Implementing Noninterference
in the Linux Kernel

Pablo Mata
Flowgate Security Consulting
Argentina

Formal Methods in Security — ReSeCo Workshop — November, 2007

Flowx Prototype

* Developed at Flowgate Security Consulting

* In this presentation we will discuss all the
details about the implementation of a basic
prototype for the security model described
previously.

* We seek for three primary properties:
SECURITY-EFFICIENCY-COMPATIBILITY

I Linux Security Modules

The LSM is a framework that:

I allows the Linux kernel to support a variety of computer
security models.

* avoids favoritism toward any single security implementation.

* provides hooks all over the kernel to intervene in critical
security situations.

* adds new fields in kernel structures to allocate security
information.

We tried to use all the potential of this technology, but some
requirements forced us to patch the kernel source tree.

Implementation Strategy

Noninterference is implemented in a security module.

The L and H memories of the model is implemented as
concurrent processes, called s-siblings.

Input is shared between s-siblings by buffering it in a
buffer per security level.

Labeling of resources is implemented using extended
attributes and the SysFS filesystem.

Although not included in the formal model, user
authentication is implemented through a trusted path.

I Extended Attributes (xattr)

* Were introduced with the 2.6 kernel and
I are supported by ext2, ext3, JFS, ReiserFS
and XFS filesystems.

 Allow dynamic new attributes in the inode
structure of a given file.

 Particularly, useful to add, persistently,
security labels to files.

I Security Labels

* The sc structure represents the security level of all entities in
I the system:

struct sc {
u32 level;
u32 categories[NUM_CATS];
)

* Particularly, the fields (void *) security and (void *) i_security
point to the security structure we choose for tasks and inodes,
respectively.

First step: read and write
syscalls

Let P be a process with security class G, and A a file with class C ,
then:

* Read:

- Pcanread Aiff G, dominates or equals G,
- Otherwise, check if P does not have an s-sibling with class C

* If it has, return as if an end-of-file has occurred (return 0).
* Else create a new s-sibling and return like above.

I First step: read and write
I syscalls

* An s-sibling is a process exactly equal to the process
I that invoke its creation, differing only in their instruction
counter. The s-sibling's program counter will point to the
instruction immediately before the one that produce its

creation, that is, the read syscall.

* The security level of the new s-sibling will be set as the
security level of the file that his brother could not access.

First step: read and write

syscalls

* The s-sibling and his
< brother take different
e bt <) paths for returning to user
o space.

'/J/ The hook to be used is

Int $0x80

| called file_permission(),
sys_read() —s-sistine-#- Int $0X80 included in vis_read() and
' vis_write() helpers.

sys read()
Return O *

Return 5

I First step: read and write

I syscalls

* Write:

I — A file can only be written by the s-sibling which
access class is equal to C,. If such s-sibling

does not exist, then it can write only the one,
whose security class is:

sup {sc: access class | sc is the access class of an s-sibling that is
dominated by C,}

I Shared input

s-siblings

3.

Must share input

Low level users must not
be aware of s-siblings
existence.

s-siblings have to share
low level input to follow
the same execution path.

Although, this is not
always true, it is valid in
the majority of cases.

Shared input

* Sometimes, the
processes sharing
input are different,
but we do not care.

* Not a security
breach.

Must share input

Shared input

Init 0

s-siblings s-siblings
Bash 1 |s—

Input must be
shared between
different levels in
the same session.

\ v SN > S J

Level O Level 1 Level 2

Shared input

* Each region in the tree will have one or
more foreground processes and only one of
them will have true access to the tty device.

* This “chief” process will store all received
data in a buffer for each level in the
session.

Shared input

vfs read(...)

TTY {

ret = security file permission(...);

@ if[!ret}{

n = file->f ops->read(...);

Lvl O buffer Lvl 1 buffer Lvl 2 buffer

Decides who is the chief

tty->read() if chief.

m flowx buffer read() otherwise.

I Shared input

* The chief will be the foreground process in
I the group whose level is the same as the
Ity output.

* The chief is the only one that can invoke
loctl request on the output device.

* We must apply the same logic in the
select() syscall, for compatibility sake.

Other syscalls

* Now we have to intervene another system
calls to ensure data secrecy.

 The idea is to divide directories and to
Include secret files in secret folders.

* We must ensure that unprivileged
processes does not know about secret
folders' content.

Other syscalls

sys_mkdir() — security inode_mkdir()
sys rmdir() — security inode rmdir()

sys open() — security inode_permission()
sys creat() @— security inode_creat()
sys_mknod() — security inode_mknod()
sys_rename() — security inode rename()
sys_unlink() — security _inode_unlik()
sys_symlink() — security inode symlink()

sys_stat() — security _inode_permission()

Other syscalls

Let P be a process with security class C_, and A a file whose directory is
D with level C_, then:

* Open(A):
- P canopen A iff G, dominates or equals C,
- Otherwise, check if P does not have an s-sibling with class C_

* If it has, return as the file was opened, returning a file
descriptor pointing to /dev/null.
* Else create a new s-sibling and return like above.

« Stat(A): like open but returning 0.

Other syscalls

Create/mkdir/rmdir/rename/unlink(A):

- IfC_ equals C, — ACCESS GRANTED.
- Otherwise, check if P does not have an s-sibling with class C_

* |If it has, return as the operations went successful, (usually 0).
* Else create a new s-sibling and return like above.

Other syscalls

Pathname lookup

/home/pmata /secret /file \

'/—/ ok
ok

file_permission file_pemission

file permission

Labeling Devices

We must set labels to device nodes representing their access
levels.

Two different sc structures are needed, one for output and one
of input.

Problems emerge because, generally, device nodes are create
In /dev which is a temporal filesystem.

We need a configuration file to make device's levels persistent.

If the device is not in the file, the minimum access class is
assumed.

I Labeling Devices

I * Problems:

- Files cannot be read or written from the kernel. For
this, we have to take a process context or create a
new one. However, this is bad seen in the community.

- We do not want to add more syscalls.

- We need a mechanism to change security labels
dinamically in execution time.

- We must not add new ioctls request.

» To summarize, we need a way to interchange, dually,
iInformation between the kernel and user space.

Labeling Devices:

Device Driver Model

* The Device Driver Model is a new feature
In 2.6 kernels, which provides a mechanism
to represent devices and to describe its
topology in the system.

* Design, originally, to implement an
intelligently, power management.

* |t relies on special kernel structures to
represent this topology efficiently.

Labeling Devices: kobjects

e These structures are:

kobject: is the heart of the DDM. It is similar to a class in
object oriented programming. They are not useful in their
own, so they are embedded in larger structures.

ktype: is associated with each kobject and controls what
happen when the kobject is no longer referenced and its
representation in sysfs.

kset: represents a group of kobjects all embedded in
structures of the same type. It contains sets of kobjects.

subsystem: is a collection of ksets that constitute a sub-
part of the system.

Labeling Devices: Sysfs

Sysfs is a virtual temporal filesystem that allows users to see the
entire topology of all devices in the system, as a simple filesystem.

The magic behind sysfs is to link kobjects with directories through
special field in all the kobject structure.

Because kobjects infrastructure already formed like a hierarchic tree:
the DDM, and with kobjects linked to directories entries of the kernel,
the implementation of sysfs was trivial.

Through its ktype structure, every kobject can export different
attributes to the sysfs filesystem, providing methods to their access.

By these methods, a driver developer can map kernel structures in a
regular file. Modifying one of these files also modifies the structures
and vice versa.

Labeling Devices:
Our Approach

We create a new subsystem in sysfs.

During boot time, when the kernel detects a new device it sends an event
through a socket to notify this situation. A user mode program (UDEV)
listening to this socket is in charge of creating the device node.

Once the new device node is created, we use a hook in mknod system call,
which will run a user mode program to register these device in our sysfs
subsystem.

The program will read the configuration file and will set the corresponding
access levels.

If no entry in the file is found, the device is considered non trusted and its
labels are set to have the minimum security level.

Once initialized, only the security administrator can change a device access
class.

Secure Login

Every user needs to have a security access class and this will be
represented by the level of the terminal he will be given after the login
process.

We have to assign new levels to ttys depending on who has logged in. This is
a very delicate issue concerning security in our system, so we need:

- A new login program, initially running of behalf on the security
administrator and the changing its UID to the corresponding user.

- Reflect in the kernel that the security administrator is more privileged than
root in security terms and in setuid syscalls.

- A way to ensure that always our login is the one executed and not a
malicious one. For this, we need a trusted path.

Secure Login: Trusted Path

We use the sysrqg key system, which consists on a combination of specific
keys to produce a special respond from the kernel, no matter what the system
IS doing.

The kernel offers an interface to add new keys to this system.
Our trusted path will be invoke by pressing “Alt + Print Scree + A”.
Basically, this will:

= Kill all process in the session.
— Create a new kernel thread from scratch.
— Assign to this thread the current tty and make him the session leader.

- The thread will execute our secure login program to authentify the user
and set the tty output and input levels according to that user.

Secure Login:
Trusted Windows

A special mechanism for the kernel and programs
from the TCB to securely communicate
messages to the user.

Implemented in the last line of the current
terminal.

Modifications in the TTY and VGA drivers.

New syscall that programs from the TCB can use
to print in the trusted windows.

I Conclusions

- Efficiency: the performance penalty when the
I module is active are insignificant with modern
computer hardware.

« Compatibility & usability: almost all basic Linux
utilities and user applications show to adapt
perfectly to our security policies and kernel
modifications. Others, like some text editors need
a slight variation in the way they are invoked.

I Future Work

I * Future work will be focus on:

— providing security control in the kernel IPC
(Interprocess communication) mechanism.

— controlling network traffic through sockets.

— adapting the prototype to be used with the X
window server.

