Counting first order correlation-immune functions

Jean-Marie Le Bars GREYC, U. de Caen, France *Alfredo Viola* U. de la República, Uruguay LIPN, U. Paris 13, France

STIC-AMSUD, November 22, 2007

Linear Feedback Shift Registers (LFSR)

- At each clock-cycle computes $\bigoplus_{i=1}^{L} c_i s_{n-i}$ and outputs s_{n-L} .
- Generates an ultimately periodic sequence with period at most $2^{L} 1$.
- The linear complexity of such a sequence is the length L of the minimum LFSR producing the same sequence.

Boolean functions and LFSR

- LFSR are cryptographically weak.
 - If L is the linear complexity of a sequence (unknown from the attacker), with 2L consecutive bits known, the Berlekamp-Massey algorithm recovers L, c_i's and initial values (key bits).
 - In practice the attacker only needs to know around 20 consecutive bits.
- Combining boolean functions are used to avoid this attack.
- Period at most the LCM of the periods of the sequences generated by the LFSRs.
- Length of the key is $L_1 + L_2 + \ldots L_n$.

Cryptographic criteria for boolean functions

- High algebraic degree.
- Large Hamming distance to all affine functions.
- Balanced functions.
- Correlation-immune and resilient functions to prevent correlation attacks [Siegenthaler 1984; Meier & Staffelbach 1988; Johansson & Jönsson 1999, 2000; Canteaut & Trabbia 2000; and more ...].
- Strict avalanche criterion [Webster & Tavares 1985].
- Propagation criterion [Preneel, Van Leekwijck, Van Linden, Govaerts & Vandevalle 1991].
- [Carlet 2007] has a complete survey on boolean functions for cryptography and error correcting codes.
- Another useful source of information is [Gouguet 2004].

- A boolean function in n variables is a function $f : \{0, 1\}^n \rightarrow \{0, 1\}$.
- We encode a boolean function f_n by a word in $\{0,1\}^{2^n}$ indexed by $x_n \ldots x_1$.
- We may see f_n as the concatenation of 2^{n-j} boolean functions in j variables each, by an operator we call \star .

• We have $f_3 = f_2^1 \star f_2^2$ and $f_3 = f_1^1 \star f_1^2 \star f_1^3 \star f_1^4$.

Example:

- Functions f_j^k may be seen as f_n conditioned to some arguments x_i being some fixed a_i .
- Then, we have $f_1^3 = f_3 \mid_{x_2=0, x_3=1}$, $f_2^1 = f_3 \mid_{x_3=0}$ and so on.

Tree decomposition of a boolean function

• Decomposition can be described by a complete binary tree of depth n-1 being f_n is the root and the 2^{n-1} functions in 1 variable the leaves.

- The sets $(i)_n = \{f_n \mid w_H(f_n) = i\}$ partition $\{0, 1\}^{2^n}$ into Hamming classes.
- Similarly to boolean functions we have Hamming trees of boolean classes.
- Each tree may be shared by several functions.

Example:

- The Hamming tree of f_3 is shared by 16 functions.
- These functions are constructed by combining 01 and 10 in all possible ways at the leaves.

Hamming tree of boolean classes (cont.)

• Not every Hamming tree is shared by the same number of functions.

Example:

- This Hamming tree is shared by only 4 functions, since the class $(0)_1$ only contains the function 00 and $(2)_1$ only contains the function 11.
- These functions are 01001101, 01001110, 10001101 and 10001110.
- Nevertheless these functions are balanced like f_3 (belong to the same Hamming class), although their respective Hamming trees are different.
- Hamming trees (and not Hamming classes!) capture the essential features for our problem.

- We define $\delta_i(f_n) = w_H(f_n \mid_{x_i=0}) w_H(f_n \mid_{x_i=1}), 1 \le i \le n$.
- Then, f_n is first-order correlation immune $\iff \forall i, \delta_i(f_n) = 0$.

• Moreover, f_n is 1-resilient $\iff \forall i, \delta_i(f_n) = 0, w_H(f_n) = 2^{n-1}$.

• A function f_n belongs to the class $\omega = \Omega(f_n) = \langle w_H(f_n), \delta_n(f_n) \dots \delta_1(f_n) \rangle$.

How to find $\Omega(\mathbf{f_3})$

\mathbf{f}_3	1	0	1	0	0	1	1	0
x ₃	0	0	0	0	1	1	1	1
x ₂	0	0	1	1	0	0	1	1
$\mathbf{x_1}$	0	1	0	1	0	1	0	1

$$\Omega(f_3) = \langle 4, 0, , \rangle$$

How to find $\Omega(\mathbf{f_3})$

$\mathbf{f_3}$	1	0	1	0	0	1	1	0
X3	0	0	0	0	1	1	1	1
x ₂	0	0	1	1	0	0	1	1
x ₁	0	1	0	1	0	1	0	1

$$\Omega(f_3) = \langle 4, 0, , \rangle$$

\mathbf{f}_3	1	0	1	0	0	1	1	0
x ₃	0	0	0	0	1	1	1	1
x ₂	0	0	1	1	0	0	1	1
x ₁	0	1	0	1	0	1	0	1

$$\Omega(f_3) = \langle 4, 0, 0, \rangle$$

How to find $\Omega(\mathbf{f_3})$

f_3	1	0	1	0	0	1	1	0
x ₃	0	0	0	0	1	1	1	1
x ₂	0	0	1	1	0	0	1	1
x ₁	0	1	0	1	0	1	0	1

$$\Omega(f_3) = \langle 4, 0, , \rangle.$$

\mathbf{f}_3	1	0	1	0	0	1	1	0
x ₃	0	0	0	0	1	1	1	1
x ₂	0	0	1	1	0	0	1	1
\mathbf{x}_1	0	1	0	1	0	1	0	1

$$\Omega(f_3) = \langle 4, 0, 0, \rangle$$

\mathbf{f}_3	1	0	1	0	0	1	1	0
\mathbf{x}_3	0	0	0	0	1	1	1	1
\mathbf{x}_2	0	0	1	1	0	0	1	1
x ₁	0	1	0	1	0	1	0	1

$$\Omega(f_3)=\langle 4, 0,0,2
angle$$
 .

First order correlation-immune classes

• Similar to balanced functions we have first order correlation trees.

Example:

• This is the first order correlation tree for f_3 .

Proposition 1 (Recursive construction).

Let

$$\begin{array}{lcl} \omega_1 & = & \langle p_1, \delta_{n-1}^1, \dots, \delta_1^1 \rangle \in \Omega_{n-1}^{p_1}, \\ \omega_2 & = & \langle p_2, \delta_{n-1}^2, \dots, \delta_1^2 \rangle \in \Omega_{n-1}^{p_2}, \\ \omega & = & \langle m, \delta_n, \dots, \delta_1 \rangle = \omega_1 \star \omega_2. \end{array}$$

Then we have

$$\begin{cases} m = p_1 + p_2 \\ \delta_n = p_1 - p_2 \\ \delta_i = \delta_i^1 + \delta_i^2, \quad i \in \{1, \dots, n-1\}. \end{cases}$$

Theorem 1 (Decomposition of correlation classes). Let $\omega \in \Omega_n$. Then, with $\omega_1, \omega_2 \in \Omega_{n-1}$ we have

$$\omega^s = \bigcup_{\omega_1 \star \omega_2 = \omega} \omega_1^s \times \omega_2^s$$

Theorem 2 (Counting correlation functions).

Let $\omega \in \Omega_n$. Then, with $\omega_1, \omega_2 \in \Omega_{n-1}$ we have

$$|\omega^s| = \sum_{\omega_1 \star \omega_2 = \omega} |\omega_1^s| \cdot |\omega_2^s|.$$

• Let $\omega_1 \in \Omega_{n-1}^{p_1}$, $\omega_2 \in \Omega_{n-1}^{p_2}$ and $m = p_1 + p_2$. From our recursive construction we have the equivalence $\omega_1 \star \omega_2 \in Cor_n^m \iff \omega_2 = \overline{\omega_1}$.

 $\begin{array}{l} \text{Theorem 3 (Decomposition of correlation-immune classes).} \\ \mathcal{C}or_n^m = \bigcup_{\omega_1 \in \Omega_{n-1}^m} \omega_1^s \times \overline{\omega_1}^s \text{, for } 0 \leq m \leq 2^{n-1}. \end{array}$

Theorem 4 (Counting correlation-immune functions).

$$|\mathbf{Cor_n^m}| = \sum_{\omega_1 \in \Omega_{n-1}^m} |\omega_1^{\mathrm{s}}|^2,$$

$$\mathrm{Cor}_{\mathrm{n}}| = \sum_{\omega_1 \in \Omega_{\mathrm{n}-1}} |\omega_1^{\mathrm{s}}|^2.$$

Counting 1-resilient boolean functions.

- We denote by \mathcal{B}_n the set of balanced first-order correlation classes with n variables.
- We have $|\mathcal{B}_n| = {2n \choose 2^{n-1}}$.

Corollary 4 (Counting 1-resilient boolean functions).

Since $Res1_n = Cor_n^{2^{n-2}}$, we have

$$|Res1_n| = \sum_{\omega_1 \in B_{n-1}} |\omega_1|^2.$$

- Then, to compute $Res1_n$ we only need to know the cardinality of all balanced first-order correlation classes with n 1 variables.
- We find an efficient algorithm by working with correlation classes and not with correlation functions.

n	5	6	7
${ m Res}1_n$	807980	95259103924394	23478015754788854439497622689296
Time	0.028 s	0.526 s	1 h 02 min 27.332 s

• Let $m \leq 2^{n-1}$ and $\omega = \langle \mathbf{m}, \delta_{\mathbf{n}}, \dots, \delta_{\mathbf{l}} \rangle \in \mathbf{\Omega}_{\mathbf{n}}^{\mathbf{m}}$. There exits a permutation $\sigma : \{1, \dots, n\} \to \{1, \dots, n\}$ which satisfies

$$\begin{cases} \alpha_i = |\delta_{\sigma(i)}| \\ \alpha_n \le \alpha_{n-1} \le \ldots \le \alpha_1. \end{cases}$$

- The class $N(\omega) = \theta = \langle m, \alpha_n, \dots, \alpha_1 \rangle$ will be called the **normalised class** of ω .
- Every Boolean function in ω may be transformed in a unique Boolean function in θ .

Example:

• $N(\langle 7, 1, 5, -3, -3 \rangle) = \langle 7, 1, 3, 3, 5 \rangle.$

• Each set ω^s corresponding to a class ω with $N(\omega) = \theta$ has the same cardinality as θ^s . Then,

Theorem 5 (Number of 1-resilient functions).

$$|Res1_n| = \sum_{\theta \in \Theta_n^{2^{n-2}}} n(\theta) \ |\theta^s|^2.$$

• Normalized classes help to still speed up our counting algorithm and find the number of 1-resilient functions for n = 7 in 50 seconds!.

• By only computing a fraction of all normalized classes, we obtain the lower bound $4 \ 10^{67}$ for the number of 1-resilient functions with n = 8 variables.

Upper bounds on the number of first-order correlation classes

- Let $\omega = \langle m, \delta_n, \dots, \delta_1 \rangle \in \Omega_n^m$. Then we define $\overline{\delta(\omega)} = \sum_{i=1}^n |\delta_i|$.
- We may see $\delta(\omega)$ as a measure of how far from first-order correlation is ω .
- Define $\delta(\mathbf{n}, \mathbf{m}) = \sup_{\omega \in \Omega_{\mathbf{n}}^{\mathbf{m}}} \delta(\omega)$, $\mu(\mathbf{n}, \mathbf{m}) = \delta(\mathbf{n}, \mathbf{m})/2$ if m is even and $\mu(\mathbf{n}, \mathbf{m}) = (\delta(\mathbf{n}, \mathbf{m}) \mathbf{n})/2$ otherwise.

Lemma 3 (Upper bound for number of classes)

Let $0 \le m \le 2^{n-1}$ and $\mathbf{U_n^m}$ defined by

$$U_n^m = \begin{cases} \sum_{j=0}^n \binom{\mu(n,m)}{j} \binom{\mu(n,m)+n-j}{\mu(n,m)} & m \text{ even} \\ \binom{\mu(n,m)+n}{n} 2^n & \text{otherwise.} \end{cases}$$

• U_n^m is an upper bound for the number of classes in Ω_n^m .

New lower bound on the number of 1-resilient functions

Theorem 7
$$|Res1_n| \ge \frac{\binom{2^{n-1}}{2^{n-2}}^2}{U_{n-1}^{2^{n-2}}} \ge \frac{\binom{2^{n-1}}{m}^2}{\binom{\mu(n-1,2^{n-2})+n-1}{n-1}}2^{n-1}.$$

Theorem 8 $|Res1_n| \ge \frac{2^{2^n}(n\pi)^{n/2}}{2^{n^2-\frac{3}{2}n-1}e^{n-1/2}}.$

• [Maitra & Sarkar 1999]:

$$\begin{split} |Res1_n| \geq 2^{2^{n-2}} + \binom{2^{n-1}}{2^{n-2}} + \binom{2^{n-2}}{2^{n-3}} * \begin{pmatrix} \binom{2^{n-2}}{2^{n-3}} - 2 \end{pmatrix} + \binom{2^{n-3}}{2^{n-4}} - 2^{2^{n-3}}. \\ \hline n \quad [Maitra \& Sarkar \ 1999] \quad Our \ lower \ bound \\ \hline 5 & 17876 & 503430 \\ 6 & 7.667 \ 10^8 & 7.523 \ 10^{12} \\ 7 & 2.193 \ 10^{18} & 1.312 \ 10^{29} \\ 8 & 2.730 \ 10^{37} & 1.134 \ 10^{64} \\ 9 & 6.342 \ 10^{75} & 8.884 \ 10^{136} \\ 10 & 5.058 \ 10^{152} & 2.128 \ 10^{286} \\ \end{split}$$

Dramatic improvements are due to our general construction. The previous bounds have been found by building and counting restricted classes.

New lower bound on the number of k-resilient functions

- Given a 1-resilient function in n k + 1 variables, we have a construction that leads to a k-resilient function in n variables.
- As a consequence we have the following new lower bound for the number of k-resilient functions:

Theorem 9 Let $k \ge 2$, and n > k. The set of *k*-resilient functions with *n* variables satisfies $|\mathbf{Res}_{n-k+1}^1| \le |\mathbf{Res}_n^k|$.

n	Maiorana-McFarland	Our lower bound
	[Camion,Carlet,Charpin & Sendrier 1991]	
$\mathcal{R}es^1_{10}$	$3.0 \ 10^{79}$	$5.1\ 10^{285}$
$\mathcal{R}es_{10}^2$	$4.3 \ 10^{40}$	$3.4\;\mathbf{10^{136}}$
$\mathcal{R}es_{10}^{ar{3}^\circ}$	$1.2 \ 10^{21}$	$2.6 \ 10^{63}$
$\mathcal{R}es_{10}^4$	$1.4 \ 10^{11}$	$2.3\;10^{31}$
$\mathcal{R}es_{10}^5$	$1.1 \ 10^{6}$	$9.5 \ 10^{13}$

Summary of results

- We present a complete characterization of 1-correlation immune functions and give efficient algorithms to generate and count them.
- The number of 1-resilient functions in 7 variables is 23478015754788854439497622689296.
- We drastically improve knwon bounds specially lower bonds.

п	8	9	10	11	12	13
Maitra	10^{37}	10^{75}	10^{152}	10^{306}	10^{614}	10^{1231}
New Lower Bound	10 ⁶⁴	10^{136}	10^{286}	10^{589}	10^{1199}	10^{2426}
New Upper Bound	10^{68}	10^{144}	10^{297}	10^{603}	10^{1218}	10^{2449}
Schneider	10^{71}	10^{147}	10^{299}	10^{606}	10^{1221}	10^{2452}

We conjecture that the probability of a boolean function being 1-resilient is

 Use of the generating function derived from our constructions. Work in progress with P. Flajolet, S. Mesnager.