Strong Accumulators from

Collision-Resistant Hashing

Philippe Camacho (University of Chile)
Alejandro Hevia (University of Chile)
Marcos Kiwi (University of Chile)
Roberto Opazo (CEO Acepta.com)

Outline

m Basic Cryptographic Notions

m Motivation
e-lnvoice Factoring

m Notion of accumulator
m Our construction
m Conclusion

Basic Cryptographic Notions

m How to define security?

This is one of the cryptographer’s hardest
task.

A good definition should capture intuition...
... and more!

Community had to wait until 1984 with [GM84]
for a satisfactory definition of (computational)
“secure encryption”.

"
Basic Cryptographic Notions

m Cryptographic Assumptions

Most of cryptographic constructions rely on
complexity assumptions

m Factoring is hard.

s Computing Discrete Logarithm is hard.

m Existence of functions with “good” properties
One-way functions
Collision-Resistant Hash functions

All these assumptions require that P # NP.

Basic Cryptographic Notions

m How to prove security?

What we want:

s Assumption X holds => protocol P is secure.
= No adversary can break X => No adversary can break P.

What we do:

m Suppose protocol P is insecure => X does not hold.

m Let A the adversary that breaks P => We can build an adversary
B that breaks X.

This method is the basis of what’s called
“Provably Security” or “Reductionist Security”.

Basic Cryptographic Notions

m Collision-Resistant Hash Functions
H:{0,1}* —{0,1}k
m Hard to compute x,x’ such that H(x)=H(X’).
m Given X, It Is easy to compute H(x).

m Given X, hard to compute x’#x such that
H(X)=H(X).
m Given y, hard to compute x such that H(x)=y.

This definition is not formal. Just an intuition.

Basic Cryptographic Notions

m Assumption:
Collision-Resistant Hash Functions exist.

] Not related to
Number Theory!

Factoring Industry in Chile

Factoring
Entity \.&

Provider

Client

Factoring Industry in Chile

Factoring

1) I want (a lot of) milk now *.

A

Client
2) Here is your milk.

v

(*) but I do not want to pay yet.
(**) minus a fee.

" A
The Problem

= A malicious provider could send the
same invoice to various Factoring

Entities. ,
m Then he leaves to a far away country I$

with all the money (say, southern France)

m Later, several Factoring Entities will try to
charge the invoice to the same client.
Losts must be shared... (do not count on
government bailout though ©)

Solution with Factoring Authority

Factoring H
Authority _

the invoice?

FE, FE , FE . & FE |
\J
(1) Invoice .

. £ - . 5 :_.-'
Provider Client
2 (2) Ack o3

Caveat

m This solution is quite simple.

m However
Trusted Factoring Authority is needed.

m Can we remove this requirement?

" A
Notion of accumulator

m Problem
A set X.

Given an element x we wish to prove that this
element belongs or not to X.

m et X={X;,X,,...,. X}
X will be represented by a short value Acc.

Given x and w (witness) we want to check
If X belongs to X.

"
Properties

m Dynamic
Allows insertion/deletion of elements.

m Universal
Allows proofs of membership and nonmembership.

m Strong

No need to trust in the Accumulator Manager.

"
Applications

m Time-Stamping [BeMa94]
m Certificate Revocation List [LLXO07/]

m Anonymous Credentials [CamLys02]
m E-Cash [AWSMO7]

m Broadcast Encryption [GeRa04]

" S
Prior work

Dynamic Strong Universal Security fficiency Note
(witness size)
[BeMa94] — ' RSA + RO First definition
v X
[BarPfi97] - ' Strong RSA -
X v X
[CamLys02] ' _— Strong RSA First dynamic
/ X ﬁ accumulator
[LLXO7] ' — ' Strong RSA First universal
/ X / accumultor
AWSMO7 : = — Pairings
[) / X X E-cash
[CHKOO08]] ' Collision-Resistant
/ / / Hashing Our work

" A
Notation

m H: {0,1}*—{0,1}

Collision-resistant hash function.

B X{,X5,Xs,...€ {0,1}
X, < X, < X3 < ... where < s the lexicographic order on binary
strings.

W - 0

Special values such that
m Forall xe {0,1}k: -0 <x<

m || denotes the concatenation operator.

Public Data Structure

m Called “Memory”.

m Compute efficiently the accumulated value and
the withesses.

m In our construction the Memory M will be a
binary tree.

Accumulator Operations

Operation Who runs it?
Acc,, My« Setup(1X) Manager
W «— Witness(M,x) Manager
True,False, L «— Belongs(x,w,Acc) User
ACCytiers Matier, Wup <= UPdate, yq/gel(Mpefore:X) Manager
OK, L « CheckUpdate(ACCygsore: ACCysierWyp) User

Checking for (non-)membership

User Accumulator Manager

Does x belong
to X?

»
>

w = Witness(M,x)

Belongs(x,w,Acc) = True & x e X

" J
Update of the

accumulated value

User

CheckUpdate(ACCpesore ACCster Wyp)

Insert or

Delete x
—

ACCafter’ Wu

p

Accumulator Manager

ACCaftew Ivlafter’ Wup =

Update agq/pel(MpeforesX)

" A
ldeas

m Merkle-trees

P=H(Z,||Z,) A
Z,=H(Y[]Y>) Z,=H(Y;||Y,)
Root value:
Represents O(In(n))
the set Y,=HOlX,) YomHOGlXe) YsmHOGlXG) Ya=HO o)
A ANANEY ANV
% X, X, Xs X @ Xg X, X v

ldeas

m How to prove nonmembership?

Kocher’s trick [Koch98]: store pair of
consecutive values
= X={1,3,5,6,11}
m X'={(-=,1),(1,3),(3,5),(5,6),(6,11),(11, «)}
m y=3 belongs to X < (1,3) or (-~,1) belongs to X..
m y=2 does not belong to X < (1,3) belongs to X'.

How to insert elements?

(_oo’oo)

X=@, next: X,

How to insert elements?

(-°0,X4)

/

(X,)

X={X,}, next: X,

How to insert elements?

(-0,X4)
/\

(X, X3) (X3, =)

X={X{,X,}, next: X,

How to insert elements?

(-°0,X4)
/\

(X1, X5) (X2, Xs)

(X5, *)

X={X1,X5,Xs}, NEXL: X5

How to insert elements?

(-°0,X4)
/\

(X, X3) (Xz1 X3)

(X51 oo) (X31 X5)

X={X{,X5,X3,Xs}, Ne€Xt: X,

How to insert elements?

(-°0,%,)
/\

(X1, X5) (X2, X3)

(X51 oo) (X31 X4) (X41 X5)

X={X1,X5,X3, X, X5}, NEXL: X

How to insert elements?

(-0,X4)

(X1, X5) (X2, Xs3)

(X51 XG) (X31 X4) (X41 X5) (X6’ oo)

X={X1,X5,X3, X4, X5, X5}

How to delete elements?

(-°0,X4)

(X1, X5) (X2, Xs3)

(X5, Xg) (X3, X4) (X4 Xs) (Xg»)

X={X{,X5,X3,X4,Xs5,Xg}
element to be deleted: x,

How to delete elements?

(-°0,X4)

(Xp,Xg) — e—
W ﬁ
(Xgr)

(X51 X6) (X31 X4) (X4’ X5)

How to delete elements?

(-°0,X4)

(X1, X3) (Xe: =)

(X51 X6) (X31 X4) (X4’ X5)

= S
How to compute the accumulated
value?

(-°0,X4)
(X5, Xg) (X3, Xg) (X4 Xg) (Xg X7)

(Xg,) (X7, Xg) A pair (x;,)

Proofy=H(Proof[|Proof,|[value)
Proofy;= “’

Acc = Proofg,,,

" S
How to update the accumulated
value? (Insertion)

(-°0,X4)

X5 Xg) (X3 Xg) (XgXs) (Xes X7)

(Xgr =) (X7: Xg)

Xg t0 be Inserted.

" S
How to update the accumulated
value? (Insertion)

(-°0,X4)

X5 Xg) (X3 Xg) (XgXs) (Xes X7)

(Xg:) (X7: Xg)

We will need to recompute proof node values.

" S
How to update the accumulated
value? (Insertion)

(_°°1X1)
}\ ()(/2)(3)\
(X5, X (X3, X (X4, X5) (Xg: X7)

AT

(Xg)) (X7, Xg) (Xgs Xo)
New element: Xg.
Proof, stored in each node.
Dark nodes do not require recomputing Proof,.

Only a logarithmic number of values need recomputation.

Security

m Definition: an accumulated value Acc
represents the set X={x,,X,,...,X.}, If it has
been computed from a tree T containing
node values {(- «,X,),(X{,X5),...,(X,*)},
where each pair appears only once.

Security (Informal)

m Definition: (Consistency)

Given Acc that represents X, it is hard to find
witnesses that allow to prove inconsistent
statements.

m X={1,2}.

= Hard to compute a membership witness for 3.

m Hard to compute a nonmembership witness for 2.

Security (Informal)

m Definition: (Update)
Guarantees that the accumulated value Acc

represents the set X after insertion/deletion of
X.

Every update must be checked by users but it
IS not needed to store the sequence of
Insertion/deletion.

" J
Security

m Lemma: Given atree T with accumulated value Acc,
finding a tree T, T#T’ such that Acc; = Acc+. is difficult.

m Proof (Sketch): Proofy = H(Proof ||Proof,||value)
(_oo,Xl) (_oo’xl)

e e

(X1, X5) (X5, X3) — VTR, (X2, X3)

(X5, Xg) (X35 X4) (X4 X5) (X6, X7) (X5, Xg) (Xas Xy) (X4, X7) (X6, X7)

" J
Security

m Lemma: Given atree T with accumulated value Acc,
finding a tree T, T#T’ such that Acc; = Acc+. is difficult.

m Proof (Sketch): Proofy = H(Proof ||Proof,||value)

Collision for H

(X1, X5) (X2, X3) — VTR,

(X5, Xg) (X35 X4) (X4 X5) (X6, X7) (X5, Xg) (Xas Xy) (X4, X7) (X6, X7)

" J
Security

m Lemma: Given atree T with accumulated value Acc,
finding a tree T, T#T’ such that Acc; = Acc+. is difficult.

m Proof (Sketch): Proofy = H(Proof ||Proof,||value)

e

(o) ... (-,X;)

(X1, X5) (X5, X3) — VTR, " (%a, X3)

(X5, Xg) (X35 X4) (X4 X5) (X6, X7) (X5, Xg) (Xas Xy) (X4, X7) (X6, X7)

" J
Security

m Lemma: Given atree T with accumulated value Acc,
finding a tree T, T#T’ such that Acc; = Acc+. is difficult.

m Proof (Sketch): Proofy = H(Proof ||Proof,||value)

CoIIis.ion for H ‘ \ ;

(X1, X5) (X5, X3) —> (X1’X2) (X5, X3)

T

(X, Xg) (X3, X4) (X4 X5) (Xg, X7) (X5, Xg) (Xay Xg4) T (X4 X7) (Xg X5)

Security (Consistency)

(_oo 1X1)
}g (X2s X3)
(X5, Xg) X3 Xa) (X4 X5) (Xg: X7)
(Xgs) (X7, Xo)

Witness: blue nodes and the (x3,x,) pair, size in O(In(n))
Checking that x belongs (or not) to X:
1) compute recursively the proof P and verify that P=Acc
2) check that: X=X5 Or X=X, (membership)

X5 < X < X, (honmembership)

Security (Update)

Before

ACCbefore _—> (-°° ,Xl)

N

(X1, X2) (X2, X3)
(X5, Xe) (X3 X4) (X4, Xs)
(Xg, ®) (X7, Xg)

(X5, Xe)

/N

(Xgy @) (X7.Xg)

(Xg: X7)

Insertion of Xg

After

-00’X1) 4— ACCafter

N

N\

(X1, X,) X2y X3)
(X3, Xgq) (X4 X5) (X6, X7)
(Xg, Xg)

Conclusion & Open Problem

m First dynamic, universal, strong accumulator.
m Simple.

m Security
Existence of collision-resistant hash functions.

m Solves the e-Invoice Factoring Problem.

m Less efficient than other constructions
Size of withess in O(In(n)).

m Open Problem

“Is It possible to build a strong,dynamic
and universal accumulator with witness
size lower than O(In(n))?”

" S
Thank you!

2

"
Bibliography

m [GM84] Probabilistic Encryption Shafi Goldwasser and Silvio Micali 1984
m [BeMa92] Efficient Broadcast Time-Stamping Josh Benaloh and Michael de Mare 1992

m [BeMa94] One-way Accumulators: A decentralized Alternative to Digital Signatures Josh Benaloh and Michael de Mare ,
1994

m [BarPfi97] Collision-Free Accumulators and Fail-Stop Signature Schemes Without Trees Niko Bari¢ and Birgit Pfitzmann
1997

m [CGS97] A secure and optimally efficient multi-authority election scheme R. Cramer, R. Gennaro, and B. Schoenmakers
1997

m [Koch98] On certificate revocation and validation P.C. Kocher 1998
m [CGH98] The random oracle methodoly revisited R. Canetti, O. Goldreich and S. Halevi 1998
m [Sand99] Efficient Accumulators Without Trapdoor Tomas Sanders 1999

m [GoTaOll] An efficient and Distributed Cryptographic Accumulator Michael T. Goodrich and Roberto Tamassia 2001

m [CamLys02] Dynamic Accumulators And Application to Efficient Revocation of Anonymous Credentials Jan Camenisch
Anna Lysyanskaya 2002

m [GeRa04] RSA Accumulator Based Broadcast Encryption Craig Gentry and Zulfikar Ramzan
2004

"
Bibliography

[LLXO07] Universal Accumulators with Efficient Nonmembership Proofs Jiangtao Li, Ninghui Li and Rui Xue 2007

m [AWSMO7] Compact E-Cash from Bounded Accumulator Man Ho Au, Qianhong Wu, Willy Susilo and Yi Mu 2007

= [WWPO08] A new Dynamic Accumulator for Batch Updates Peishun Wang, Huaxiong Wang and Josef Pieprzyk 2008

m [CKHOO08] Strong Accumulators from Collision-Resistant Hashing Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and
Roberto Opazo 2008

