Strong Accumulators from Collision-Resistant Hashing

Philippe Camacho (University of Chile)
Alejandro Hevia (University of Chile)
Marcos Kiwi (University of Chile)
Roberto Opazo (CEO Acepta.com)

Outline

- Basic Cryptographic Notions
- Motivation
\square e-Invoice Factoring
- Notion of accumulator

■ Our construction

- Conclusion

Basic Cryptographic Notions

- How to define security?
\square This is one of the cryptographer's hardest task.
\square A good definition should capture intuition... ... and more!
\square Community had to wait until 1984 with [GM84] for a satisfactory definition of (computational) "secure encryption".

Basic Cryptographic Notions

- Cryptographic Assumptions
\square Most of cryptographic constructions rely on complexity assumptions.
- Factoring is hard.
- Computing Discrete Logarithm is hard.
- Existence of functions with "good" properties
\square One-way functions
\square Collision-Resistant Hash functions
\square All these assumptions require that $P \neq N P$.

Basic Cryptographic Notions

■ How to prove security?
\square What we want:

- Assumption X holds => protocol P is secure.
- No adversary can break X => No adversary can break P.
\square What we do:
- Suppose protocol P is insecure $=>X$ does not hold.
- Let A the adversary that breaks $P=>$ We can build an adversary B that breaks X.
\square This method is the basis of what's called "Provably Security" or "Reductionist Security".

Basic Cryptographic Notions

- Collision-Resistant Hash Functions
$\square \mathrm{H}:\{0,1\}^{*} \rightarrow\{0,1\}^{\mathrm{k}}$
- Hard to compute x, x^{\prime} such that $H(x)=H\left(x^{\prime}\right)$.
- Given x, it is easy to compute $H(x)$.
- Given x, hard to compute $x^{\prime} \neq x$ such that $H(x)=H\left(x^{\prime}\right)$.
- Given y, hard to compute x such that $H(x)=y$.

This definition is not formal. Just an intuition.

Basic Cryptographic Notions

- Assumption:

Collision-Resistant Hash Functions exist.

Factoring Entity

Factoring Industry in Chile

(*) but I do not want to pay yet.
${ }^{* *}$) minus a fee.

The Problem

- A malicious provider could send the same invoice to various Factoring Entities.
- Then he leaves to a far away country with all the money (say, southern France)

- Later, several Factoring Entities will try to charge the invoice to the same client. Losts must be shared... (do not count on government bailout though $)$)

Solution with Factoring Authority

Caveat

- This solution is quite simple.

■ However
\square Trusted Factoring Authority is needed.

■ Can we remove this requirement?

Notion of accumulator

- Problem
\square A set X.
\square Given an element x we wish to prove that this element belongs or not to X.
■ Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$:
$\square X$ will be represented by a short value Acc. Given x and w (witness) we want to check if x belongs to X.

Properties

- Dynamic
\square Allows insertion/deletion of elements.
- Universal
\square Allows proofs of membership and nonmembership.

■ Strong
\square No need to trust in the Accumulator Manager.

Applications

- Time-Stamping [BeMa94]
- Certificate Revocation List [LLX07]
- Anonymous Credentials [CamLys02]
- E-Cash [AWSM07]
- Broadcast Encryption [GeRa04]

Prior work

	Dynamic	Strong	Universal	Security	Efficiency (witness size)	Note
[BeMa94]	x		x	RSA + RO	O(1)	First definition
[BarPfi97]	X		x	Strong RSA	O(1)	-
[CamLys02]	/	x	x	Strong RSA	O(1)	First dynamic accumulator
[LLX07]	\checkmark	x		Strong RSA	O(1)	First universal accumultor
[AWSM07]		X	X	Pairings	O(1)	E-cash
[CHKO08]				Collision-Resistant Hashing	$\mathrm{O}(\ln (\mathrm{n})$)	Our work

Notation

■ $\mathrm{H}:\{0,1\}^{*} \rightarrow\{0,1\}^{\mathrm{k}}$
\square Collision-resistant hash function.

- $x_{1}, x_{2}, x_{3}, \ldots \in\{0,1\}^{k}$
$\square x_{1}<x_{2}<x_{3}<\ldots$ where $<$ is the lexicographic order on binary strings.
- $-\infty, \infty$
\square Special values such that
- For all $x \in\{0,1\}^{k}$: $\quad-\infty<x<\infty$
- || denotes the concatenation operator.

Public Data Structure

■ Called "Memory".

- Compute efficiently the accumulated value and the witnesses.
- In our construction the Memory M will be a binary tree.

Accumulator Operations

Operation	Who runs it?
Acc $_{0}, \mathrm{M}_{0} \leftarrow \operatorname{Setup}\left(1^{\mathrm{k}}\right)$	Manager
w \leftarrow Witness(M, x)	Manager
True,False, $\perp \leftarrow$ Belongs(x,w,Acc)	User
$\mathrm{Acc}_{\text {after }}, \mathrm{M}_{\text {after, }}, \mathrm{W}_{\text {up }} \leftarrow$ Update $_{\text {add/del }}\left(\mathrm{M}_{\text {before }}, \mathrm{x}\right)$	Manager
OK, $\perp \leftarrow$ CheckUpdate(Acc $_{\text {before }}, \mathrm{Acc}_{\text {after }}, \mathrm{w}_{\text {up }}$)	User

Checking for (non-)membership

Update of the accumulated value

User
CheckUpdate(Acc ${ }_{\text {before }}$, Acc $_{\text {after }}, \mathrm{w}_{\text {up }}$)

Ideas

■ Merkle-trees

Ideas

- How to prove nonmembership?
\square Kocher's trick [Koch98]: store pair of consecutive values
- $X=\{1,3,5,6,11\}$
- $X^{\prime}=\{(-\infty, 1),(1,3),(3,5),(5,6),(6,11),(11, \infty)\}$
- $y=3$ belongs to $X \Leftrightarrow(1,3)$ or $(-\infty, 1)$ belongs to X^{\prime}.
- $\mathrm{y}=2$ does not belong to $\mathrm{X} \Leftrightarrow(1,3)$ belongs to X '.

How to insert elements?

$$
(-\infty, \infty)
$$

$$
X=\varnothing, \text { next: } x_{1}
$$

How to insert elements?

$$
X=\left\{x_{1}\right\}, \text { next: } x_{2}
$$

How to insert elements?

$$
X=\left\{x_{1}, x_{2}\right\}, \text { next: } x_{5}
$$

How to insert elements?

$$
X=\left\{x_{1}, x_{2}, x_{5}\right\}, \text { next: } x_{3}
$$

How to insert elements?

$$
X=\left\{x_{1}, x_{2}, x_{3}, x_{5}\right\}, \text { next: } x_{4}
$$

How to insert elements?

$$
X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}, \text { next: } x_{6}
$$

How to insert elements?

$$
X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}
$$

How to delete elements?

$X=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}, \mathrm{x}_{6}\right\}$
element to be deleted: x_{2}

How to delete elements?

How to delete elements?

How to compute the accumulated value?

How to update the accumulated value? (Insertion)

x_{8} to be inserted.

How to update the accumulated value? (Insertion)

We will need to recompute proof node values.

How to update the accumulated value? (Insertion)

Dark nodes do not require recomputing Proof $_{N}$.
Only a logarithmic number of values need recomputation.

Security

- Definition: an accumulated value Acc represents the set $\mathrm{X}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$, if it has been computed from a tree T containing node values $\left\{\left(-\infty, x_{1}\right),\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), \ldots,\left(\mathrm{x}_{\mathrm{n}}, \infty\right)\right\}$, where each pair appears only once.

Security (Informal)

- Definition: (Consistency)
\square Given Acc that represents X, it is hard to find witnesses that allow to prove inconsistent statements.
- $\mathrm{X}=\{1,2\}$.
- Hard to compute a membership witness for 3.
- Hard to compute a nonmembership witness for 2.

Security (Informal)

- Definition: (Update)
\square Guarantees that the accumulated value Acc represents the set X after insertion/deletion of x.
\square Every update must be checked by users but it is not needed to store the sequence of insertion/deletion.

Security

- Lemma: Given a tree T with accumulated value $A C_{T}$, finding a tree $T^{\prime}, T \neq T^{\prime}$ such that $A c c_{T}=A c c_{T}$, is difficult.
- $\operatorname{Proof}($ Sketch $):$ Proof $_{N}=\mathrm{H}\left(\right.$ Proof $_{\text {left }}| |$ Proof $\left._{\text {right }}| | v a l u e\right)$

Security

- Lemma: Given a tree T with accumulated value $A C_{T}$, finding a tree $T^{\prime}, \mathrm{T} \neq \mathrm{T}^{\prime}$ such that $\mathrm{Acc}_{T}=\mathrm{Acc}_{\mathrm{T}}$, is difficult.
- Proof (Sketch): Proof $_{N}=\mathrm{H}\left(\right.$ Proof $_{\text {left }}| |$ Proof $\left._{\text {right }}| | v a l u e\right)$

Security

- Lemma: Given a tree T with accumulated value $A C_{T}$, finding a tree $T^{\prime}, T \neq T^{\prime}$ such that $A c c_{T}=A c c_{T}$, is difficult.
- Proof (Sketch): Proof $_{N}=\mathrm{H}\left(\right.$ Proof $_{\text {left }}| |$ Proof $\left._{\text {right }}| | v a l u e\right)$

Security

- Lemma: Given a tree T with accumulated value $A C_{T}$, finding a tree $T^{\prime}, T \neq T^{\prime}$ such that $A c c_{T}=A c c_{T}$, is difficult.
- $\operatorname{Proof}($ Sketch $):$ Proof $_{N}=\mathrm{H}\left(\right.$ Proof $_{\text {left }} \|$ Proof $\left._{\text {right }}| | v a l u e\right)$

Security (Consistency)

Witness: blue nodes and the $\left(\mathrm{x}_{3}, \mathrm{x}_{4}\right)$ pair, size in $\mathrm{O}(\ln (\mathrm{n}))$
Checking that x belongs (or not) to X :

1) compute recursively the proof P and verify that $P=A c c$
2) check that: $\quad x=x_{3}$ or $x=x_{4}$ (membership)

$$
x_{3}<x<x_{4} \text { (nonmembership) }
$$

Security (Update)

Insertion of x_{8}

Conclusion \& Open Problem

- First dynamic, universal, strong accumulator.
- Simple.
- Security
\square Existence of collision-resistant hash functions.
- Solves the e-Invoice Factoring Problem.
- Less efficient than other constructions
\square Size of witness in $\mathrm{O}(\ln (\mathrm{n}))$.
- Open Problem
\square "Is it possible to build a strong,dynamic and universal accumulator with witness size lower than $\mathrm{O}(\ln (\mathrm{n}))$?"

Thank you!

Bibliography

- [GM84] Probabilistic Encryption Shafi Goldwasser and Silvio Micali 1984
- [BeMa92] Efficient Broadcast Time-Stamping Josh Benaloh and Michael de Mare 1992
- [BeMa94] One-way Accumulators: A decentralized Alternative to Digital Signatures Josh Benaloh and Michael de Mare , 1994
- [BarPfi97] Collision-Free Accumulators and Fail-Stop Signature Schemes Without Trees Niko Barić and Birgit Pfitzmann 1997
- [CGS97] A secure and optimally efficient multi-authority election scheme R. Cramer, R. Gennaro, and B. Schoenmakers 1997
- [Koch98] On certificate revocation and validation P.C. Kocher 1998
- [CGH98] The random oracle methodoly revisited R. Canetti, O. Goldreich and S. Halevi 1998
- [Sand99] Efficient Accumulators Without Trapdoor Tomas Sanders 1999
- [GoTa01] An efficient and Distributed Cryptographic Accumulator Michael T. Goodrich and Roberto Tamassia 2001
- [CamLys02] Dynamic Accumulators And Application to Efficient Revocation of Anonymous Credentials Jan Camenisch Anna Lysyanskaya 2002
- [GeRa04] RSA Accumulator Based Broadcast Encryption Craig Gentry and Zulfikar Ramzan 2004

Bibliography

- [LLX07] Universal Accumulators with Efficient Nonmembership Proofs Jiangtao Li, Ninghui Li and Rui Xue 2007
- [AWSM07] Compact E-Cash from Bounded Accumulator Man Ho Au, Qianhong Wu, Willy Susilo and Yi Mu 2007
- [WWP08] A new Dynamic Accumulator for Batch Updates Peishun Wang, Huaxiong Wang and Josef Pieprzyk 2008
- [CKHO08] Strong Accumulators from Collision-Resistant Hashing Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and Roberto Opazo 2008

