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Certificateless Signature Schemes

Certificateless Public-Key Cryptography
[Al-Riyami and Paterson, 2003]
Main design goal: compromise between ID-Based Cryptography
and traditional “PKI-Based” Cryptography:

I Avoid IBC’s key escrow
I Avoid certificates altogether

CL-PKC is a form of implicit key certification [Girault, 1991]
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Certificateless Signature Schemes

The original motivation was certificateless encryption:
I Kept a few of IBC’s features, such as “encryption into the future”
I Certificateless signatures were presented as a “by-product”

The original definition by Al-Riyami/Paterson had 7 algorithms;
I The following definition, with 5 algorithms, is enough

[Hu et al., 2006].
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Certificateless Signature Schemes - Definition

Setup. Run by the KGC to initialize the system. Given a security
parameter 1k , returns master keys, public and secret (mpk,msk).
PartialKeyGen. Takes as input (mpk, msk) and the identity
ID ∈ {0,1}∗, and outputs the partial private key DID.
UserKeysGen. Takes as input mpk and generates the user’s
public key PID and corresponding secret value, xID.
CL-Sign. Takes as input mpk, ID, (DID, xID) and a message M.
Outputs a signature σ on M.
CL-Verify. Takes as input mpk, ID, PID, M and the signature σ,
and outputs ACCEPT if and only if σ is a valid signature by user
UID, under public key PID, on M.
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Security of CLS Schemes

No explicit certification→ keys can be replaced.
KGC is assumed not to replace public keys.
Must take two types of adversaries into consideration:

I Type I. Arbitrary adversaries that are able to replace public keys;
I Type II. the KGC, who has access to the master secret.

Formalized through two very similar games.
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Security of CLS Schemes

Definition
Basic Game: Let C be the challenger algorithm and k be a security
parameter:

1 C executes Setup(1k ) and obtains (mpk,msk);
2 C runs A on 1k and mpk. During its run, A has access to the

following oracles: RevealPublicKey, RevealPartialKey,
RevealSecretValue, ReplacePublicKey, QueryHash,
Sign;

3 A outputs (ID∗,M∗, σ∗).
A wins the game if the verification procedure of the CLS scheme
accepts (ID∗,M∗, σ∗).
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Security of CLS Schemes

Additional conditions to win the game:
Type I Adversaries. AI wins the game if both conditions below
hold:

I Sign(ID∗,M∗) was never queried;
I RevealPartialKey(ID∗) was also never queried.

Type II Adversaries. AII wins the game if all conditions below
hold:

I Sign(ID∗,M∗) was never queried;
I RevealSecretValue(ID∗) was never queried;
I ReplacePublicKey(ID∗, .) was never queried.
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Remark #1: How do adversaries replace public keys?

Many schemes make the assumption that when A replaces a
public key, it knows the corresponding secret value:

I [Goya, 2006], [Huang et al., 2005], [Yap et al., 2006],
[Du and Wen, 2007], [Choi et al., 2007].

Deriving the secret value from the public key is hard.
Therefore, this assumption implies that the only way to compute
public keys is the “naive” way:

1 Choose a secret value;
2 compute a valid public key from the secret value, using the

prescribed procedure for the scheme.

This does not allow adversaries to pick a public key of their choice.
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Remark #1: How do adversaries replace public keys?
To illustrate this issue, we use Goya & Terada’s scheme:

Setup
1 Choose e : G1 ×G2 → GT .
2 generators P ∈ G1, Q ∈ G2 such that P = ψ(Q);
3 compute g = e(P,Q); choose s R← Z∗

p; compute Qpub = sQ;
4 choose hash functions H1 : {0,1}∗ → Z∗

p and
H2 : {0,1}∗ × {0,1}∗ ×GT ×GT → Z∗

p.

PartialKeyGen. DA = 1
H1(IDA)+s P.

UserKeysGen. Pick a random tA ∈ Z∗
p and compute NA = gtA .

CL-Sign. Pick a random r ∈ Z∗
p; compute U = gr ∈ GT ;

compute h = H2(M, IDA,NA,U) ∈ Z∗
p, and S = (r + htA)DA ∈ G1.

The signature is σ = (S,h).
CL-Verify. Compute U ′ = e[S,H1(IDA)Q + Qpub](NA)−h;
accept if and only if

h = H2(M, IDA,NA,U ′).
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Remark #1: How do adversaries replace public keys?

Correctness of the scheme:

U ′ = e[S,h1Q + Qpub](NA)−h

= e[(r + htA)DA,h1Q + Qpub](NA)−h

= e[(r + htA)(h1 + s)−1P, (h1 + s)Q]g−tAh

= e[P,Q]r+htAg−tAh

= gr ghtAg−tAh = gr = U

Based on Barreto et al.’s IBS [Barreto et al., 2005]
Very efficient: only one pairing for verification
Thought to be provably secure:

I Actually insecure as the following attack shows
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Remark #1: How do adversaries replace public keys?
Forging Goya/Terada Signatures.

Given the target identity IDA:
1 Choose a random tA

r← Z∗
q and compute

NA = (e(P,Qpub)gH1(IDA))tA = (gsgH1(IDA))tA = gtA(s+H1(IDA));
2 Replace IDA’s public key with NA

Now, to a sign message M:
1 Choose r r← Z∗

q ; compute U = N r
A; let h = H(M, IDA,NA,U)

2 Compute S = (r + h)tAP; output the forgery γ = (S,h)

Correctness:

U ′ = e[S,h1Q + Qpub](NA)−h

= e[(r + h)tAP, (h1 + s)Q](gtA(s+h1))−h

= e[P,Q](r+h)(h1+s)tA(gtA(s+h1))−h

= gr(h1+s)tA = N r
A = U.

A does not know x ,NA = gx
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= gr(h1+s)tA = N r
A = U.

A does not know x ,NA = gx
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Remark #1: How do adversaries replace public keys?

This puts in doubt the security of two recent proposals:
[Du and Wen, 2007] and [Choi et al., 2007]
Both are related and very efficient
We weren’t able to find attacks on any of these schemes
Their situation is uncertain
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Remark #2: The Oracle Replay Technique and CLS

The Oracle Replay Technique was proposed in
[Pointcheval and Stern, 2000] to prove the security of generic
signature schemes:

I Schnorr, variants of ElGamal, schemes from Fiat-Shamir heuristics.
A signature scheme S is said to be generic if, given the input
message m, it produces triples (r ,h, σ), where:

I r takes its value randomly within a large set;
I h is the hash value of m, r ;
I σ depends only on r , m and h.

Forking Lemma. If an adversary A can forge signatures then it’s
possible to replay a successful execution and (with non-negligible
probability) obtain a pair of related forgeries (r ,h, σ) and (r ,h′, σ′)
where h′ 6= h.
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Remark #2: The Oracle Replay Technique and CLS

A pair of signatures (r ,h, σ) and (r ,h′, σ′) where h′ 6= h is usually
enough to compute private keys (in generic schemes).

I A Schnorr signature is σ = k + hx mod q, and r = gk .
I If we also know σ′ = k + h′x mod q, then:

(σ′ − σ)(h′ − h)−1 = (k + h′x − k − hx)((h′ − h)−1)

= x(h′ − h)(h′ − h)−1

= x mod q,

I Thus revealing the secret key.
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Remark #2: The Oracle Replay Technique and CLS

The Oracle Replay Technique can be illustrated as follows:

(s∗,h∗, r∗) is the first forgery, (s∗
′
,h∗′

, r∗) is the second.
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Remark #2: The Oracle Replay Technique and CLS

What guarantees that r will be the same in both forgeries?
I It’s in the Q∗ hash query so it must be chosen before the execution

“forks”

But in CLS keys can be replaced
So, in a CLS, what guarantees that the public key will be the same
in both executions?

I Nothing, unless it is also in the hash query

Thus, we define the notion of CL-Generic Signature scheme:
A CLS scheme S is said to be CL-Generic if, given the input
message M, it produces triples (r ,h, σ), where:

I r takes its value randomly within a large set;
I h is the hash value of m, r and the public key PKID;
I σ depends only on r , m and h.
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Remark #2: The Oracle Replay Technique and CLS

Al-Riyami & Paterson’s original CLS: no security proof
I Later found insecure by Huang et al.

Signing procedure: r r← Z∗
p; u = e(rP,P); S = H2(M,u)tADA + rP.

I Insecure.
Change to: r r← Z∗

p; u = e(rP,P); S = H2(M,u, PKID )tADA + rP.
I Secure. Proof by the Oracle Replay Technique.
I As efficient as the original version.

Same can be done for Li, Chen & Sun’s version [Li et al., 2005]
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Summary of CLS Schemes

Scheme Sign Verify Status
[Al-Riyami and Paterson, 2003] 1 4 Broken

[Huang et al., 2005] 2 5 OK
[Castro and Dahab, 2007] 1 4 OK

[Li et al., 2005] 0 4 OK
[Gorantla and Saxena, 2005] 0 2 Broken

[Yap et al., 2006] 0 2 Broken
[Zhang et al., 2006] 0 4 OK

[Goya, 2006] 0 1 Broken
[Liu et al., 2006] 0 6 OK

[Choi et al., 2007] 0 1 Unknown
[Choi et al., 2007] 0 2 Unknown

[Du and Wen, 2007] 0 1 Unknown
Castro & Dahab [soon on ePrint] 0 3 OK

The cost of signing and verifying is expressed in number of pairings.
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Concluding Remarks

We discussed two common pitfalls in the security proofs of CLS
schemes:

1 Knowledge of secret values related to replaced public-keys:
I Assumption used in the proofs of too many schemes
I Leads to attack on Goya/Terada
I Puts security of [Du and Wen, 2007] and [Choi et al., 2007] in doubt

2 The use of the Replay Technique:
I Efficient, provably secure, correction of Al-Riyami/Paterson
I Security proofs of a previously unproven scheme [Li et al., 2005]
I General guideline for constructing CLS schemes
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