it is transmitted over a
network or saved to a permanent format.

Unmarshalling Reverse process, which transforms data from
standard format back to its original form.

Towards Secure Distributed Computations

Motivation

Programming languages

Introducing Acute

Research language: INRIA Rocquencourt + University of
Cambridge

ML-like core, with extensions to support distributed
development

Provides safe and robust mechanisms to develop and execute
separately-built programmes

Towards Secure Distributed Computations

Motivation

Programming languages

Acute features

Allows cooperating programmes to send and receive values
through (untyped) communication channels

Supports distributed computation of values providing
(un)marshalling procedures

Primitives for type-safe (un)marshalling

e ::= ... | marshal e1 e2 : T | unmarshal e : T | ...

Towards Secure Distributed Computations

Motivation

Programming languages

Particular Acute features
Type-safe (un)marshalling

Types are hashed to be used by the type checker

Dynamic type-check at unmarshal time

Type equality is defined simply by equality on hashes

Guarantees both type-safety and abstraction-safety

Towards Secure Distributed Computations

Motivation

Programming languages

Acute modularisation

Signatures (Interfaces)
module Prime:

sig
type t
val start: t
val get: t -> int
val next: t -> t

end

Structures (Modules)
=

struct
type t = int
let start = seed
let get x = x
let next x = some alg x

end

Towards Secure Distributed Computations

Motivation

Programming languages

Extending on Acute type equality
Hashing

A notion of type equality that makes sense is needed across the
entire distributed system

Type Prime.t is compiled to h.t, where the hash h is (roughly)

h ≡ hash (

module Prime:
sig
type t
val start:t
val get: t -> int
val next: t -> t
end

=
struct
type t = int
let start = seed
let get x = x
let next x =
some alg x
end

)

Towards Secure Distributed Computations

Motivation

Programming languages

Acute respects abstractions

Example A

prog a = send(marshal 5:int)
prog b = module Prime

: sig
val init: t
val get: t -> int
val next: t -> t
end

=
struct
type t = int
let init = (a seed)
let get x = x
let next x = some alg(x)
end

print int(Prime.get (unmarshal (receive():Prime.t))

This computation should fail

machineA[prog a] | machineB[prog b]

Towards Secure Distributed Computations

Motivation

Programming languages

Acute respects abstractions

Example A

prog a = send(marshal 5:int)
prog b = module Prime

: sig
val init: t
val get: t -> int
val next: t -> t
end

=
struct
type t = int
let init = (a seed)
let get x = x
let next x = some alg(x)
end

print int(Prime.get (unmarshal (receive():Prime.t))

This computation should fail

machineA[prog a] | machineB[prog b]

Towards Secure Distributed Computations

Motivation

Security

Outline

1 Motivation
Introduction
Context
Programming languages
Security

2 Proposal
Introduction
Certifying algorithms

3 A PCR Infrastructure
Protocol and model
Certified result communication

4 Contributions

5 Conclusions & Future Work

Towards Secure Distributed Computations

Motivation

Security

Active adversary

An entity who tampers with data

Towards Secure Distributed Computations

Motivation

Security

Who to trust...
What happens if some attacker steals our type hash?

Typecheck is made by the sender, before marshal

In the context of active adversaries in our network

prog a′ = send (raw marshal {8,hash(module Prime)})
prog b = (same as example A)

Invariant of ADT Prime broken!

print int (Prime.get (unmarshal (receive ()):Prime.t))

There is no typechecking of values of abstract data types
(other than hash equality)

Towards Secure Distributed Computations

Motivation

Security

Who to trust...
What happens if some attacker steals our type hash?

Typecheck is made by the sender, before marshal

In the context of active adversaries in our network

prog a′ = send (raw marshal {8,hash(module Prime)})
prog b = (same as example A)

Invariant of ADT Prime broken!

print int (Prime.get (unmarshal (receive ()):Prime.t))

There is no typechecking of values of abstract data types
(other than hash equality)

Towards Secure Distributed Computations

Motivation

Security

Who to trust...
What happens if some attacker steals our type hash?

Typecheck is made by the sender, before marshal

In the context of active adversaries in our network

prog a′ = send (raw marshal {8,hash(module Prime)})
prog b = (same as example A)

Invariant of ADT Prime broken!

print int (Prime.get (unmarshal (receive ()):Prime.t))

There is no typechecking of values of abstract data types
(other than hash equality)

Towards Secure Distributed Computations

Motivation

Security

What happens in Acute?

It is type-safe in a trusted setting

Works well if we can typecheck our values correctly

What happens with values of abstract data types?
Representation, for checking, is not available

Towards Secure Distributed Computations

Motivation

Security

Summary

Context

Distributed programming languages
Abstract data types
Communications are made with primitives (un)marshal

Objective

Definition and experimentation with mechanisms that permit us to
strengthen abstraction-safety properties

Towards Secure Distributed Computations

Proposal

Introduction

Outline

1 Motivation
Introduction
Context
Programming languages
Security

2 Proposal
Introduction
Certifying algorithms

3 A PCR Infrastructure
Protocol and model
Certified result communication

4 Contributions

5 Conclusions & Future Work

Towards Secure Distributed Computations

Proposal

Introduction

Maze example
Can you find the way out?

Can you do it faster?

Towards Secure Distributed Computations

Proposal

Introduction

Maze example
Can you find the way out?

Can you do it faster?

Towards Secure Distributed Computations

Proposal

Introduction

Approach
Maze solved!

What if we follow the blue dots? =⇒ trivial to find the way
out. . .

Towards Secure Distributed Computations

Proposal

Introduction

Proof Carrying Code
Example

Code sent to a remote consumer has a certificate

Certificate is a formal safety proof

Shows that the code complies with certain specification of
safety rules

Towards Secure Distributed Computations

Proposal

Introduction

Proof Carrying Result
Approach & Scheme

Reuses concepts from PCC

Based on verification

Distributed computation among untrusted hosts

We need a way to check that f (a) = b ... but without
computing f (a)

A certificate

Towards Secure Distributed Computations

Proposal

Introduction

Proof Carrying Result
Approach & Scheme

Reuses concepts from PCC

Based on verification

Distributed computation among untrusted hosts

We need a way to check that f (a) = b ... but without
computing f (a)

A certificate

Towards Secure Distributed Computations

Proposal

Introduction

Proof Carrying Result
More Formally

Some Definitions

f ∈ A→ B,a ∈ A
f (a) is delegated to an untrusted party

We must have a function

checkf ∈AxB → bool | ∀(a,b)∈AxB,checkf (a,b) = true ⇒ b = f (a)

Every function f ?

Towards Secure Distributed Computations

Proposal

Introduction

Proof Carrying Result
More Formally

Some Definitions

f ∈ A→ B,a ∈ A
f (a) is delegated to an untrusted party

We must have a function

checkf ∈AxB → bool | ∀(a,b)∈AxB,checkf (a,b) = true ⇒ b = f (a)

Every function f ?

Towards Secure Distributed Computations

Proposal

Introduction

Proof Carrying Result
More Formally

Some Definitions

f ∈ A→ B,a ∈ A
f (a) is delegated to an untrusted party

We must have a function

checkf ∈AxB → bool | ∀(a,b)∈AxB,checkf (a,b) = true ⇒ b = f (a)

Every function f ?

Towards Secure Distributed Computations

Proposal

Certifying algorithms

Outline

1 Motivation
Introduction
Context
Programming languages
Security

2 Proposal
Introduction
Certifying algorithms

3 A PCR Infrastructure
Protocol and model
Certified result communication

4 Contributions

5 Conclusions & Future Work

Towards Secure Distributed Computations

Proposal

Certifying algorithms

Approach

Fact

Not every algorithm is certifying

Towards Secure Distributed Computations

Proposal

Certifying algorithms

Approach

Fact

Not every algorithm is certifying

Towards Secure Distributed Computations

Proposal

Certifying algorithms

Simple examples

GCD(x ,y) = d whered | x ∧d | y ∧ (∀d ′,d ′ | x ∧d ′ | y ⇒ d | d ′)

Certified

=⇒ ExtendedGCD(x ,y) = (u,v ,d)where d |x ∧d |y ∧d = ux +vy

Sorting a list L

Certified

=⇒ Sorting a List L, and giving its sort order

Towards Secure Distributed Computations

Proposal

Certifying algorithms

Adding PCR

In order to add this technique, we must define an infrastructure
for it

Certified result communication

Towards Secure Distributed Computations

A PCR Infrastructure

Protocol and model

Outline

1 Motivation
Introduction
Context
Programming languages
Security

2 Proposal
Introduction
Certifying algorithms

3 A PCR Infrastructure
Protocol and model
Certified result communication

4 Contributions

5 Conclusions & Future Work

Towards Secure Distributed Computations

A PCR Infrastructure

Protocol and model

PCR Protocol

Alice a consumer of remote computations

Bob an untrusted producer

Trent a trusted arbitrator

Alice

if ok

not okerror

BobTrent

We defined a protocol for doing PCR computations

Towards Secure Distributed Computations

A PCR Infrastructure

Protocol and model

Infrastructure model

Simplifying, Alice ≡ Trent

We will focus on v : T ,~w

Towards Secure Distributed Computations

A PCR Infrastructure

Protocol and model

Infrastructure model

Simplifying, Alice ≡ Trent

We will focus on v : T ,~w

Towards Secure Distributed Computations

A PCR Infrastructure

Certified result communication

Outline

1 Motivation
Introduction
Context
Programming languages
Security

2 Proposal
Introduction
Certifying algorithms

3 A PCR Infrastructure
Protocol and model
Certified result communication

4 Contributions

5 Conclusions & Future Work

Towards Secure Distributed Computations

A PCR Infrastructure

Certified result communication

Current (un)marshal primitives
Syntax and semantics

marshal e1 e2 : T
unmarshal e : T ′

Towards Secure Distributed Computations

A PCR Infrastructure

Certified result communication

New (un)marshal primitives
Syntax and semantics

Extended with certificate

marshal e1 e2 : T < certificate >
unmarshal e : T ′ < certificate >

Towards Secure Distributed Computations

A PCR Infrastructure

Certified result communication

How was the language modified?

Core modifications:

Lexer
Parser
Abstract Syntax Tree

Contact point with the PCR infrastructure

A way to check certificates

Towards Secure Distributed Computations

A PCR Infrastructure

Certified result communication

What is a certificate?

Our certificate

Assertion for a property
Proof of that assertion
Another assertion...

In the implementation

type assertion = string
type proof = string
type certificate = (assertion * proof) list

Towards Secure Distributed Computations

A PCR Infrastructure

Certified result communication

Extension of the Acute language

Objective

Increase abstraction-safety

When?

=⇒ It will be added at unmarshal time

Means

Checking for a certificate

Towards Secure Distributed Computations

A PCR Infrastructure

Certified result communication

Extension of the Acute language

Objective

Increase abstraction-safety

When?

=⇒ It will be added at unmarshal time

Means

Checking for a certificate

Towards Secure Distributed Computations

A PCR Infrastructure

Certified result communication

Extension of the Acute language

Objective

Increase abstraction-safety

When?

=⇒ It will be added at unmarshal time

Means

Checking for a certificate

Towards Secure Distributed Computations

A PCR Infrastructure

Certified result communication

Checking certificates

Proof verification process of the result certification was
performed using COQ

theoretic support
large user community

COQ usage

the value, its type and certificate are written to a file
call the COQ compiler on this file

Towards Secure Distributed Computations

A PCR Infrastructure

Certified result communication

Full proof sequence

Towards Secure Distributed Computations

A PCR Infrastructure

Certified result communication

Some Details
To be taken into account

COQ

<DIR> is not arbitrary: it must be part of the Trusted
Computing Base

it is a list of filesystem directories that have COQ properties

Unwanted or problematic commands are filtered out (e.g.
Axiom, Parameter)

The certificate must prove required properties

Authenticity of results

Towards Secure Distributed Computations

A PCR Infrastructure

Certified result communication

Case study: Certified prime number generation
Pocklington’s criteria

Given a natural number n > 1, a witness a, and some pairs
(p1,α1), . . . ,(pk ,αk), it is sufficient for n to be prime that the
following conditions hold:

p1...pk are prime numbers (1)

(pα1
1 ...pαk

k) | (n−1) (2)

an−1 = 1(modn) (3)

∀i ∈ {1, ...,k}gcd(a
n−1
pi −1,n) = 1 (4)

pα1
1 ...pαk

k >
√

n (5)

Towards Secure Distributed Computations

A PCR Infrastructure

Certified result communication

Pocklington’s criteria
Certificate

The numbers a,p1,α1, . . . ,pk ,αk constitute a Pocklington
certificate.

Used by the CoqPrime project to certify primes

In the previous example

prog a′ = send (raw marshal {8,hash(module Prime), <cert?>})
prog b = (same as example A)

A certificate cannot be constructed for that value of abstract
type

√

Towards Secure Distributed Computations

Contributions

Contributions

An infrastructure has been defined and implemented for
supporting the technique of proof carrying results,

the Acute distributed programming language has been
extended, with a mechanism that permits the exchange of
values of abstract types in a certified way, and

for performing the verification of the results, this infrastructure
has been connected with COQ.

Towards Secure Distributed Computations

Conclusions & Future Work

Conclusions

We have defined and implemented an infrastructure for doing
proof carrying results

The infrastructure is independent of the language

Working with a proof checker is a good way of delegating the
checking process

Proof Carrying Results is a new approach

Its progress depends on the development of certifying algorithms

Extending the chosen language was a complex task

Towards Secure Distributed Computations

Conclusions & Future Work

Future work

Distribute certificate checking/generation

Integrate the infrastructure defined with other distributed
languages

Only perform the certificate check if the type of the received
value is abstract

COQ proof checker: have a proof“server”

Towards Secure Distributed Computations

Conclusions & Future Work

Towards a distributed certifying infrastructure
Distributing work

A certificate is a vector ~w = (w1,w2, . . . ,wn), where each of
the wi is an assertion
And for all of these assertions, we have

∀i



w1 proved ⇒ Prop(p1,w1)

w2 has not beenproved

.

wj proved ⇒ Prop(pj ,wj)

.

wn has not beenproved

Distribution

We can distribute verification between hosts

Proof obligations generator?

Towards Secure Distributed Computations

Conclusions & Future Work

Towards a distributed certifying infrastructure
Distributing work

A certificate is a vector ~w = (w1,w2, . . . ,wn), where each of
the wi is an assertion
And for all of these assertions, we have

∀i



w1 proved ⇒ Prop(p1,w1)

w2 has not beenproved

.

wj proved ⇒ Prop(pj ,wj)

.

wn has not beenproved

Distribution

We can distribute verification between hosts

Proof obligations generator?

Towards Secure Distributed Computations

Conclusions & Future Work

Questions?

	Motivation
	Introduction
	Context
	Programming languages
	Security

	Proposal
	Introduction
	Certifying algorithms

	A PCR Infrastructure
	Protocol and model
	Certified result communication

	Contributions
	Conclusions & Future Work

