
Enforcing Noninterference by Running

One Version of the Program per Level
Maximiliano Cristiá

Universidad Nacional de Rosario

Flowgate Security Consulting

Argentina

Formal Methods in Security – ReSeCo Workshop

November, 2007

1

Introduction

• Noninterference is a very abstract formalization of the

confidentiality problem of computer systems.

• It was proposed by Goguen and Meseguer in 1982.

• In simple terms it says: a group of users H is noninter-

fering w.r.t. to another group of users L, if the activity

of H over the system cannot be sensed by L.

– In other words, as far as the observations made by members

of L, users belonging to H don’t exist.

2

Noninterference

3

Military Security

• The military were the first in worrying in how to keep a

secret inside of a multi-user, general-purpose computer

system. cómputo multiusuario.

• They label each document and person with an access

class, and they authorize a person to read a document

if and only if the access class of the former is higher

than or equal to the access class of the last.

– To simplify the exposition we can think that an access class is

a natural number; in this case it is called security level.

4

Military Security (cont.)

• The idea is to implement that security policy, effi-

ciently, in a general-purpose, multi-user computer sys-

tem; it’s not as easy as it might look like.

– Efficiently: preserve backward compatibility of applications,

transparency for programmers and users, and usability.

• Noninterference it’s a very good model for the military

security policy since we can group users according to

their security level and ask noninterference between the

higher groups and the lower groups.

• Today it is accepted that noninterference is a solution

the the military security problem.

5

Approaches to Noninterference

• Today noninterference is investigated according to two

approaches:

– Static. Static code analysis, type systems, certifying compil-

ers.

– Dynamic. An underlying module controls the execution of each

process to ensure noninterference.

• The static approach is the dominant research line.

• We think that the static approach cannot be applied,

efficiently, to general-purpose operating system like UNIX

or Windows; this is the reason for which we work on

the dynamic approach.

6

Variable Labeling

• One of the possible solutions is to label each process’

variable with the security label of the information that

it stores in each moment.

• To do that it is applied some flavor of the information

flow model proposed by Denning (1976).

• However, it is not possible to implement it, efficiently,

in low level programming languages.

• The problem rises with pointers.

7

Counterexample
x stores a secret value between 1 and 5. The following

program can be used to reveal that value or it is seldom

usable, depending on the labeling schema. L means not

secret, H means secret, standard output works at L.

a := malloc(5); b : = a;

read(x);

for i := 0 to x - 1 do

*(a + i) := 1;

endfor

for j := 0 to 4 do

print(*(b + j));

endfor

Labeling only variables:

(a[L], b[L], x[L],0[L],0[L],0[L],0[L],0[L])

(a[L], b[L], x[H],0[L],0[L],0[L],0[L],0[L])

(a[L], b[L], x[H],1[H],1[H],1[H],0[L],0[L])

Labeling pointers:

(a[L], b[L], x[L],0[L],0[L],0[L],0[L],0[L])

(a[H], b[H], x[H],0[L],0[L],0[L],0[L],0[L])

(a[H], b[H], x[H],1[H],1[H],1[H],0[L],0[L])

8

A Dynamic Model Based on
Virtualization

• The previous program shows that is not possible to con-

trol, efficiently, the flow of information within a process

that needs to access both secret and public values.

• Then, the model we propose is bases on forking a pro-

cess when it needs to access information at a higher

security level.

• In this way, each process access data up to a particular

level.

• Besides, all the forked process share the input depend-

ing on its security level.

9

Virtualization?
We say that the model is based on virtualization because

the system behaves as if there were one computer for each

security level.

For instance, if a user issues the command vi secret_file

public_file, the system will create two processes for vi:

one accesses both files but it can only write in secret_file,

while the other accesses only the public file but this process

can modify it.

Besides, when the user types in something, if the standard

input is deemed public, both processes will receive that.

Then, it looks like if each process executes in a different

computer, each one processing information up to a certain

level, but both are connected to the same I/O.

10

The Model – The Grammar
The formal model introduced in this talk is very abstract

and igt is only meant to show its most important features.

Expr ::= N | V AR | ∗V AR | &V AR | Expr � Expr

BasicSentence ::=

skip | var := Expr | ∗var := Expr | syscall(N, arg1, . . . , argn)

ConditionalSentence ::=

if Expr then Program fi | while Expr do Program done

BasicAndConditional ::= BasicSentence | ConditionalSentence

Program ::= BasicAndConditional | Program ; Program

11

The Model – Two System Calls

Name System call Meaning
read(dev, var) syscall(0, dev, var) Reads var from in-

put device dev
write(dev, expr) syscall(1, dev, expr) Writes expr to

output device dev

12

The Model – The Semantics
LS : Memory → Program → Memory where Memory : V AR → N,

addr : N→ V AR,
−−→
x, M = addr ◦M(x).

LS(M, skip) = M (LS-skip)

LS(M, x := e) = M ⊕ {x 7→ eval(M, e)} (LS- :=)

LS(M, ∗x := e) = M ⊕ {
−−→
x, M 7→ eval(M, e)} (LS-∗)

LS(M,if e then P fi) =

if eval(M, e) then LS(M, P) else M
(LS-if)

LS(M,while e do P done) =

if eval(M, e)

then LS(M, P ; while e do P done)

else M

(LS-while)

LS(M, P1 ; P2) = LS(LS(M, P1), P2) (LS- ;)

13

The Model – Expression Evaluation
M ∈Memory, n ∈ N, x ∈ V AR, e1, e2 ∈ Expr

eval(M, n) = n (eval-N)

eval(M, x) = M(x) (eval-V AR)

eval(M, ∗x) = M(
−−→
x, M) (eval-∗)

eval(M,&x) = addr−1(x) (eval-&)

eval(M, e1 � e2) = eval(M, e1) � eval(M, e2) (eval-�)

14

The Model – The Controlling Machine

SM :SState× Env ×Memory × Program

→ SState× Env ×Memory

where SState and Env are defined by:

DEV ::= il | ih | ol | oh

LEV EL ::= L | H
SState , [m : Memory, dl : DEV → LEV EL]

Env == DEV → seq N

The intention behind these definitions is that the secret

data will be stored in in SM while m will store public data.

15

The Model – Rules for SM

They are defined inductively following the grammar of the

language.

SM(S, E, M, skip) = (S, E, M) (SM-skip)

SM(S, E, M, x := expr) =

([m← LS(S.m, x := expr), dl← S.dl], E, LS(M, x := expr))
(SM- :=)

SM(S, E, M, ∗x := expr) =

([m← LS(S.m, ∗x := expr), dl← S.dl], E, LS(M, ∗x := expr))
(SM-∗)

SM(S, E, M, P1 ; P2) = SM(SM(S, E, M, P1), P2) (SM- ;)

16

SM(S, E, M, read(il, x)) =

([m← S.m⊕ {x 7→ head ◦ E(il)}, dl← S.dl],

E ⊕ {il 7→ tail ◦ E(il)}, M ⊕ {x 7→ head ◦ E(il)})
(SM-read(il))

SM(S, E, M, read(ih, x)) =

(S, E ⊕ {ih 7→ tail ◦ E(ih)}, M ⊕ {x 7→ head ◦ E(ih)})
(SM-read(ih))

SM(S, E, M, write(ol, e)) =

(S, E ⊕ {ol 7→ 〈eval(S.m, e)〉 _
E(ol)}, M)

(SM-write(ol))

SM(S, E, M, write(oh, e)) =

(S, E ⊕ {oh 7→ 〈eval(M, e)〉 _
E(oh)}, M)

(SM-write(oh))

SM(S, E, M, if e then P fi) =
SM(S, E, M, P) if eval(S.m, e) ∧ eval(M, e)
(SM(S, E, M, P).1,

SM(S, E, M, P).2, M)
if eval(S.m, e) ∧ ¬eval(M, e)

(S, E′, SM(S, E, M, P).3) if ¬eval(S.m, e) ∧ eval(M, e)

(S, E, M) if ¬eval(S.m, e) ∧ ¬eval(M, e)

where E′ = E ⊕ {ih 7→ SM(S, E, M, P).2(ih),

oh 7→ SM(S, E, M, P).2(oh)}
(SM-if)

Let PWhile be P ; while e do P done

SM(S, E, M, while e do P done) =
SM(S, E, M,PWhile) if eval(S.m, e) ∧ eval(M, e)
(SM(S, E, M,PWhile).1,

SM(S, E, M,PWhile).2, M)
if eval(S.m, e) ∧ ¬eval(M, e)

(S, E′, SM(S, E, M,PWhile).3) if ¬eval(S.m, e) ∧ eval(M, e)

(S, E, M) if ¬eval(S.m, e) ∧ ¬eval(M, e)

where E′ = E⊕{ih 7→ SM(S, E, M,PWhile).2(ih),

oh 7→ SM(S, E, M,PWhile).2(oh)}
(SM-while)

A Noninterference Theorem
The model verifies the following theorem.

Theorem. Noninterference

∀S ∈ SState;E1, E2 ∈ Env;M1, M2 ∈Memory;P ∈ Program •
P terminates

∧S.dl = {il 7→ L, ol 7→ L, ih 7→ H, oh 7→ H}
∧E1(il) = E2(il)

∧E1(ol) = E2(ol)

∧SM(S, E1, M1, P) = (S′1, E′1, M ′1)

∧SM(S, E2, M2, P) = (S′2, E′2, M ′2)

=⇒ E′1(ol) = E′2(ol)

17

Conclusions an Future Work
The model is being implemented by Pablo Mata as his

undergraduate research thesis (for LCC-FCEIA-UNR, Ar-

gentina) over Linux 2.6 as a security model using Linux

Security Modules. Pablo will give a talk showing the cur-

rent status of the implementation.

We plan to refine the model to specify the Linux’s kernel

interface.

18

