
Model Based TestingModel Based Testing
 for Security Checkingfor Security Checking

Wissam Mallouli and Prof. Ana Cavalli
National Institute of Telecommunications, France

November 21, 2007

2

OutlineOutline
•

Introduction

•

Active/Passive Testing
•

Active Testing Technique
–

Preliminaries
–

An integration based approach
–

The integration methodology
–

Use case : a Weblog

•

Passive Testing Technique
–

Ongoing Work

•

Conclusion

3

Introduction and motivationIntroduction and motivation

•

Security as critical issue
•

Need to define a security policy

•

A security policy is a set of rules that
regulates the nature and the context of
actions that can be performed within a
system, according to specific roles.

•

If the one of rules in the security policy is
not respected, all the system can be
vulnerable.

4

Introduction and motivationIntroduction and motivation

• Checking if a system implements its security
policy
• Generating proofs
• Injecting the policy within the system implementation
• Model Based testing methods
• etc

5

OutlineOutline
•

Introduction

•

Active/Passive Testing
•

Active Testing Technique
–

Preliminaries
–

An integration based approach
–

The integration methodology
–

Use case : a Weblog

•

Passive Testing Technique
–

Ongoing Work

•

Conclusion

6

Active TestingActive Testing

IUTIUT Active
Tester Verdict:

PASS,FAI
L,
INCONC.

Formal
Specification

Formal
Specification

Test
Suites
Test

Suites

Automatic test generation based on formal descriptions

Functional &
Security

Functional &
Security

7

Conformance Testing(1/2)Conformance Testing(1/2)

• Check if the implementation of a system
conforms to its specification

System
(S)

System
(I)

I

I

O

O1 =O???

8

Conformance Testing (2/2) Conformance Testing (2/2)

Generation of a : -

reasonable test scenarios number (Execution)
-

Complete (to cover all the system transitions)

S S’
i/o

S S’
i/o

Specification

S S’
i/o’

Implementation

S S’’
i/o

Implementation

Specification

Output error transfer error

9

Passive TestingPassive Testing
IUTIUT

Passive
Tester Verdict:

PASS,FAI
L,
INCONC.

Security
Properties

Specification

Security
Properties

Specification

System UserSystem User

PO Trace
Collection

10

OutlineOutline
•

Introduction

•

Active/Passive Testing
•

Active Testing Technique
–

Preliminaries
–

An integration based approach
–

The integration methodology
–

Use case : a Weblog

•

Passive Testing Technique
–

Ongoing Work

•

Conclusion

11

Problem Inputs/OutputProblem Inputs/Output

Formal specification
EFSM (without security)

Security Requirements

OrBAC

Interpretation

test Scenarios

System Implementation Execution

Formal specification
EFSM (with security)

OrBAC

SDL

Access Control Security Rules

12

EFSM Formalism (1/2)EFSM Formalism (1/2)
• Extended Finite States Machine is a 6-tuple M=(I,O,S0

,S,û,T) where:
• I is a non empty set of input symbols
• O is a non empty set of output symbols
• S is a non empty set of states
• S0

� S is the initial state
• û

is a vector denoting a finite set of variables
• T is a set of transitions

• A transition t is a 6-tuple t =(s,q,i,o,P,A) where :
• s is the current state
• q is the next state
• i � I is an input symbol
• o � O is an output symbol
• P(û) is a predicate on the current values of the variables
• A(û) is a sequence of actions over the variables

An EFSM is an automaton
with variables and predicates

13

EFSM Formalism (2/2)EFSM Formalism (2/2)

S0 S2

S1 S3

a/y

a/y

b/yb/y

b/y

a/x

b/y

a/x

A(X0)

P(X0) true

S=(S0,S1,S2,S3) I=(a,b) O=(x,y)

14

OrbacOrbac (1/2)(1/2)

• An access and usage control model
• Obligation/Permission/Prohibition

Copyright http://www.orbac.org

Role Activity

Subject Action

View

Object

15

OrbacOrbac (2/2)(2/2)

• Permission/Prohibition/Obligation
(S,R,A,V,C)

•

This rule means that within the system S, the
role R is permitted/prohibited/obliged

to

perform the activity A targeting the objects
of view V in the context C.

16

OrbacOrbac Interpretation to Fit the Interpretation to Fit the
EFSM Formalism (1/2)EFSM Formalism (1/2)

• Permission (system1, role1, call delete, text,
input=req_delete(text) and text_exists=true)

• The activity and the context have to be
described in the same language of the
functional specification of the system.

• In our case, we used SDL language and call
and input= are SDL commands

17

OrbacOrbac Interpretation to Fit the Interpretation to Fit the
EFSM Formalism (2/2)EFSM Formalism (2/2)

• If the roles and variables are not already
defined in the initial specification, precise
definitions have to be added (type, default
value, etc.).

• A rule context is divided into two parts:
• an EFSM context with conditions related to the

position in the EFSM (e.g. input=a)
• a variables context with conditions related to

variables values (e.g. variable1=0).

18

Activity DefinitionActivity Definition

•

refers to a possible action within the EFSM
functional description of the system. It can
be either :
–

An Atomic Activity : is a basic part of an
EFSM transition. It is defined as an SDL
command like an input, a task or an output etc.

–

A Decomposable Activity : is an activity which
can be composed of a set of atomic activities.

•

It can correspond to one transition (1_tr activity) or
to a set of transitions (n_tr

activity)

19

Decomposable ActivityDecomposable Activity

S0 S1

S3

S2 S4

S5

S7 S8

S6

IT1
Partial EFSM Activity (S1:S6)

IT2

IT3

ST1

ST2

ET1

ET2

OT1 OT2

ST : Starting Transition
IT : Intermediate Transition
ET : Ending Transition
OT : Outgoing Transition

20

Our approach main ideaOur approach main idea

Formal specification
EFSM (without security)

Security Intuitions

OrBAC

Interpretation

test Scenarios

System Implementation Execution

Formal specification
EFSM (with security)

SDL

21

Integration methodologyIntegration methodology

• To parse the EFSM specification
• For each transition, to identify the rules that

• map the activity and the EFSM context in the case of
permissions and prohibitions

• map the EFSM context in the case of obligations

22

IM : ProhibitionIM : Prohibition

• Example of 1_transition activity
• Prohibition (S, R, T, _ , C) where C is a

variables context
• The activity T exists in the functional specification
• To restrain the predicate

S1 S2
A/X, if (P), T

S1 S2
A/X, if (P�(C�R)), T

23

IM : ProhibitionIM : Prohibition

• Example of n_transition

activity :
• Prohibition (S, R, Activity1, _ , C)

S0 S1

S3

S2 S4

S5

S7 S8

S6

IT1

IT2

IT3

ST1

ST2

ET1

ET2

OT1 OT2

Act1= false
Act1=True

Act1=True

Act1= false Act1= false

P:= P�((Act1�(VARc� R))� Act1)

P:= P�((Act1�(VARc� R))� Act1)

24

IM : Prohibition IM : Prohibition AlgorithmAlgorithm
•

Require: The permission with role R, variable context V ARc

and activity i that maps the transition(s).
•

if (1_Tr activity) then
•

Revise the associated predicated to the transition: P := P � (�V ARc

� �R)
•

(Note that if no predicate is associated to this transition, we create a new one P := �V ARc

��R)
•

end if
•

if (n_Tr

activity) then
•

Add the task Acti

:= true; to the STS.
•

Add the task Acti

:= false; to the OTS
•

Duplicate the ETS into ETS1 and ETS2
•

Revise the associated predicated to the ETS1: P := P � Acti � (�V ARc

� �R)
•

Revise the associated predicated to the ETS2: P := P � (Acti

= false)
•

Add the task Acti

:= false; to the ETS1.
•

end if

• If many prohibitions : logical product

25

IM : PermissionIM : Permission

• Example of 1_transition activity :
• Permission (S, R, T, _ , C) where C a condition

related to variables
• The activity T exists in the functional specification
• To restrain the predicate

S1 S2
A/X, if (P), T

S1 S2
A/X, if (P�C�R), T

26

IM : PermissionIM : Permission

• Example of n_transition

activity :
• Permission (S, R, Activity1, _ , C)

S0 S1

S3

S2 S4

S5

S7 S8

S6

IT1

IT2

IT3

ST1

ST2

ET1

ET2

OT1 OT2

Act1= false
Act1=True

Act1=True

Act1= false Act1= false

P:= P�((Act1�C�R) �Act1)

P:= P�((Act1�C�R)� Act1)

27

IM : Permission AlgorithmIM : Permission Algorithm
•

Require: The permission with role R, variable context V ARc

and activity i that maps the
transition(s).

•

if (1_Tr activity) then
•

Revise the associated predicated to the transition: P := P � (V ARc

� R)
•

(Note that if no predicate is associated to this transition, we create a new one P := V ARc

� R)
•

end if
•

if (n_Tr

activity) then
•

Add the task Acti

:= true; to the STS.
•

Add the task Acti

:= false; to the OTS
•

Duplicate the ETS into ETS1 and ETS2
•

Revise the associated predicated to the ETS1: P := P � Acti

� (V ARc

� R)
•

Revise the associated predicated to the ETS2: P := P � (Acti

= false)
•

Add the task Acti

:= false; to the ETS1.
•

end if

• If many permissions : logical sum

28

IM : Obligation (1/2)IM : Obligation (1/2)

• Example : Obligation (S, R, new_activity, _,
(Input = A) and C)
• Assumption : new_activity

is a new activity

• New_activity

can be formally described using a
partial EFSM (OS EOS)

• To determine the Cut Point
• To add the activity and to connect transitions

29

IM : Obligation (2/2)IM : Obligation (2/2)

• Example

: Obligation (S, R, new_activity, _,
(Input = A) and C)

S1 S2
A/X, if (P), T

OS EOSB/Y, , T’

Input A if (P), T, Output X

CutPoint

new_activity

S1 S2
A/-, if (P)

OS EOSB/Y, if (C�R) , T’ -/X, T

-/X, if (C � R) , T
_ _C1

C3

C2

30

MI : Algorithme ObligationMI : Algorithme Obligation

• Input : EFSM M , Obligation and new
activity

1.

To restrain all transitions from OS with
(role and ‘variables context’)

2.

For each transition that maps the ‘EFSM
context’, identify the Cut Point

3.

Create transitions C1, C2 et C3

31

The main ideaThe main idea

Formal specification
EFSM (without security)

Security Intuitions

OrBAC

Interpretation

test Scenarios

System Implementation Execution

Formal specification
EFSM (with security)

SDL

32

Testing methodologyTesting methodology

• A methodology based on the ISO9646
standard

• Description of the system behavior using a
formal language : SDL (ObjectGEODE)

• Characterization of test objectives and test
generations (security oriented objectives)
(SIRIUS)

• Definition of testing architecture
• Execution

33

Case Case studystudy : Weblog: Weblog
Definition :

•

A weblog

is a website where entries are written

in chronological order

and displayed in reverse
chronological order.

•

Blogs

provide commentary or news on a

particular subject such as food, politics, or local
news; some function as more personal online
diaries. The ability for readers to leave
comments in an interactive format is an
important part of many blogs. (Wikipedia)

34

WeblogWeblog : formal specification: formal specification

35

Weblog : SDLWeblog : SDL
State
Input
Predicate

Task
Output
State

36

SpecificationSpecification VerificationVerification

• Model Checking
• Exhaustive simulation
• Absence of deadlocks and livelocks

…

• Guided simulation

37

Security policy definitionSecurity policy definition

• 3 possibles

roles : administrator, blogger

and
visitor

• An administrator can do any thing
• A blogger

can only read and write but not delete

• A visitor can only read
• To write or delete, the user has to be

authenticated

38

Security rules in Security rules in OrBACOrBAC

• Obligation (Website, visitor,
Authentication, _ , input = AddPostReq)

• Permission (Website, admin, ‘Deleting
Comment’, Comment, _)

• Prohibition (Website, visitor, ‘Adding
Comment’, Comment, _)

• …

39

Rules integration (1/3)Rules integration (1/3)

• Obligation (Website, visitor,
Authentication, _ , input = AddPostReq)

40

Rules integration (2/3)Rules integration (2/3)

• Permission (Website, admin, ‘Deleting
Comment’, Comment, _)

41

Rules integration (3/3)Rules integration (3/3)

• Prohibition (Website, anonymous,
‘Adding Comment’, Comment, _)

42

Specifications: Before/AfterSpecifications: Before/After

States Transitions Signals Lines

Before 3 15 15 350

After 4 23 18 594

43

Test objectives determinationTest objectives determination

• Written in SDL
• Combinative choices
• Ex : An administrator tries to add a

content, the activity is permitted and the
content is added.

• 17 test objectives that represents 95% of
the specification transitions.

44

Generation of test scenariosGeneration of test scenarios

• Using SIRIUS test generation tool
• A tool based on Hit-or-Jump algorithm that

allows to avoid combinative explosion
• BFS (Breath First Search)
• Quick generation (3s) and short scenarios (7

transitions)
• Test scenarios can be provided in TTCN or

MSC standard. => Portability

45

OutlineOutline
•

Introduction

•

Active/Passive Testing
•

Active Testing Approach
–

Preliminaries
–

An integration based approach
–

The integration methodology
–

Use case : a Weblog

•

Passive Testing Approach
–

Ongoing Work

•

Conclusion

46

Our AimOur Aim

• Definition of Passive test techniques for
security checking

• Detection of violations of security policies

47

Security Rules SpecificationSecurity Rules Specification

• A formalism well adapted passive testing
• Syntax inspired by Nomad (Non atomic

actions and deadlines)
• Specification of permissions, prohibitions

and obligations concerning non atomic
actions using a combination of deontic

and

temporal logics

Passive Testing MethodologyPassive Testing Methodology

49

Test EngineTest Engine

50

SAP Case StudySAP Case Study

• 13 rules have been
selected to be
specified in our
formalism

• 2 Obligations
• 3 Prohibitions
• 8 Permissions

51

ResultsResults

• Trace file of

the

Audit application (25000 lines)

03.04.2005,10:20:25,600,HACKERW,FK02,S826-01,AU3,Transaction FK02 S

Date heure

Client
User ID

Trans. code

Terminal

Message ID

Message

52

ResultsResults

• The system checks its security policy

53

ResultsResults

• Modifications in the Audit File

54

Conclusion and future workConclusion and future work

• The security testing is still complex
• Automatic test generation for access control

security rules (permission, prohibition, and
obligation)

• Handling decomposable activities
• 3 algorithms
• Weblog

and “A Travel Agency”

case studies

• Passive testing (ongoing work)

55

QuestionsQuestions

??

	Model Based Testing� for Security Checking
	Outline
	Introduction and motivation
	Introduction and motivation
	Outline
	Active Testing
	Conformance Testing(1/2)
	Conformance Testing (2/2)
	Passive Testing
	Outline
	Problem Inputs/Output
	EFSM Formalism (1/2)
	EFSM Formalism (2/2)
	Orbac (1/2)
	Orbac (2/2)
	Orbac Interpretation to Fit the EFSM Formalism (1/2)
	Orbac Interpretation to Fit the EFSM Formalism (2/2)
	Activity Definition
	Decomposable Activity
	Our approach main idea
	Integration methodology
	IM : Prohibition
	IM : Prohibition
	IM : Prohibition Algorithm
	IM : Permission
	IM : Permission
	IM : Permission Algorithm
	IM : Obligation (1/2)
	IM : Obligation (2/2)
	MI : Algorithme Obligation
	The main idea
	Testing methodology
	Case study : Weblog
	Weblog : formal specification
	Weblog : SDL
	Specification Verification
	Security policy definition
	Security rules in OrBAC
	Rules integration (1/3)
	Rules integration (2/3)
	Rules integration (3/3)
	Specifications: Before/After
	Test objectives determination
	Generation of test scenarios
	Outline
	Our Aim
	Security Rules Specification
	Passive Testing Methodology
	Test Engine
	SAP Case Study
	Results
	Results
	Results
	Conclusion and future work
	Questions ?

