Counting first order correlation-immune functions

Jean-Marie Le Bars GREYC, U. de Caen, France
Alfredo Viola U. de la República, Uruguay
LIPN, U. Paris 13, France

STIC-AMSUD, November 22, 2007

Linear Feedback Shift Registers (LFSR)

- At each clock-cycle computes $\oplus_{\mathrm{i}=1}^{\mathrm{L}} \mathrm{c}_{\mathrm{i}} \mathrm{S}_{\mathrm{n}-\mathrm{i}}$ and outputs $\mathrm{S}_{\mathrm{n}-\mathrm{L}}$.
- Generates an ultimately periodic sequence with period at most $2^{\mathrm{L}}-1$.
- The linear complexity of such a sequence is the length L of the minimum LFSR producing the same sequence.

Boolean functions and LFSR

- LFSR are cryptographically weak.
- If L is the linear complexity of a sequence (unknown from the attacker), with 2L consecutive bits known, the Berlekamp-Massey algorithm recovers L, c_{i} 's and initial values (key bits).
- In practice the attacker only needs to know around 20 consecutive bits.
- Combining boolean functions are used to avoid this attack.
- Period at most the LCM of the periods of the sequences generated by the LFSRs.
- Length of the key is $L_{1}+L_{2}+\ldots L_{n}$.

Cryptographic criteria for boolean functions

- High algebraic degree.
- Large Hamming distance to all affine functions.
- Balanced functions.
- Correlation-immune and resilient functions to prevent correlation attacks [Siegenthaler 1984; Meier \& Staffelbach 1988; Johansson \& Jönsson 1999, 2000; Canteaut \& Trabbia 2000; and more ...].
- Strict avalanche criterion [Webster \& Tavares 1985].
- Propagation criterion [Preneel, Van Leekwijck, Van Linden, Govaerts \& Vandevalle 1991].
- [Carlet 2007] has a complete survey on boolean functions for cryptography and error correcting codes.
- Another useful source of information is [Gouguet 2004].

Decomposition of boolean functions

- A boolean function in n variables is a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
- We encode a boolean function f_{n} by a word in $\{0,1\}^{2^{n}}$ indexed by $x_{n} \ldots x_{1}$.
- We may see f_{n} as the concatenation of 2^{n-j} boolean functions in j variables each, by an operator we call \star.

Example:

- We have $f_{3}=f_{2}^{1} \star f_{2}^{2}$ and $f_{3}=f_{1}^{1} \star f_{1}^{2} \star f_{1}^{3} \star f_{1}^{4}$.
- Functions f_{j}^{k} may be seen as f_{n} conditioned to some arguments x_{i} being some fixed a_{i}.
- Then, we have $f_{1}^{3}=\left.f_{3}\right|_{x_{2}=0, x_{3}=1}, f_{2}^{1}=\left.f_{3}\right|_{x_{3}=0}$ and so on.

Tree decomposition of a boolean function

- Decomposition can be described by a complete binary tree of depth $n-1$ being f_{n} is the root and the 2^{n-1} functions in 1 variable the leaves.

Example:

Hamming tree of boolean classes

- The sets $(i)_{n}=\left\{f_{n} \mid w_{H}\left(f_{n}\right)=i\right\}$ partition $\{0,1\}^{2^{n}}$ into Hamming classes.
- Similarly to boolean functions we have Hamming trees of boolean classes.
- Each tree may be shared by several functions.

Example:

- The Hamming tree of f_{3} is shared by 16 functions.
- These functions are constructed by combining 01 and 10 in all possible ways at the leaves.

$$
\{01,10\}\{01,10\}\{01,10\}\{01,10\}
$$

Hamming tree of boolean classes (cont.)

- Not every Hamming tree is shared by the same number of functions.

Example:

- This Hamming tree is shared by only 4 functions, since the class $(0)_{1}$ only contains the function 00 and (2) only contains the function 11.
- These functions are 01001101, 01001110, 10001101 and 10001110.
- Nevertheless these functions are balanced like f_{3} (belong to the same Hamming class), although their respective Hamming trees are different.
- Hamming trees (and not Hamming classes!) capture the essential features for our problem.

Equivalence relation for first-order correlation-immunity

- We define $\delta_{i}\left(f_{n}\right)=w_{H}\left(\left.f_{n}\right|_{x_{i}=0}\right)-w_{H}\left(\left.f_{n}\right|_{x_{i}=1}\right), 1 \leq i \leq n$.
- Then, f_{n} is first-order correlation immune $\Longleftrightarrow \forall i, \delta_{i}\left(f_{n}\right)=0$.
- Moreover, f_{n} is 1-resilient $\Longleftrightarrow \forall i, \delta_{i}\left(f_{n}\right)=0, w_{H}\left(f_{n}\right)=2^{n-1}$.

A function f_{n} belongs to the class $\omega=\Omega\left(f_{n}\right)=\left\langle w_{H}\left(f_{n}\right), \delta_{n}\left(f_{n}\right) \ldots \delta_{1}\left(f_{n}\right)\right\rangle$.

How to find $\Omega\left(\mathrm{f}_{3}\right)$

\mathbf{f}_{3}	1	0	$\mathbf{1}$	0	0	$\mathbf{1}$	$\mathbf{1}$	0
x_{3}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
x_{2}	0	0	1	1	0	0	1	1
x_{1}	0	1	0	1	0	1	0	1

How to find $\Omega\left(f_{3}\right)$

f_{3}	$\mathbf{1}$	0	$\mathbf{1}$	0	0	$\mathbf{1}$	$\mathbf{1}$	0
x_{3}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
x_{2}	0	0	1	1	0	0	1	1
x_{1}	0	1	0	1	0	1	0	1

$$
\Omega\left(f_{3}\right)=\langle 4, \quad 0,,\rangle .
$$

f_{3}	$\mathbf{1}$	0	$\mathbf{1}$	0	0	$\mathbf{1}$	$\mathbf{1}$	0
x_{3}	0	0	0	0	1	1	1	1
x_{2}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
x_{1}	0	1	0	1	0	1	0	1

$$
\Omega\left(f_{3}\right)=\langle 4, \quad 0,0,\rangle .
$$

How to find $\Omega\left(\mathrm{f}_{3}\right)$

f_{3}	$\mathbf{1}$	0	$\mathbf{1}$	0	0	$\mathbf{1}$	$\mathbf{1}$	0
x_{3}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
x_{2}	0	0	1	1	0	0	1	1
x_{1}	0	1	0	1	0	1	0	1

$$
\Omega\left(f_{3}\right)=\langle 4, \quad 0,,\rangle .
$$

$\mathrm{f}_{\mathbf{3}}$	$\mathbf{1}$	0	$\mathbf{1}$	0	0	$\mathbf{1}$	$\mathbf{1}$	0
x_{3}	0	0	0	0	1	1	1	1
x_{2}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
x_{1}	0	1	0	1	0	1	0	1

$$
\Omega\left(f_{3}\right)=\langle 4, \quad 0,0,\rangle .
$$

f_{3}	$\mathbf{1}$	0	$\mathbf{1}$	0	0	$\mathbf{1}$	$\mathbf{1}$	0
x_{3}	0	0	0	0	1	1	1	1
x_{2}	0	0	1	1	0	0	1	1
x_{1}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$

$$
\Omega\left(f_{3}\right)=\langle 4, \quad 0,0,2\rangle .
$$

First order correlation-immune classes

- Similar to balanced functions we have first order correlation trees.

Example:

- This is the first order correlation tree for f_{3}.

Recursive construction of correlation classes

Proposition 1 (Recursive construction).
Let

$$
\left\{\begin{array}{l}
\omega_{1}=\left\langle p_{1}, \delta_{n-1}^{1}, \ldots, \delta_{1}^{1}\right\rangle \in \Omega_{n-1}^{p_{1}}, \\
\omega_{2}=\left\langle p_{2}, \delta_{n-1}^{2}, \ldots, \delta_{1}^{2}\right\rangle \in \Omega_{n-1}^{p_{2}}, \\
\omega=\left\langle m, \delta_{n}, \ldots, \delta_{1}\right\rangle=\omega_{1} \star \omega_{2} .
\end{array}\right.
$$

Then we have

$$
\left\{\begin{array}{l}
m=p_{1}+p_{2} \\
\delta_{n}=p_{1}-p_{2} \\
\delta_{i}=\delta_{i}^{1}+\delta_{i}^{2}, \quad i \in\{1, \ldots, n-1\}
\end{array}\right.
$$

Decomposition of correlation classes.

Theorem 1 (Decomposition of correlation classes).
Let $\omega \in \Omega_{n}$. Then, with $\omega_{1}, \omega_{2} \in \Omega_{n-1}$ we have

$$
\omega^{s}=\bigcup_{\omega_{1} \star \omega_{2}=\omega} \omega_{1}^{s} \times \omega_{2}^{s} .
$$

Theorem 2 (Counting correlation functions).
Let $\omega \in \Omega_{n}$. Then, with $\omega_{1}, \omega_{2} \in \Omega_{n-1}$ we have

$$
\left|\omega^{s}\right|=\sum_{\omega_{1} \neq \omega_{2}=\omega}\left|\omega_{1}^{s}\right| \cdot\left|\omega_{2}^{s}\right| .
$$

Decomposition of correlation-immune classes.

- Let $\omega_{1} \in \Omega_{n-1}^{p_{1}}, \omega_{2} \in \Omega_{n-1}^{p_{2}}$ and $m=p_{1}+p_{2}$. From our recursive construction we have the equivalence $\omega_{1} \star \omega_{2} \in \operatorname{Cor}_{n}^{m} \Longleftrightarrow \omega_{2}=\overline{\omega_{1}}$.

Theorem 3 (Decomposition of correlation-immune classes).

$$
\operatorname{Cor}_{\mathrm{n}}^{\mathrm{m}}=\bigcup_{\omega_{1} \in \Omega_{\mathrm{n}-1}^{\mathrm{m}}} \omega_{1}^{\mathrm{s}} \times{\overline{\omega_{1}}}^{\mathrm{s}}, \text { for } 0 \leq \mathrm{m} \leq 2^{\mathrm{n}-1} .
$$

Theorem 4 (Counting correlation-immune functions).

$$
\begin{aligned}
& \left|\operatorname{Cor}_{\mathrm{n}}^{\mathrm{m}}\right|=\sum_{\omega_{1} \in \Omega_{\mathrm{n}-1}^{\mathrm{m}}}\left|\omega_{1}^{\mathrm{s}}\right|^{2}, \\
& \left|\operatorname{Cor}_{\mathrm{n}}\right|=\sum_{\omega_{1} \in \Omega_{\mathrm{n}-1}}\left|\omega_{1}^{\mathrm{s}}\right|^{2} .
\end{aligned}
$$

Counting 1-resilient boolean functions.

- We denote by \mathcal{B}_{n} the set of balanced first-order correlation classes with n variables.
- We have $\left|\mathcal{B}_{n}\right|=\left(\begin{array}{c}2^{n} n-1\end{array}\right)$.

Corollary 4 (Counting 1-resilient boolean functions).
Since Res1 $1_{n}=\operatorname{Cor}_{n}^{2^{n-2}}$, we have

$$
\left|\operatorname{Res} 1_{n}\right|=\sum_{\omega_{1} \in B_{n-1}}\left|\omega_{1}\right|^{2} .
$$

- Then, to compute Res 1_{n} we only need to know the cardinality of all balanced first-order correlation classes with $n-1$ variables.
- We find an efficient algorithm by working with correlation classes and not with correlation functions.

n	5	6	7
Res1	807980	95259103924394	23478015754788854439497622689296
Time	0.028 s	0.526 s	1 h 02 min 27.332 s

Normalized classes

- Let $m \leq 2^{n-1}$ and $\omega=\left\langle\mathrm{m}, \delta_{\mathrm{n}}, \ldots, \delta_{1}\right\rangle \in \Omega_{\mathrm{n}}^{\mathrm{m}}$. There exits a permutation $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ which satisfies

$$
\left\{\begin{array}{l}
\alpha_{i}=\left|\delta_{\sigma(i)}\right| \\
\alpha_{n} \leq \alpha_{n-1} \leq \ldots \leq \alpha_{1}
\end{array}\right.
$$

- The class $\mathrm{N}(\omega)=\theta=\left\langle\mathrm{m}, \alpha_{\mathrm{n}}, \ldots, \alpha_{1}\right\rangle$ will be called the normalised class of ω.
- Every Boolean function in ω may be transformed in a unique Boolean function in θ.

Example:

- $N(\langle 7,1,5,-3,-3)\rangle)=\langle 7,1,3,3,5\rangle$.

New characterization of 1-resilient functions.

- Each set ω^{s} corresponding to a class ω with $\mathrm{N}(\omega)=\theta$ has the same cardinality as θ^{s}. Then,

Theorem 5 (Number of 1 -resilient functions).

$$
\left|\operatorname{Res} 1_{n}\right|=\sum_{\theta \in \Theta_{n}^{2 n-2}} n(\theta)\left|\theta^{s}\right|^{2} .
$$

- Normalized classes help to still speed up our counting algorithm and find the number of 1 -resilient functions for $\mathrm{n}=7$ in 50 seconds!.
- By only computing a fraction of all normalized classes, we obtain the lower bound 410^{67} for the number of 1 -resilient functions with $\mathrm{n}=8$ variables.

Upper bounds on the number of first-order correlation classes

- Let $\omega=\left\langle m, \delta_{n}, \ldots, \delta_{1}\right\rangle \in \Omega_{n}^{m}$. Then we define $\delta(\omega)=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left|\delta_{\mathrm{i}}\right|$.
- We may see $\delta(\omega)$ as a measure of how far from first-order correlation is ω.
- Define $\delta(\mathrm{n}, \mathrm{m})=\sup _{\omega \in \Omega_{\mathrm{m}}^{\mathrm{m}}} \delta(\omega), \mu(\mathrm{n}, \mathrm{m})=\delta(\mathrm{n}, \mathrm{m}) / 2$ if m is even and $\mu(\mathrm{n}, \mathrm{m})=(\delta(\mathrm{n}, \mathrm{m})-\mathrm{n}) / 2$ otherwise.

Lemma 3 (Upper bound for number of classes)
Let $0 \leq m \leq 2^{n-1}$ and $\mathrm{U}_{n}^{\mathrm{m}}$ defined by

$$
U_{n}^{m}=\left\{\begin{array}{l}
\sum_{j=0}^{n}\binom{\mu(n, m)}{j}\binom{\mu(n, m)+n-j}{\mu(n, m)} \quad m \text { even } \\
\binom{\mu(n, m)+n}{n} 2^{n} \quad \text { otherwise } .
\end{array}\right.
$$

- U_{n}^{m} is an upper bound for the number of classes in Ω_{n}^{m}.

New lower bound on the number of 1-resilient functions

Theorem $7 \mid$ Res $1_{n} \left\lvert\, \geq \frac{\binom{2^{n-1}}{2^{n-2}}^{2}}{U_{n-1}^{2^{n-2}}} \geq \frac{\binom{2^{n-1}}{m}^{2}}{\binom{\mu\left(n-1,2^{n-2}\right)+n-1}{n-1} 2^{n-1}}\right.$.
Theorem $8\left|\operatorname{Res} 1_{n}\right| \geq \frac{2^{2^{n}}(n \pi)^{n / 2}}{2^{n^{2}-\frac{3}{2} n-1} e^{n-1 / 2}}$.

- [Maitra \& Sarkar 1999]:
\mid Res $1_{n} \left\lvert\, \geq 2^{2^{n-2}}+\binom{2^{n-1}}{2^{n-2}}+\binom{2^{n-2}}{2^{n-3}} *\left(\binom{2^{n-2}}{2^{n-3}}-2\right)+\binom{2^{n-3}}{2^{n-4}}-2^{2^{n-3}}\right.$.

n	[Maitra \& Sarkar 1999]	Our lower bound
5	17876	503430
6	7.66710^{8}	7.52310^{12}
7	2.19310^{18}	1.31210^{29}
8	2.73010^{37}	1.13410^{64}
9	6.34210^{75}	8.88410^{136}
10	5.05810^{152}	2.12810^{286}

- Dramatic improvements are due to our general construction. The previous bounds have been found by building and counting restricted classes.

New lower bound on the number of k-resilient functions

- Given a 1 -resilient function in $n-k+1$ variables, we have a construction that leads to a k-resilient function in n variables.
- As a consequence we have the following new lower bound for the number of k-resilient functions:

Theorem 9 Let $k \geq 2$, and $n>k$. The set of k-resilient functions with n variables satisfies $\left|\operatorname{Res}_{n-k+1}^{1}\right| \leq\left|\operatorname{Res}_{n}^{k}\right|$.

n	Maiorana-McFarland [Camion,Carlet,Charpin \& Sendrier 1991]	Our lower bound
$\mathcal{R} e s_{10}^{10}$	3.010^{79}	5.110^{285}
$\mathcal{R} e s_{10}^{2}$	4.310^{40}	3.410^{136}
$\mathcal{R} e s_{10}^{3}$	1.210^{21}	2.610^{63}
$\mathcal{R} e s_{10}^{4}$	1.410^{11}	2.310^{31}
$\operatorname{Re} e s_{10}^{5}$	1.110^{6}	9.510^{13}

Summary of results

- We present a complete characterization of 1-correlation immune functions and give efficient algorithms to generate and count them.
- The number of 1 -resilient functions in 7 variables is 23478015754788854439497622689296.
- We drastically improve knwon bounds specially lower bonds.

n	8	9	10	11	12	13
Maitra	10^{37}	10^{75}	10^{152}	10^{306}	10^{614}	10^{12311}
New Lower Bound	10^{644}	10^{136}	10^{2866}	10^{589}	10^{1199}	10^{2426}
New Upper Bound	10^{68}	10^{144}	10^{2297}	10^{6063}	10^{1218}	10^{2449}
Schneider	10^{71}	10^{147}	10^{299}	10^{606}	10^{1221}	10^{2452}

- We conjecture that the probability of a boolean function being 1 -resilient is
- Use of the generating function derived from our constructions. Work in progress with P. Flajolet, S. Mesnager.

