
(Remarks on) Security Proofs of
Certificateless Signature Schemes

R. Castro and R. Dahab
UNICAMP – University of Campinas, SP

Workshop on Formal Methods in Security
STIC-AmSud

November 2007

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 1 / 22



Outline

1 A quick introduction
2 Certificateless Signature Schemes (CLS)
3 Security of CLS
4 Remark #1 - How do adversaries replace public keys?
5 Remark #2 - The Oracle Replay Technique and CLS
6 Summary of CLS Schemes

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 2 / 22



Certificateless Signature Schemes

Certificateless Public-Key Cryptography
[Al-Riyami and Paterson, 2003]
Main design goal: compromise between ID-Based Cryptography
and traditional “PKI-Based” Cryptography:

I Avoid IBC’s key escrow
I Avoid certificates altogether

CL-PKC is a form of implicit key certification [Girault, 1991]

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 3 / 22



Certificateless Signature Schemes

Certificateless Public-Key Cryptography
[Al-Riyami and Paterson, 2003]
Main design goal: compromise between ID-Based Cryptography
and traditional “PKI-Based” Cryptography:

I Avoid IBC’s key escrow
I Avoid certificates altogether

CL-PKC is a form of implicit key certification [Girault, 1991]

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 3 / 22



Certificateless Signature Schemes

The original motivation was certificateless encryption:
I Kept a few of IBC’s features, such as “encryption into the future”
I Certificateless signatures were presented as a “by-product”

The original definition by Al-Riyami/Paterson had 7 algorithms;
I The following definition, with 5 algorithms, is enough

[Hu et al., 2006].

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 4 / 22



Certificateless Signature Schemes

The original motivation was certificateless encryption:
I Kept a few of IBC’s features, such as “encryption into the future”
I Certificateless signatures were presented as a “by-product”

The original definition by Al-Riyami/Paterson had 7 algorithms;
I The following definition, with 5 algorithms, is enough

[Hu et al., 2006].

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 4 / 22



Certificateless Signature Schemes - Definition

Setup. Run by the KGC to initialize the system. Given a security
parameter 1k , returns master keys, public and secret (mpk,msk).
PartialKeyGen. Takes as input (mpk, msk) and the identity
ID ∈ {0,1}∗, and outputs the partial private key DID.
UserKeysGen. Takes as input mpk and generates the user’s
public key PID and corresponding secret value, xID.
CL-Sign. Takes as input mpk, ID, (DID, xID) and a message M.
Outputs a signature σ on M.
CL-Verify. Takes as input mpk, ID, PID, M and the signature σ,
and outputs ACCEPT if and only if σ is a valid signature by user
UID, under public key PID, on M.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 5 / 22



Certificateless Signature Schemes - Definition

Setup. Run by the KGC to initialize the system. Given a security
parameter 1k , returns master keys, public and secret (mpk,msk).
PartialKeyGen. Takes as input (mpk, msk) and the identity
ID ∈ {0,1}∗, and outputs the partial private key DID.
UserKeysGen. Takes as input mpk and generates the user’s
public key PID and corresponding secret value, xID.
CL-Sign. Takes as input mpk, ID, (DID, xID) and a message M.
Outputs a signature σ on M.
CL-Verify. Takes as input mpk, ID, PID, M and the signature σ,
and outputs ACCEPT if and only if σ is a valid signature by user
UID, under public key PID, on M.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 5 / 22



Certificateless Signature Schemes - Definition

Setup. Run by the KGC to initialize the system. Given a security
parameter 1k , returns master keys, public and secret (mpk,msk).
PartialKeyGen. Takes as input (mpk, msk) and the identity
ID ∈ {0,1}∗, and outputs the partial private key DID.
UserKeysGen. Takes as input mpk and generates the user’s
public key PID and corresponding secret value, xID.
CL-Sign. Takes as input mpk, ID, (DID, xID) and a message M.
Outputs a signature σ on M.
CL-Verify. Takes as input mpk, ID, PID, M and the signature σ,
and outputs ACCEPT if and only if σ is a valid signature by user
UID, under public key PID, on M.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 5 / 22



Certificateless Signature Schemes - Definition

Setup. Run by the KGC to initialize the system. Given a security
parameter 1k , returns master keys, public and secret (mpk,msk).
PartialKeyGen. Takes as input (mpk, msk) and the identity
ID ∈ {0,1}∗, and outputs the partial private key DID.
UserKeysGen. Takes as input mpk and generates the user’s
public key PID and corresponding secret value, xID.
CL-Sign. Takes as input mpk, ID, (DID, xID) and a message M.
Outputs a signature σ on M.
CL-Verify. Takes as input mpk, ID, PID, M and the signature σ,
and outputs ACCEPT if and only if σ is a valid signature by user
UID, under public key PID, on M.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 5 / 22



Certificateless Signature Schemes - Definition

Setup. Run by the KGC to initialize the system. Given a security
parameter 1k , returns master keys, public and secret (mpk,msk).
PartialKeyGen. Takes as input (mpk, msk) and the identity
ID ∈ {0,1}∗, and outputs the partial private key DID.
UserKeysGen. Takes as input mpk and generates the user’s
public key PID and corresponding secret value, xID.
CL-Sign. Takes as input mpk, ID, (DID, xID) and a message M.
Outputs a signature σ on M.
CL-Verify. Takes as input mpk, ID, PID, M and the signature σ,
and outputs ACCEPT if and only if σ is a valid signature by user
UID, under public key PID, on M.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 5 / 22



Security of CLS Schemes

No explicit certification→ keys can be replaced.
KGC is assumed not to replace public keys.
Must take two types of adversaries into consideration:

I Type I. Arbitrary adversaries that are able to replace public keys;
I Type II. the KGC, who has access to the master secret.

Formalized through two very similar games.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 6 / 22



Security of CLS Schemes

No explicit certification→ keys can be replaced.
KGC is assumed not to replace public keys.
Must take two types of adversaries into consideration:

I Type I. Arbitrary adversaries that are able to replace public keys;
I Type II. the KGC, who has access to the master secret.

Formalized through two very similar games.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 6 / 22



Security of CLS Schemes

No explicit certification→ keys can be replaced.
KGC is assumed not to replace public keys.
Must take two types of adversaries into consideration:

I Type I. Arbitrary adversaries that are able to replace public keys;
I Type II. the KGC, who has access to the master secret.

Formalized through two very similar games.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 6 / 22



Security of CLS Schemes

No explicit certification→ keys can be replaced.
KGC is assumed not to replace public keys.
Must take two types of adversaries into consideration:

I Type I. Arbitrary adversaries that are able to replace public keys;
I Type II. the KGC, who has access to the master secret.

Formalized through two very similar games.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 6 / 22



Security of CLS Schemes

Definition
Basic Game: Let C be the challenger algorithm and k be a security
parameter:

1 C executes Setup(1k ) and obtains (mpk,msk);
2 C runs A on 1k and mpk. During its run, A has access to the

following oracles: RevealPublicKey, RevealPartialKey,
RevealSecretValue, ReplacePublicKey, QueryHash,
Sign;

3 A outputs (ID∗,M∗, σ∗).
A wins the game if the verification procedure of the CLS scheme
accepts (ID∗,M∗, σ∗).

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 7 / 22



Security of CLS Schemes

Additional conditions to win the game:
Type I Adversaries. AI wins the game if both conditions below
hold:

I Sign(ID∗,M∗) was never queried;
I RevealPartialKey(ID∗) was also never queried.

Type II Adversaries. AII wins the game if all conditions below
hold:

I Sign(ID∗,M∗) was never queried;
I RevealSecretValue(ID∗) was never queried;
I ReplacePublicKey(ID∗, .) was never queried.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 8 / 22



Security of CLS Schemes

Additional conditions to win the game:
Type I Adversaries. AI wins the game if both conditions below
hold:

I Sign(ID∗,M∗) was never queried;
I RevealPartialKey(ID∗) was also never queried.

Type II Adversaries. AII wins the game if all conditions below
hold:

I Sign(ID∗,M∗) was never queried;
I RevealSecretValue(ID∗) was never queried;
I ReplacePublicKey(ID∗, .) was never queried.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 8 / 22



Remark #1: How do adversaries replace public keys?

Many schemes make the assumption that when A replaces a
public key, it knows the corresponding secret value:

I [Goya, 2006], [Huang et al., 2005], [Yap et al., 2006],
[Du and Wen, 2007], [Choi et al., 2007].

Deriving the secret value from the public key is hard.
Therefore, this assumption implies that the only way to compute
public keys is the “naive” way:

1 Choose a secret value;
2 compute a valid public key from the secret value, using the

prescribed procedure for the scheme.

This does not allow adversaries to pick a public key of their choice.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 9 / 22



Remark #1: How do adversaries replace public keys?

Many schemes make the assumption that when A replaces a
public key, it knows the corresponding secret value:

I [Goya, 2006], [Huang et al., 2005], [Yap et al., 2006],
[Du and Wen, 2007], [Choi et al., 2007].

Deriving the secret value from the public key is hard.
Therefore, this assumption implies that the only way to compute
public keys is the “naive” way:

1 Choose a secret value;
2 compute a valid public key from the secret value, using the

prescribed procedure for the scheme.

This does not allow adversaries to pick a public key of their choice.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 9 / 22



Remark #1: How do adversaries replace public keys?

Many schemes make the assumption that when A replaces a
public key, it knows the corresponding secret value:

I [Goya, 2006], [Huang et al., 2005], [Yap et al., 2006],
[Du and Wen, 2007], [Choi et al., 2007].

Deriving the secret value from the public key is hard.
Therefore, this assumption implies that the only way to compute
public keys is the “naive” way:

1 Choose a secret value;
2 compute a valid public key from the secret value, using the

prescribed procedure for the scheme.

This does not allow adversaries to pick a public key of their choice.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 9 / 22



Remark #1: How do adversaries replace public keys?

Many schemes make the assumption that when A replaces a
public key, it knows the corresponding secret value:

I [Goya, 2006], [Huang et al., 2005], [Yap et al., 2006],
[Du and Wen, 2007], [Choi et al., 2007].

Deriving the secret value from the public key is hard.
Therefore, this assumption implies that the only way to compute
public keys is the “naive” way:

1 Choose a secret value;
2 compute a valid public key from the secret value, using the

prescribed procedure for the scheme.

This does not allow adversaries to pick a public key of their choice.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 9 / 22



Remark #1: How do adversaries replace public keys?
To illustrate this issue, we use Goya & Terada’s scheme:

Setup
1 Choose e : G1 ×G2 → GT .
2 generators P ∈ G1, Q ∈ G2 such that P = ψ(Q);
3 compute g = e(P,Q); choose s R← Z∗

p; compute Qpub = sQ;
4 choose hash functions H1 : {0,1}∗ → Z∗

p and
H2 : {0,1}∗ × {0,1}∗ ×GT ×GT → Z∗

p.

PartialKeyGen. DA = 1
H1(IDA)+s P.

UserKeysGen. Pick a random tA ∈ Z∗
p and compute NA = gtA .

CL-Sign. Pick a random r ∈ Z∗
p; compute U = gr ∈ GT ;

compute h = H2(M, IDA,NA,U) ∈ Z∗
p, and S = (r + htA)DA ∈ G1.

The signature is σ = (S,h).
CL-Verify. Compute U ′ = e[S,H1(IDA)Q + Qpub](NA)−h;
accept if and only if

h = H2(M, IDA,NA,U ′).

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 10 / 22



Remark #1: How do adversaries replace public keys?
To illustrate this issue, we use Goya & Terada’s scheme:

Setup
1 Choose e : G1 ×G2 → GT .
2 generators P ∈ G1, Q ∈ G2 such that P = ψ(Q);
3 compute g = e(P,Q); choose s R← Z∗

p; compute Qpub = sQ;
4 choose hash functions H1 : {0,1}∗ → Z∗

p and
H2 : {0,1}∗ × {0,1}∗ ×GT ×GT → Z∗

p.

PartialKeyGen. DA = 1
H1(IDA)+s P.

UserKeysGen. Pick a random tA ∈ Z∗
p and compute NA = gtA .

CL-Sign. Pick a random r ∈ Z∗
p; compute U = gr ∈ GT ;

compute h = H2(M, IDA,NA,U) ∈ Z∗
p, and S = (r + htA)DA ∈ G1.

The signature is σ = (S,h).
CL-Verify. Compute U ′ = e[S,H1(IDA)Q + Qpub](NA)−h;
accept if and only if

h = H2(M, IDA,NA,U ′).

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 10 / 22



Remark #1: How do adversaries replace public keys?
To illustrate this issue, we use Goya & Terada’s scheme:

Setup
1 Choose e : G1 ×G2 → GT .
2 generators P ∈ G1, Q ∈ G2 such that P = ψ(Q);
3 compute g = e(P,Q); choose s R← Z∗

p; compute Qpub = sQ;
4 choose hash functions H1 : {0,1}∗ → Z∗

p and
H2 : {0,1}∗ × {0,1}∗ ×GT ×GT → Z∗

p.

PartialKeyGen. DA = 1
H1(IDA)+s P.

UserKeysGen. Pick a random tA ∈ Z∗
p and compute NA = gtA .

CL-Sign. Pick a random r ∈ Z∗
p; compute U = gr ∈ GT ;

compute h = H2(M, IDA,NA,U) ∈ Z∗
p, and S = (r + htA)DA ∈ G1.

The signature is σ = (S,h).
CL-Verify. Compute U ′ = e[S,H1(IDA)Q + Qpub](NA)−h;
accept if and only if

h = H2(M, IDA,NA,U ′).

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 10 / 22



Remark #1: How do adversaries replace public keys?
To illustrate this issue, we use Goya & Terada’s scheme:

Setup
1 Choose e : G1 ×G2 → GT .
2 generators P ∈ G1, Q ∈ G2 such that P = ψ(Q);
3 compute g = e(P,Q); choose s R← Z∗

p; compute Qpub = sQ;
4 choose hash functions H1 : {0,1}∗ → Z∗

p and
H2 : {0,1}∗ × {0,1}∗ ×GT ×GT → Z∗

p.

PartialKeyGen. DA = 1
H1(IDA)+s P.

UserKeysGen. Pick a random tA ∈ Z∗
p and compute NA = gtA .

CL-Sign. Pick a random r ∈ Z∗
p; compute U = gr ∈ GT ;

compute h = H2(M, IDA,NA,U) ∈ Z∗
p, and S = (r + htA)DA ∈ G1.

The signature is σ = (S,h).
CL-Verify. Compute U ′ = e[S,H1(IDA)Q + Qpub](NA)−h;
accept if and only if

h = H2(M, IDA,NA,U ′).

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 10 / 22



Remark #1: How do adversaries replace public keys?
To illustrate this issue, we use Goya & Terada’s scheme:

Setup
1 Choose e : G1 ×G2 → GT .
2 generators P ∈ G1, Q ∈ G2 such that P = ψ(Q);
3 compute g = e(P,Q); choose s R← Z∗

p; compute Qpub = sQ;
4 choose hash functions H1 : {0,1}∗ → Z∗

p and
H2 : {0,1}∗ × {0,1}∗ ×GT ×GT → Z∗

p.

PartialKeyGen. DA = 1
H1(IDA)+s P.

UserKeysGen. Pick a random tA ∈ Z∗
p and compute NA = gtA .

CL-Sign. Pick a random r ∈ Z∗
p; compute U = gr ∈ GT ;

compute h = H2(M, IDA,NA,U) ∈ Z∗
p, and S = (r + htA)DA ∈ G1.

The signature is σ = (S,h).
CL-Verify. Compute U ′ = e[S,H1(IDA)Q + Qpub](NA)−h;
accept if and only if

h = H2(M, IDA,NA,U ′).

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 10 / 22



Remark #1: How do adversaries replace public keys?

Correctness of the scheme:

U ′ = e[S,h1Q + Qpub](NA)−h

= e[(r + htA)DA,h1Q + Qpub](NA)−h

= e[(r + htA)(h1 + s)−1P, (h1 + s)Q]g−tAh

= e[P,Q]r+htAg−tAh

= gr ghtAg−tAh = gr = U

Based on Barreto et al.’s IBS [Barreto et al., 2005]
Very efficient: only one pairing for verification
Thought to be provably secure:

I Actually insecure as the following attack shows

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 11 / 22



Remark #1: How do adversaries replace public keys?

Correctness of the scheme:

U ′ = e[S,h1Q + Qpub](NA)−h

= e[(r + htA)DA,h1Q + Qpub](NA)−h

= e[(r + htA)(h1 + s)−1P, (h1 + s)Q]g−tAh

= e[P,Q]r+htAg−tAh

= gr ghtAg−tAh = gr = U

Based on Barreto et al.’s IBS [Barreto et al., 2005]
Very efficient: only one pairing for verification
Thought to be provably secure:

I Actually insecure as the following attack shows

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 11 / 22



Remark #1: How do adversaries replace public keys?

Correctness of the scheme:

U ′ = e[S,h1Q + Qpub](NA)−h

= e[(r + htA)DA,h1Q + Qpub](NA)−h

= e[(r + htA)(h1 + s)−1P, (h1 + s)Q]g−tAh

= e[P,Q]r+htAg−tAh

= gr ghtAg−tAh = gr = U

Based on Barreto et al.’s IBS [Barreto et al., 2005]
Very efficient: only one pairing for verification
Thought to be provably secure:

I Actually insecure as the following attack shows

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 11 / 22



Remark #1: How do adversaries replace public keys?

Correctness of the scheme:

U ′ = e[S,h1Q + Qpub](NA)−h

= e[(r + htA)DA,h1Q + Qpub](NA)−h

= e[(r + htA)(h1 + s)−1P, (h1 + s)Q]g−tAh

= e[P,Q]r+htAg−tAh

= gr ghtAg−tAh = gr = U

Based on Barreto et al.’s IBS [Barreto et al., 2005]
Very efficient: only one pairing for verification
Thought to be provably secure:

I Actually insecure as the following attack shows

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 11 / 22



Remark #1: How do adversaries replace public keys?
Forging Goya/Terada Signatures.

Given the target identity IDA:
1 Choose a random tA

r← Z∗
q and compute

NA = (e(P,Qpub)gH1(IDA))tA = (gsgH1(IDA))tA = gtA(s+H1(IDA));
2 Replace IDA’s public key with NA

Now, to a sign message M:
1 Choose r r← Z∗

q ; compute U = N r
A; let h = H(M, IDA,NA,U)

2 Compute S = (r + h)tAP; output the forgery γ = (S,h)

Correctness:

U ′ = e[S,h1Q + Qpub](NA)−h

= e[(r + h)tAP, (h1 + s)Q](gtA(s+h1))−h

= e[P,Q](r+h)(h1+s)tA(gtA(s+h1))−h

= gr(h1+s)tA = N r
A = U.

A does not know x ,NA = gx

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 12 / 22



Remark #1: How do adversaries replace public keys?
Forging Goya/Terada Signatures.

Given the target identity IDA:
1 Choose a random tA

r← Z∗
q and compute

NA = (e(P,Qpub)gH1(IDA))tA = (gsgH1(IDA))tA = gtA(s+H1(IDA));
2 Replace IDA’s public key with NA

Now, to a sign message M:
1 Choose r r← Z∗

q ; compute U = N r
A; let h = H(M, IDA,NA,U)

2 Compute S = (r + h)tAP; output the forgery γ = (S,h)

Correctness:

U ′ = e[S,h1Q + Qpub](NA)−h

= e[(r + h)tAP, (h1 + s)Q](gtA(s+h1))−h

= e[P,Q](r+h)(h1+s)tA(gtA(s+h1))−h

= gr(h1+s)tA = N r
A = U.

A does not know x ,NA = gx

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 12 / 22



Remark #1: How do adversaries replace public keys?
Forging Goya/Terada Signatures.

Given the target identity IDA:
1 Choose a random tA

r← Z∗
q and compute

NA = (e(P,Qpub)gH1(IDA))tA = (gsgH1(IDA))tA = gtA(s+H1(IDA));
2 Replace IDA’s public key with NA

Now, to a sign message M:
1 Choose r r← Z∗

q ; compute U = N r
A; let h = H(M, IDA,NA,U)

2 Compute S = (r + h)tAP; output the forgery γ = (S,h)

Correctness:

U ′ = e[S,h1Q + Qpub](NA)−h

= e[(r + h)tAP, (h1 + s)Q](gtA(s+h1))−h

= e[P,Q](r+h)(h1+s)tA(gtA(s+h1))−h

= gr(h1+s)tA = N r
A = U.

A does not know x ,NA = gx

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 12 / 22



Remark #1: How do adversaries replace public keys?
Forging Goya/Terada Signatures.

Given the target identity IDA:
1 Choose a random tA

r← Z∗
q and compute

NA = (e(P,Qpub)gH1(IDA))tA = (gsgH1(IDA))tA = gtA(s+H1(IDA));
2 Replace IDA’s public key with NA

Now, to a sign message M:
1 Choose r r← Z∗

q ; compute U = N r
A; let h = H(M, IDA,NA,U)

2 Compute S = (r + h)tAP; output the forgery γ = (S,h)

Correctness:

U ′ = e[S,h1Q + Qpub](NA)−h

= e[(r + h)tAP, (h1 + s)Q](gtA(s+h1))−h

= e[P,Q](r+h)(h1+s)tA(gtA(s+h1))−h

= gr(h1+s)tA = N r
A = U.

A does not know x ,NA = gx

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 12 / 22



Remark #1: How do adversaries replace public keys?
Forging Goya/Terada Signatures.

Given the target identity IDA:
1 Choose a random tA

r← Z∗
q and compute

NA = (e(P,Qpub)gH1(IDA))tA = (gsgH1(IDA))tA = gtA(s+H1(IDA));
2 Replace IDA’s public key with NA

Now, to a sign message M:
1 Choose r r← Z∗

q ; compute U = N r
A; let h = H(M, IDA,NA,U)

2 Compute S = (r + h)tAP; output the forgery γ = (S,h)

Correctness:

U ′ = e[S,h1Q + Qpub](NA)−h

= e[(r + h)tAP, (h1 + s)Q](gtA(s+h1))−h

= e[P,Q](r+h)(h1+s)tA(gtA(s+h1))−h

= gr(h1+s)tA = N r
A = U.

A does not know x ,NA = gx

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 12 / 22



Remark #1: How do adversaries replace public keys?
Forging Goya/Terada Signatures.

Given the target identity IDA:
1 Choose a random tA

r← Z∗
q and compute

NA = (e(P,Qpub)gH1(IDA))tA = (gsgH1(IDA))tA = gtA(s+H1(IDA));
2 Replace IDA’s public key with NA

Now, to a sign message M:
1 Choose r r← Z∗

q ; compute U = N r
A; let h = H(M, IDA,NA,U)

2 Compute S = (r + h)tAP; output the forgery γ = (S,h)

Correctness:

U ′ = e[S,h1Q + Qpub](NA)−h

= e[(r + h)tAP, (h1 + s)Q](gtA(s+h1))−h

= e[P,Q](r+h)(h1+s)tA(gtA(s+h1))−h

= gr(h1+s)tA = N r
A = U.

A does not know x ,NA = gx

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 12 / 22



Remark #1: How do adversaries replace public keys?

This puts in doubt the security of two recent proposals:
[Du and Wen, 2007] and [Choi et al., 2007]
Both are related and very efficient
We weren’t able to find attacks on any of these schemes
Their situation is uncertain

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 13 / 22



Remark #1: How do adversaries replace public keys?

This puts in doubt the security of two recent proposals:
[Du and Wen, 2007] and [Choi et al., 2007]
Both are related and very efficient
We weren’t able to find attacks on any of these schemes
Their situation is uncertain

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 13 / 22



Remark #1: How do adversaries replace public keys?

This puts in doubt the security of two recent proposals:
[Du and Wen, 2007] and [Choi et al., 2007]
Both are related and very efficient
We weren’t able to find attacks on any of these schemes
Their situation is uncertain

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 13 / 22



Remark #1: How do adversaries replace public keys?

This puts in doubt the security of two recent proposals:
[Du and Wen, 2007] and [Choi et al., 2007]
Both are related and very efficient
We weren’t able to find attacks on any of these schemes
Their situation is uncertain

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 13 / 22



Remark #2: The Oracle Replay Technique and CLS

The Oracle Replay Technique was proposed in
[Pointcheval and Stern, 2000] to prove the security of generic
signature schemes:

I Schnorr, variants of ElGamal, schemes from Fiat-Shamir heuristics.
A signature scheme S is said to be generic if, given the input
message m, it produces triples (r ,h, σ), where:

I r takes its value randomly within a large set;
I h is the hash value of m, r ;
I σ depends only on r , m and h.

Forking Lemma. If an adversary A can forge signatures then it’s
possible to replay a successful execution and (with non-negligible
probability) obtain a pair of related forgeries (r ,h, σ) and (r ,h′, σ′)
where h′ 6= h.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 14 / 22



Remark #2: The Oracle Replay Technique and CLS

The Oracle Replay Technique was proposed in
[Pointcheval and Stern, 2000] to prove the security of generic
signature schemes:

I Schnorr, variants of ElGamal, schemes from Fiat-Shamir heuristics.
A signature scheme S is said to be generic if, given the input
message m, it produces triples (r ,h, σ), where:

I r takes its value randomly within a large set;
I h is the hash value of m, r ;
I σ depends only on r , m and h.

Forking Lemma. If an adversary A can forge signatures then it’s
possible to replay a successful execution and (with non-negligible
probability) obtain a pair of related forgeries (r ,h, σ) and (r ,h′, σ′)
where h′ 6= h.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 14 / 22



Remark #2: The Oracle Replay Technique and CLS

The Oracle Replay Technique was proposed in
[Pointcheval and Stern, 2000] to prove the security of generic
signature schemes:

I Schnorr, variants of ElGamal, schemes from Fiat-Shamir heuristics.
A signature scheme S is said to be generic if, given the input
message m, it produces triples (r ,h, σ), where:

I r takes its value randomly within a large set;
I h is the hash value of m, r ;
I σ depends only on r , m and h.

Forking Lemma. If an adversary A can forge signatures then it’s
possible to replay a successful execution and (with non-negligible
probability) obtain a pair of related forgeries (r ,h, σ) and (r ,h′, σ′)
where h′ 6= h.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 14 / 22



Remark #2: The Oracle Replay Technique and CLS

A pair of signatures (r ,h, σ) and (r ,h′, σ′) where h′ 6= h is usually
enough to compute private keys (in generic schemes).

I A Schnorr signature is σ = k + hx mod q, and r = gk .
I If we also know σ′ = k + h′x mod q, then:

(σ′ − σ)(h′ − h)−1 = (k + h′x − k − hx)((h′ − h)−1)

= x(h′ − h)(h′ − h)−1

= x mod q,

I Thus revealing the secret key.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 15 / 22



Remark #2: The Oracle Replay Technique and CLS

A pair of signatures (r ,h, σ) and (r ,h′, σ′) where h′ 6= h is usually
enough to compute private keys (in generic schemes).

I A Schnorr signature is σ = k + hx mod q, and r = gk .
I If we also know σ′ = k + h′x mod q, then:

(σ′ − σ)(h′ − h)−1 = (k + h′x − k − hx)((h′ − h)−1)

= x(h′ − h)(h′ − h)−1

= x mod q,

I Thus revealing the secret key.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 15 / 22



Remark #2: The Oracle Replay Technique and CLS

The Oracle Replay Technique can be illustrated as follows:

(s∗,h∗, r∗) is the first forgery, (s∗
′
,h∗′

, r∗) is the second.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 16 / 22



Remark #2: The Oracle Replay Technique and CLS

What guarantees that r will be the same in both forgeries?
I It’s in the Q∗ hash query so it must be chosen before the execution

“forks”

But in CLS keys can be replaced
So, in a CLS, what guarantees that the public key will be the same
in both executions?

I Nothing, unless it is also in the hash query

Thus, we define the notion of CL-Generic Signature scheme:
A CLS scheme S is said to be CL-Generic if, given the input
message M, it produces triples (r ,h, σ), where:

I r takes its value randomly within a large set;
I h is the hash value of m, r and the public key PKID;
I σ depends only on r , m and h.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 17 / 22



Remark #2: The Oracle Replay Technique and CLS

What guarantees that r will be the same in both forgeries?
I It’s in the Q∗ hash query so it must be chosen before the execution

“forks”

But in CLS keys can be replaced
So, in a CLS, what guarantees that the public key will be the same
in both executions?

I Nothing, unless it is also in the hash query

Thus, we define the notion of CL-Generic Signature scheme:
A CLS scheme S is said to be CL-Generic if, given the input
message M, it produces triples (r ,h, σ), where:

I r takes its value randomly within a large set;
I h is the hash value of m, r and the public key PKID;
I σ depends only on r , m and h.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 17 / 22



Remark #2: The Oracle Replay Technique and CLS

What guarantees that r will be the same in both forgeries?
I It’s in the Q∗ hash query so it must be chosen before the execution

“forks”

But in CLS keys can be replaced
So, in a CLS, what guarantees that the public key will be the same
in both executions?

I Nothing, unless it is also in the hash query

Thus, we define the notion of CL-Generic Signature scheme:
A CLS scheme S is said to be CL-Generic if, given the input
message M, it produces triples (r ,h, σ), where:

I r takes its value randomly within a large set;
I h is the hash value of m, r and the public key PKID;
I σ depends only on r , m and h.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 17 / 22



Remark #2: The Oracle Replay Technique and CLS

What guarantees that r will be the same in both forgeries?
I It’s in the Q∗ hash query so it must be chosen before the execution

“forks”

But in CLS keys can be replaced
So, in a CLS, what guarantees that the public key will be the same
in both executions?

I Nothing, unless it is also in the hash query

Thus, we define the notion of CL-Generic Signature scheme:
A CLS scheme S is said to be CL-Generic if, given the input
message M, it produces triples (r ,h, σ), where:

I r takes its value randomly within a large set;
I h is the hash value of m, r and the public key PKID;
I σ depends only on r , m and h.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 17 / 22



Remark #2: The Oracle Replay Technique and CLS

What guarantees that r will be the same in both forgeries?
I It’s in the Q∗ hash query so it must be chosen before the execution

“forks”

But in CLS keys can be replaced
So, in a CLS, what guarantees that the public key will be the same
in both executions?

I Nothing, unless it is also in the hash query

Thus, we define the notion of CL-Generic Signature scheme:
A CLS scheme S is said to be CL-Generic if, given the input
message M, it produces triples (r ,h, σ), where:

I r takes its value randomly within a large set;
I h is the hash value of m, r and the public key PKID;
I σ depends only on r , m and h.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 17 / 22



Remark #2: The Oracle Replay Technique and CLS

Al-Riyami & Paterson’s original CLS: no security proof
I Later found insecure by Huang et al.

Signing procedure: r r← Z∗
p; u = e(rP,P); S = H2(M,u)tADA + rP.

I Insecure.
Change to: r r← Z∗

p; u = e(rP,P); S = H2(M,u, PKID )tADA + rP.
I Secure. Proof by the Oracle Replay Technique.
I As efficient as the original version.

Same can be done for Li, Chen & Sun’s version [Li et al., 2005]

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 18 / 22



Remark #2: The Oracle Replay Technique and CLS

Al-Riyami & Paterson’s original CLS: no security proof
I Later found insecure by Huang et al.

Signing procedure: r r← Z∗
p; u = e(rP,P); S = H2(M,u)tADA + rP.

I Insecure.
Change to: r r← Z∗

p; u = e(rP,P); S = H2(M,u, PKID )tADA + rP.
I Secure. Proof by the Oracle Replay Technique.
I As efficient as the original version.

Same can be done for Li, Chen & Sun’s version [Li et al., 2005]

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 18 / 22



Remark #2: The Oracle Replay Technique and CLS

Al-Riyami & Paterson’s original CLS: no security proof
I Later found insecure by Huang et al.

Signing procedure: r r← Z∗
p; u = e(rP,P); S = H2(M,u)tADA + rP.

I Insecure.
Change to: r r← Z∗

p; u = e(rP,P); S = H2(M,u, PKID )tADA + rP.
I Secure. Proof by the Oracle Replay Technique.
I As efficient as the original version.

Same can be done for Li, Chen & Sun’s version [Li et al., 2005]

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 18 / 22



Remark #2: The Oracle Replay Technique and CLS

Al-Riyami & Paterson’s original CLS: no security proof
I Later found insecure by Huang et al.

Signing procedure: r r← Z∗
p; u = e(rP,P); S = H2(M,u)tADA + rP.

I Insecure.
Change to: r r← Z∗

p; u = e(rP,P); S = H2(M,u, PKID )tADA + rP.
I Secure. Proof by the Oracle Replay Technique.
I As efficient as the original version.

Same can be done for Li, Chen & Sun’s version [Li et al., 2005]

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 18 / 22



Summary of CLS Schemes

Scheme Sign Verify Status
[Al-Riyami and Paterson, 2003] 1 4 Broken

[Huang et al., 2005] 2 5 OK
[Castro and Dahab, 2007] 1 4 OK

[Li et al., 2005] 0 4 OK
[Gorantla and Saxena, 2005] 0 2 Broken

[Yap et al., 2006] 0 2 Broken
[Zhang et al., 2006] 0 4 OK

[Goya, 2006] 0 1 Broken
[Liu et al., 2006] 0 6 OK

[Choi et al., 2007] 0 1 Unknown
[Choi et al., 2007] 0 2 Unknown

[Du and Wen, 2007] 0 1 Unknown
Castro & Dahab [soon on ePrint] 0 3 OK

The cost of signing and verifying is expressed in number of pairings.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 19 / 22



Concluding Remarks

We discussed two common pitfalls in the security proofs of CLS
schemes:

1 Knowledge of secret values related to replaced public-keys:
I Assumption used in the proofs of too many schemes
I Leads to attack on Goya/Terada
I Puts security of [Du and Wen, 2007] and [Choi et al., 2007] in doubt

2 The use of the Replay Technique:
I Efficient, provably secure, correction of Al-Riyami/Paterson
I Security proofs of a previously unproven scheme [Li et al., 2005]
I General guideline for constructing CLS schemes

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 20 / 22



Concluding Remarks

We discussed two common pitfalls in the security proofs of CLS
schemes:

1 Knowledge of secret values related to replaced public-keys:
I Assumption used in the proofs of too many schemes
I Leads to attack on Goya/Terada
I Puts security of [Du and Wen, 2007] and [Choi et al., 2007] in doubt

2 The use of the Replay Technique:
I Efficient, provably secure, correction of Al-Riyami/Paterson
I Security proofs of a previously unproven scheme [Li et al., 2005]
I General guideline for constructing CLS schemes

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 20 / 22



Bibliography

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 21 / 22



Al-Riyami, S. S. and Paterson, K. G. (2003).
Certificateless public key cryptography.
In Laih, C.-S., editor, ASIACRYPT, volume 2894 of Lecture Notes
in Computer Science, pages 452–473. Springer.

Barreto, P. S. L. M., Libert, B., McCullagh, N., and Quisquater, J.-J.
(2005).
Efficient and provably-secure identity-based signatures and
signcryption from bilinear maps.
In Roy, B. K., editor, ASIACRYPT, volume 3788 of Lecture Notes in
Computer Science, pages 515–532. Springer.

Castro, R. and Dahab, R. (2007).
Two notes on the security of certificateless signatures.
In Susilo, W., Liu, J. K., and Mu, Y., editors, The 1st International
Conference on Provable Security (ProvSec) 2007, volume 4784 of
Lecture Notes in Computer Science. Springer.

Choi, K. Y., Park, J. H., Hwang, J. Y., and Lee, D. H. (2007).
Efficient certificateless signature schemes.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 21 / 22



In Katz, J. and Yung, M., editors, ACNS, volume 4521 of Lecture
Notes in Computer Science, pages 443–458. Springer.

Du, H. and Wen, Q. (2007).
Efficient and provably-secure certificateless short signature
scheme from bilinear pairings.
Cryptology ePrint Archive, Report 2007/250.
http://eprint.iacr.org/.

Girault, M. (1991).
Self-certified public keys.
In Davies, D. W., editor, EUROCRYPT, volume 547 of Lecture
Notes in Computer Science, pages 490–497. Springer.

Gorantla, M. C. and Saxena, A. (2005).
An efficient certificateless signature scheme.
In Hao, Y., Liu, J., Wang, Y., ming Cheung, Y., Yin, H., Jiao, L., Ma,
J., and Jiao, Y.-C., editors, CIS (2), volume 3802 of Lecture Notes
in Computer Science, pages 110–116. Springer.

Goya, D. H. (2006).

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 21 / 22

http://eprint.iacr.org/


Proposta de esquemas de criptografia e de assinatura sob modelo
de criptografia de cha pública sem certificado.
Master’s thesis, USP.

Hu, B. C., Wong, D. S., Zhang, Z., and Deng, X. (2006).
Key replacement attack against a generic construction of
certificateless signature.
In Batten, L. M. and Safavi-Naini, R., editors, ACISP, volume 4058
of Lecture Notes in Computer Science, pages 235–246. Springer.

Huang, X., Susilo, W., Mu, Y., and Zhang, F. (2005).
On the security of certificateless signature schemes from asiacrypt
2003.
In Desmedt, Y., Wang, H., Mu, Y., and Li, Y., editors, CANS,
volume 3810 of Lecture Notes in Computer Science, pages 13–25.
Springer.

Li, X., Chen, K., and Sun, L. (2005).
Certificateless signature and proxy signature schemes from
bilinear pairings.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 21 / 22



Lithuanian Mathematical Journal, 45(1):76–83.

Liu, J. K., Au, M. H., and Susilo, W. (2006).
Self-generated-certificate public key cryptography and
certificateless signature / encryption scheme in the standard
model.
Cryptology ePrint Archive, Report 2006/373.
http://eprint.iacr.org/.

Pointcheval, D. and Stern, J. (2000).
Security arguments for digital signatures and blind signatures.
Journal of Cryptology: the journal of the International Association
for Cryptologic Research, 13(3):361–396.

Yap, W.-S., Heng, S.-H., and Goi, B.-M. (2006).
An efficient certificateless signature scheme.
In Zhou, X., Sokolsky, O., Yan, L., Jung, E.-S., Shao, Z., Mu, Y.,
Lee, D. C., Kim, D., Jeong, Y.-S., and Xu, C.-Z., editors, EUC
Workshops, volume 4097 of Lecture Notes in Computer Science,
pages 322–331. Springer.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 21 / 22

http://eprint.iacr.org/


Zhang, Z., Wong, D. S., Xu, J., and Feng, D. (2006).
Certificateless public-key signature: Security model and efficient
construction.
In Zhou, J., Yung, M., and Bao, F., editors, ACNS, volume 3989 of
Lecture Notes in Computer Science, pages 293–308.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 22 / 22



Crypto at UNICAMP

R. Dahab and Julio López.
Efficient implementation of elliptic curve algorithms, pairings,
crypto for sensor networks, formal methods.
National (Barreto, van de Graaf) and international collaboration
(Menezes, Hankerson, Scott, Koç).
Yearly Workshop on Crypto Algorithms and Protocols (WCAP).
National PKI working groups.

Rafael Castro and Ricardo Dahab () Security Proofs of CLS Schemes Montevideo, Nov 2007 22 / 22


