
Introduction
Proof Carrying Result

Hands on
Summary

A PCR Infrastructure for Distributed
Computations in an ML-like Language

Felipe Zipitŕıa

Grupo de Seguridad Informática - Instituto de Computación
Facultad de Ingenieŕıa - UdelaR

RESECO 2007

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Outline

1 Introduction
Languages
Motivation

2 Proof Carrying Result

3 Hands on
Enhancing our language
PCR Infrastructure

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Languages
Motivation

Outline

1 Introduction
Languages
Motivation

2 Proof Carrying Result

3 Hands on
Enhancing our language
PCR Infrastructure

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Languages
Motivation

Topics we will cover

Safety in distributed languages

ML-like languages, focusing on a particular language

Serialization/Marshaling in a distributed environment

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Languages
Motivation

ML-like languages?
Brief comments

OCaml

Well-known, lots of developers and well maintained

Warning

marshalling is currently not type-safe (from the documentation)

GHC (Haskell) has primitive operations and types for .NET
interop

Standard ML

Acute

Research language

HashCaml

Ocaml based, but derived from previous work on Acute language

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Languages
Motivation

ML-like languages?
Brief comments

OCaml

Well-known, lots of developers and well maintained

Warning

marshalling is currently not type-safe (from the documentation)

GHC (Haskell) has primitive operations and types for .NET
interop

Standard ML

Acute

Research language

HashCaml

Ocaml based, but derived from previous work on Acute language

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Languages
Motivation

ML-like languages?
Brief comments

OCaml

Well-known, lots of developers and well maintained

Warning

marshalling is currently not type-safe (from the documentation)

GHC (Haskell) has primitive operations and types for .NET
interop

Standard ML

Acute

Research language

HashCaml

Ocaml based, but derived from previous work on Acute language

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Languages
Motivation

ML-like languages?
Brief comments

OCaml

Well-known, lots of developers and well maintained

Warning

marshalling is currently not type-safe (from the documentation)

GHC (Haskell) has primitive operations and types for .NET
interop

Standard ML

Acute

Research language

HashCaml

Ocaml based, but derived from previous work on Acute language

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Languages
Motivation

ML-like languages?
Brief comments

OCaml

Well-known, lots of developers and well maintained

Warning

marshalling is currently not type-safe (from the documentation)

GHC (Haskell) has primitive operations and types for .NET
interop

Standard ML

Acute

Research language

HashCaml

Ocaml based, but derived from previous work on Acute language

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Languages
Motivation

Introducing ACute

Primitives for type-safe (un)marshalling

e ::= ... | marshal e1 e2 : T | unmarshal e as T | ...

Provides safe and robust mechanisms to develop and execute
separately-built programs

Supports distributed computation of values providing
(un)marshalling procedures

Allows cooperating programs to send and receive values
through (untyped) communication channels

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Languages
Motivation

Particular Acute features
Type-safe (un)marshalling

Types are hashed to be used by the type checker

Dynamic type-check at unmarshal time

Guarantees both type-safety and abstraction-safety

Type equality is defined simply by equality on hashes

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Languages
Motivation

Particular Acute features
Type-safe (un)marshalling

Types are hashed to be used by the type checker

Dynamic type-check at unmarshal time

Guarantees both type-safety and abstraction-safety

Type equality is defined simply by equality on hashes

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Languages
Motivation

Particular Acute features
Type-safe (un)marshalling

Types are hashed to be used by the type checker

Dynamic type-check at unmarshal time

Guarantees both type-safety and abstraction-safety

Type equality is defined simply by equality on hashes

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Languages
Motivation

Particular Acute features
Type-safe (un)marshalling

Types are hashed to be used by the type checker

Dynamic type-check at unmarshal time

Guarantees both type-safety and abstraction-safety

Type equality is defined simply by equality on hashes

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Languages
Motivation

Some language contructs

T ::= int | bool | string | unit | char | void | T1 ∗ ..∗Tn | T1 + ..+Tn |
T → T ′ | T list | T option | T ref | exn | MM.t | t |
∀t.T | ∃t.T | T name | T tie | thread | mutex |
cvar | thunkifymode | thunkkey | thunklet | h.t | n

e ::= ... | marshal e1 e2 : T | unmarshal e as T | freshT |
cfreshT | hash(Mm.x)t | hash(T,e2)T’ | hash(T, e2,e1)T’ |
h.x | ... | create thread | thunkify | ...

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Languages
Motivation

Respecting abstractions

Example

This computation should fail

machineA[P3a] | machineB[P3b]
Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Languages
Motivation

Respecting abstractions

Example

This computation should fail

machineA[P3a] | machineB[P3b]
Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Languages
Motivation

Hashing

A notion of type equality that makes sense is needed across the
entire distributed system

Type EvenCounter.t is compiled to h.t, where the hash h is
(roughly)

Example

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Languages
Motivation

Outline

1 Introduction
Languages
Motivation

2 Proof Carrying Result

3 Hands on
Enhancing our language
PCR Infrastructure

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Languages
Motivation

Who to trust...
What happens if some attacker steals our hash ?

Problem

P3a = send ({5,hash(EvenCounter)})
P3b = (same as before)

Invariant broken !

print int (EvenCounter.get (unmarshal (receive ()):EvenCounter.t))

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Languages
Motivation

Who to trust...
What happens if some attacker steals our hash ?

Problem

P3a = send ({5,hash(EvenCounter)})
P3b = (same as before)

Invariant broken !

print int (EvenCounter.get (unmarshal (receive ()):EvenCounter.t))

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Proof Carrying Result
General Scheme

Distributed computation among untrusted hosts

Example

Figure: Result checking scheme

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Fundamental approach

Based on verification

Transparent for end users

General, flexible and configurable

Resource-aware

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Fundamental approach

Based on verification

Transparent for end users

General, flexible and configurable

Resource-aware

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Fundamental approach

Based on verification

Transparent for end users

General, flexible and configurable

Resource-aware

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Fundamental approach

Based on verification

Transparent for end users

General, flexible and configurable

Resource-aware

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

More Formally

Some Definitions

f ∈ A→ B,a ∈ A
f (a) is delegated to an untrusted party

User must have a function

checkf ∈AxB → bool | ∀(a,b)∈AxB,checkf (a,b) = true ⇒ b = f (a)

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

More Formally

Some Definitions

f ∈ A→ B,a ∈ A
f (a) is delegated to an untrusted party

User must have a function

checkf ∈AxB → bool | ∀(a,b)∈AxB,checkf (a,b) = true ⇒ b = f (a)

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Certification Algorithms

Fundamental part of PCR

Integration with the infrastructure

Must be a general solution

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Enhancing our language
PCR Infrastructure

Outline

1 Introduction
Languages
Motivation

2 Proof Carrying Result

3 Hands on
Enhancing our language
PCR Infrastructure

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Enhancing our language
PCR Infrastructure

Adding functionality to ACute

Objective

To allow verifying correctness of marshalled values

Acute language has been extended

Parser, Lexer, AST, etc.

Main problems

lack of coding standards (sorry, but true :)
a little bit rusty with my functional background

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Enhancing our language
PCR Infrastructure

Adding functionality to ACute

Objective

To allow verifying correctness of marshalled values

Acute language has been extended

Parser, Lexer, AST, etc.

Main problems

lack of coding standards (sorry, but true :)
a little bit rusty with my functional background

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Enhancing our language
PCR Infrastructure

Adding functionality to ACute

Objective

To allow verifying correctness of marshalled values

Acute language has been extended

Parser, Lexer, AST, etc.

Main problems

lack of coding standards (sorry, but true :)
a little bit rusty with my functional background

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Enhancing our language
PCR Infrastructure

New semantics
Particular expression

Old

marshal e1 e2 : T

New

marshal e1 e2 : T < certificate >

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Enhancing our language
PCR Infrastructure

Outline

1 Introduction
Languages
Motivation

2 Proof Carrying Result

3 Hands on
Enhancing our language
PCR Infrastructure

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Enhancing our language
PCR Infrastructure

Using Proof Carrying Results

Defined infrastructure

Independent oracles

Certifying algorithms

Which algoritm could be better in this case?

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Enhancing our language
PCR Infrastructure

Which certificate applies to this case?

We don’t have too much information in this case, for an
abstract type

For any value of this type, we only know how it was
constructed

... or, we could use additional information

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Enhancing our language
PCR Infrastructure

Using construction of values

Module example

module EvenCounter
: sig
type t
val start:t (* projection 1 *)
val get:t->int (* projection 2 *)
val up:t->t (* projection 3 *)
end

So, in this case, our certificate will be

C4 = [(1,1);(3,2)]

More generally

Cm = [(ci ,ni , [lparami]);(ci+1,ni+1, [lparami+1]); ...] (1)

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Enhancing our language
PCR Infrastructure

Using additional information

We can add a new way of defining our invariants

New expression

invariant P

→where the property P will be used as a certificate

For EvenCounter case

invariant (forall x:t, x mod 2 = 0)

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Summary

Acute language is being enhanced with certificates for using
proof carrying results

Definition of certificates for this case is a good starting point

But finding certificates for general use could be a difficult task
to achieve

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Summary

Acute language is being enhanced with certificates for using
proof carrying results

Definition of certificates for this case is a good starting point

But finding certificates for general use could be a difficult task
to achieve

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Introduction
Proof Carrying Result

Hands on
Summary

Summary

Acute language is being enhanced with certificates for using
proof carrying results

Definition of certificates for this case is a good starting point

But finding certificates for general use could be a difficult task
to achieve

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

Appendix For Further Reading

For Further Reading I

P. Sewell et al.
Acute: High-Level Programming Language Design for
Distributed Computation.
University of Cambridge TR 605, 2005.

Various people
Notes on Proof Carrying Results.
August 29, 2006.

J.Leifer et al.
Global Abstraction-Safe Marshalling with Hash Types.
ICPF’03, August 25-29, 2003.

Felipe Zipitŕıa 2nd. ReSeCo Workshop, Montevideo 2007

	Introduction
	Languages
	Motivation

	Proof Carrying Result
	Hands on
	Enhancing our language
	PCR Infrastructure

	Summary
	Appendix
	For Further Reading

