
Strong Accumulators from
Collision-Resistant Hashing

Philippe Camacho (University of Chile)

Alejandro Hevia (University of Chile)

Marcos Kiwi (University of Chile)

Roberto Opazo (CEO Acepta.com)

Outline

� Basic Cryptographic Notions
� Motivation

�e-Invoice Factoring

� Notion of accumulator
� Our construction
� Conclusion

Basic Cryptographic Notions

� How to define security?
�This is one of the cryptographer’s hardest

task.
�A good definition should capture intuition…

… and more!

�Community had to wait until 1984 with [GM84]
for a satisfactory definition of (computational)
“secure encryption”.

Basic Cryptographic Notions

� Cryptographic Assumptions
�Most of cryptographic constructions rely on

complexity assumptions .
� Factoring is hard.
� Computing Discrete Logarithm is hard.
� Existence of functions with “good” properties

� One-way functions
� Collision-Resistant Hash functions

� …

�All these assumptions require that P ≠ NP.

Basic Cryptographic Notions

� How to prove security?
�What we want:

� Assumption X holds => protocol P is secure.
� No adversary can break X => No adversary can break P.

�What we do:
� Suppose protocol P is insecure => X does not hold.
� Let A the adversary that breaks P => We can build an adversary

B that breaks X.

�This method is the basis of what’s called
“Provably Security” or “Reductionist Security”.

Basic Cryptographic Notions

� Collision-Resistant Hash Functions
�H:{0,1}* →{0,1}k

� Hard to compute x,x’ such that H(x)=H(x’).
� Given x, it is easy to compute H(x).
� Given x, hard to compute x’≠x such that

H(x)=H(x’).
� Given y, hard to compute x such that H(x)=y.

This definition is not formal. Just an intuition.

Basic Cryptographic Notions

� Assumption:
Collision-Resistant Hash Functions exist.

Factoring Industry in Chile

Factoring
Entity

Provider
Client

Not related to
Number Theory!

Factoring Industry in Chile

1) I want (a lot of) milk now *.

(*) but I do not want to pay yet.
(**) minus a fee.

2) Here is your milk.

3) Please
pay the invo

ice
.

5) It’s time to pay.

4) Here
is

yo
ur money (**

).
6) Here is the money.

Factoring
Entity

Provider
Client

The Problem

� A malicious provider could send the
same invoice to various Factoring
Entities.

� Then he leaves to a far away country
with all the money (say, southern France)

� Later, several Factoring Entities will try to
charge the invoice to the same client.
Losts must be shared… (do not count on
government bailout though ☺)

Solution with Factoring Authority

Factoring
Authority

FE 2 FE n…

Provider Client

FE1 FE i…

(1) Invoice

(2) Ack

(3) Invoice, Ack

(4) Is there
the invoice?

(5) YES / NO

Caveat

� This solution is quite simple.

� However
�Trusted Factoring Authority is needed.

� Can we remove this requirement?

Notion of accumulator

� Problem
�A set X.
�Given an element x we wish to prove that this

element belongs or not to X.

� Let X={x1,x2,…,xn}:
�X will be represented by a short value Acc.
�Given x and w (witness) we want to check

if x belongs to X.

Properties

� Dynamic
� Allows insertion/deletion of elements.

� Universal
� Allows proofs of membership and nonmembership.

� Strong
� No need to trust in the Accumulator Manager.

Applications

� Time-Stamping [BeMa94]
� Certificate Revocation List [LLX07]
� Anonymous Credentials [CamLys02]
� E-Cash [AWSM07]
� Broadcast Encryption [GeRa04]
� …

Dynamic Strong Universal Security Efficiency
(witness size)

Note

[BeMa94] RSA + RO O(1) First definition

[BarPfi97] Strong RSA O(1) -

[CamLys02] Strong RSA O(1) First dynamic
accumulator

[LLX07] Strong RSA O(1) First universal
accumultor

[AWSM07] Pairings O(1)
E-cash

[CHKO08] Collision-Resistant
Hashing O(ln(n)) Our work

Prior work

Notation

� H: {0,1}*→{0,1}k

� Collision-resistant hash function.

� x1,x2,x3,…є {0,1}k

� x1 < x2 < x3 < … where < is the lexicographic order on binary
strings.

� -∞,∞
� Special values such that

� For all x є {0,1}k : -∞ < x < ∞

� || denotes the concatenation operator.

Public Data Structure

� Called “Memory”.

� Compute efficiently the accumulated value and
the witnesses.

� In our construction the Memory M will be a
binary tree.

Accumulator Operations

UserOK, ┴← CheckUpdate(Accbefore,Accafter,wup)

ManagerAccafter,Mafter,wup← Updateadd/del(Mbefore,x)

UserTrue,False,┴ ← Belongs(x,w,Acc)

Managerw ← Witness(M,x)

ManagerAcc0, M0 ← Setup(1k)

Who runs it?Operation

Checking for (non-)membership

Accumulator ManagerUser

Does x belong

to X?

w

Belongs(x,w,Acc) = True � x є X

w = Witness(M,x)

Update of the
accumulated value

Accumulator ManagerUser

Insert or
Delete x

Accafter, wup

CheckUpdate(Accbefore,Accafter,wup)

Accafter,Mafter, wup =
UpdateAdd/Del(Mbefore,x)

Ideas

� Merkle-trees

Z1=H(Y1||Y2)

Y1=H(x4||x1)

x4 x1 x5 x6 x2 x8 x7 x3

O(ln(n))

Y2=H(x5||x6) Y3=H(x2||x8) Y4=H(x7||x3)

Z2=H(Y3||Y4)

P=H(Z1||Z2)

Root value:
Represents
the set
{x1,…,x8}

Ideas

� How to prove nonmembership?
�Kocher’s trick [Koch98]: store pair of

consecutive values
� X={1,3,5,6,11}
� X’={(-∞,1),(1,3),(3,5),(5,6),(6,11),(11, ∞)}
� y=3 belongs to X � (1,3) or (-∞,1) belongs to X’.
� y=2 does not belong to X � (1,3) belongs to X’.

How to insert elements?
(-∞,∞)

X=Ø, next: x1

How to insert elements?
(-∞,x1)

(x1, ∞)

X={x1}, next: x2

How to insert elements?
(-∞,x1)

(x1, x2) (x2, ∞)

X={x1,x2}, next: x5

How to insert elements?
(-∞,x1)

(x1, x2) (x2, x5)

(x5, ∞)

X={x1,x2,x5}, next: x3

How to insert elements?
(-∞,x1)

(x1, x2) (x2, x3)

(x5, ∞) (x3, x5)

X={x1,x2,x3,x5}, next: x4

How to insert elements?
(-∞,x1)

(x1, x2) (x2, x3)

(x5, ∞) (x3, x4) (x4, x5)

X={x1,x2,x3,x4,x5}, next: x6

How to insert elements?

X={x1,x2,x3,x4,x5,x6}

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, ∞)

How to delete elements?
(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, ∞)

X={x1,x2,x3,x4,x5,x6}
element to be deleted: x2

How to delete elements?
(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, ∞)

(x1,x3)

How to delete elements?
(-∞,x1)

(x1, x3) (x6, ∞)

(x5, x6) (x3, x4) (x4, x5)

How to compute the accumulated
value?

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x9)(x9, ∞)

ProofN=H(Proofleft||Proofright||value)

ProofNil= “”

Acc = ProofRoot

A pair (xi,xj)

How to update the accumulated
value? (Insertion)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x9)(x9, ∞)

x8 to be inserted.

How to update the accumulated
value? (Insertion)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x9)(x9, ∞)

We will need to recompute proof node values.

x8

How to update the accumulated
value? (Insertion)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x8)(x9, ∞)

New element: x8.

ProofN stored in each node.

Dark nodes do not require recomputing ProofN.

Only a logarithmic number of values need recomputation.

(x8, x9)

Security

� Definition: an accumulated value Acc
represents the set X={x1,x2,…,xn}, if it has
been computed from a tree T containing
node values {(- ∞,x1),(x1,x2),…,(xn,∞)},
where each pair appears only once.

Security (Informal)

� Definition: (Consistency)
�Given Acc that represents X, it is hard to find

witnesses that allow to prove inconsistent
statements.
� X={1,2}.
� Hard to compute a membership witness for 3.
� Hard to compute a nonmembership witness for 2.

Security (Informal)

� Definition: (Update)
�Guarantees that the accumulated value Acc

represents the set X after insertion/deletion of
x.

�Every update must be checked by users but it
is not needed to store the sequence of
insertion/deletion.

Security

� Lemma: Given a tree T with accumulated value AccT,
finding a tree T’, T≠T’ such that AccT = AccT’ is difficult.

� Proof (Sketch): ProofN = H(Proofleft||Proofright||value)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x7) (x6, x7)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

Security

� Lemma: Given a tree T with accumulated value AccT,
finding a tree T’, T≠T’ such that AccT = AccT’ is difficult.

� Proof (Sketch): ProofN = H(Proofleft||Proofright||value)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x7) (x6, x7)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

Collision for H

Security

� Lemma: Given a tree T with accumulated value AccT,
finding a tree T’, T≠T’ such that AccT = AccT’ is difficult.

� Proof (Sketch): ProofN = H(Proofleft||Proofright||value)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x7) (x6, x7)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

Collision for H

Security

� Lemma: Given a tree T with accumulated value AccT,
finding a tree T’, T≠T’ such that AccT = AccT’ is difficult.

� Proof (Sketch): ProofN = H(Proofleft||Proofright||value)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x7) (x6, x7)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

Collision for H

Security (Consistency)
(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x9)(x9, ∞)
Witness: blue nodes and the (x3,x4) pair, size in O(ln(n))

Checking that x belongs (or not) to X:

1) compute recursively the proof P and verify that P=Acc

2) check that: x=x3 or x=x4 (membership)

x3 < x < x4 (nonmembership)

Security (Update)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x9)(x9, ∞)

Before After

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x8)(x9, ∞)

Insertion of x8

(x8, x9)

Accbefore Accafter

Conclusion & Open Problem
� First dynamic, universal, strong accumulator.
� Simple.
� Security

� Existence of collision-resistant hash functions.

� Solves the e-Invoice Factoring Problem.
� Less efficient than other constructions

� Size of witness in O(ln(n)).

� Open Problem

�“Is it possible to build a strong,dynamic
and universal accumulator with witness
size lower than O(ln(n))?”

Thank you!

Bibliography
� [GM84] Probabilistic Encryption Shafi Goldwasser and Silvio Micali 1984

� [BeMa92] Efficient Broadcast Time-Stamping Josh Benaloh and Michael de Mare 1992

� [BeMa94] One-way Accumulators: A decentralized Alternative to Digital Signatures Josh Benaloh and Michael de Mare ,
1994

� [BarPfi97] Collision-Free Accumulators and Fail-Stop Signature Schemes Without Trees Niko Barić and Birgit Pfitzmann
1997

� [CGS97] A secure and optimally efficient multi-authority election scheme R. Cramer, R. Gennaro, and B. Schoenmakers
1997

� [Koch98] On certificate revocation and validation P.C. Kocher 1998

� [CGH98] The random oracle methodoly revisited R. Canetti, O. Goldreich and S. Halevi 1998

� [Sand99] Efficient Accumulators Without Trapdoor Tomas Sanders 1999

� [GoTa01] An efficient and Distributed Cryptographic Accumulator Michael T. Goodrich and Roberto Tamassia 2001

� [CamLys02] Dynamic Accumulators And Application to Efficient Revocation of Anonymous Credentials Jan Camenisch
Anna Lysyanskaya 2002

� [GeRa04] RSA Accumulator Based Broadcast Encryption Craig Gentry and Zulfikar Ramzan
2004

Bibliography
� [LLX07] Universal Accumulators with Efficient Nonmembership Proofs Jiangtao Li, Ninghui Li and Rui Xue 2007

� [AWSM07] Compact E-Cash from Bounded Accumulator Man Ho Au, Qianhong Wu, Willy Susilo and Yi Mu 2007

� [WWP08] A new Dynamic Accumulator for Batch Updates Peishun Wang, Huaxiong Wang and Josef Pieprzyk 2008

� [CKHO08] Strong Accumulators from Collision-Resistant Hashing Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and
Roberto Opazo 2008

