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Linear Feedback Shift Registers (LFSR)
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• At each clock-cycle computes ⊕L
i=1 cisn−i and outputs sn−L.

• Generates an ultimately periodic sequence with period at most 2L − 1.
• The linear complexity of such a sequence is the length L of the minimum LFSR producing

the same sequence.
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Boolean functions and LFSR

• LFSR are cryptographically weak.
If L is the linear complexity of a sequence (unknown from the attacker), with 2L
consecutive bits known, the Berlekamp-Massey algorithm recovers L, ci’s and initial
values (key bits ).
In practice the attacker only needs to know around 20 consecutive bits.

• Combining boolean functions are used to avoid this attack.
• Period at most the LCM of the periods of the sequences generated by the LFSRs.
• Length of the key is L1 + L2 + . . . Ln.
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Cryptographic criteria for boolean functions

• High algebraic degree.

• Large Hamming distance to all affine functions.

• Balanced functions.

• Correlation-immune and resilient functions to prevent correlation attacks
[Siegenthaler 1984; Meier & Staffelbach 1988; Johansson & Jönsson 1999,
2000; Canteaut & Trabbia 2000; and more ...].

• Strict avalanche criterion [Webster & Tavares 1985].

• Propagation criterion [Preneel, Van Leekwijck, Van Linden, Govaerts &
Vandevalle 1991].

• [Carlet 2007] has a complete survey on boolean functions for cryptography
and error correcting codes.

• Another useful source of information is [Gouguet 2004].
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Decomposition of boolean functions

• A boolean function in n variables is a function f : {0, 1}n → {0, 1}.

• We encode a boolean function fn by a word in {0, 1}2n
indexed by xn . . . x1.

• We may see fn as the concatenation of 2n−j boolean functions in j variables each, by an
operator we call ?.

Example: f1
1 f2

1 f3
1 f4

1︷︸︸︷ ︷︸︸︷ ︷︸︸︷ ︷︸︸︷
f3 1 0 1 0 0 1 1 0

x3 0 0 0 0 1 1 1 1
x2 0 0 1 1 0 0 1 1
x1 0 1 0 1 0 1 0 1︸ ︷︷ ︸ ︸ ︷︷ ︸

f1
2 f2

2

• We have f3 = f1
2 ? f2

2 and f3 = f1
1 ? f2

1 ? f3
1 ? f4

1 .
• Functions fk

j may be seen as fn conditioned to some arguments xi being some fixed ai.

• Then, we have f3
1 = f3 |x2=0,x3=1, f1

2 = f3 |x3=0 and so on.
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Tree decomposition of a boolean function

• Decomposition can be described by a complete binary tree of depth n − 1
being fn is the root and the 2n−1 functions in 1 variable the leaves.

Example:
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f 1
2

1010

f 2
2

0110

f 1
1

10

f 2
1

10

f 3
1

01

f 4
1

10

f1
1 f2

1 f3
1 f4

1︷︸︸︷ ︷︸︸︷ ︷︸︸︷ ︷︸︸︷
f3 1 0 1 0 0 1 1 0

x3 0 0 0 0 1 1 1 1
x2 0 0 1 1 0 0 1 1
x1 0 1 0 1 0 1 0 1︸ ︷︷ ︸ ︸ ︷︷ ︸

f1
2 f2

2
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Hamming tree of boolean classes

• The sets (i)n = {fn | wH(fn) = i} partition {0, 1}2n
into Hamming classes .

• Similarly to boolean functions we have Hamming trees of boolean classes .
• Each tree may be shared by several functions.

Example:

• The Hamming tree of f3 is shared by 16 functions.
• These functions are constructed by combining 01 and 10 in all possible ways at the leaves.
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Hamming tree of boolean classes (cont.)

• Not every Hamming tree is shared by the same number of functions.

Example:

• This Hamming tree is shared by only 4 functions, since the class (0)1 only contains the
function 00 and (2)1 only contains the function 11.

• These functions are 01001101, 01001110, 10001101 and 10001110.
• Nevertheless these functions are balanced like f3 (belong to the same Hamming class),

although their respective Hamming trees are different.
• Hamming trees (and not Hamming classes!) capture the essential features for our

problem.
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Equivalence relation for first-order correlation-immunity

• We define δi(fn) = wH(fn |xi=0)− wH(fn |xi=1), 1 ≤ i ≤ n.

• Then, fn is first-order correlation immune ⇐⇒ ∀i, δi(fn) = 0.

• Moreover, fn is 1-resilient ⇐⇒ ∀i, δi(fn) = 0, wH(fn) = 2n−1.

• A function fn belongs to the class ω = Ω(fn) = 〈wH(fn), δn(fn) . . . δ1(fn)〉.
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How to find Ω(f3)

f3 1 0 1 0 0 1 1 0

x3 0 0 0 0 1 1 1 1
x2 0 0 1 1 0 0 1 1
x1 0 1 0 1 0 1 0 1

Ω(f3) = 〈4, 0, , 〉.
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How to find Ω(f3)

f3 1 0 1 0 0 1 1 0

x3 0 0 0 0 1 1 1 1
x2 0 0 1 1 0 0 1 1
x1 0 1 0 1 0 1 0 1

Ω(f3) = 〈4, 0, , 〉.

f3 1 0 1 0 0 1 1 0

x3 0 0 0 0 1 1 1 1
x2 0 0 1 1 0 0 1 1
x1 0 1 0 1 0 1 0 1

Ω(f3) = 〈4, 0, 0, 〉.
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How to find Ω(f3)

f3 1 0 1 0 0 1 1 0

x3 0 0 0 0 1 1 1 1
x2 0 0 1 1 0 0 1 1
x1 0 1 0 1 0 1 0 1

Ω(f3) = 〈4, 0, , 〉.

f3 1 0 1 0 0 1 1 0

x3 0 0 0 0 1 1 1 1
x2 0 0 1 1 0 0 1 1
x1 0 1 0 1 0 1 0 1

Ω(f3) = 〈4, 0, 0, 〉.

f3 1 0 1 0 0 1 1 0

x3 0 0 0 0 1 1 1 1
x2 0 0 1 1 0 0 1 1
x1 0 1 0 1 0 1 0 1

Ω(f3) = 〈4, 0, 0, 2〉.
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First order correlation-immune classes

• Similar to balanced functions we have first order correlation trees .

Example:

• This is the first order correlation tree for f3.
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Recursive construction of correlation classes

Proposition 1 (Recursive construction).

Let  ω1 = 〈p1, δ
1
n−1, . . . , δ

1
1〉 ∈ Ωp1

n−1,
ω2 = 〈p2, δ

2
n−1, . . . , δ

2
1〉 ∈ Ωp2

n−1,
ω = 〈m, δn, . . . , δ1〉 = ω1 ? ω2.

Then we have  m = p1 + p2

δn = p1 − p2

δi = δ1
i + δ2

i , i ∈ {1, . . . , n− 1}.
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Decomposition of correlation classes.

Theorem 1 (Decomposition of correlation classes).

Let ω ∈ Ωn. Then, with ω1, ω2 ∈ Ωn−1 we have

ωs =
⋃

ω1 ? ω2 = ω

ωs
1 × ωs

2.

Theorem 2 (Counting correlation functions).

Let ω ∈ Ωn. Then, with ω1, ω2 ∈ Ωn−1 we have

|ωs| =
∑

ω1 ? ω2 = ω

|ωs
1| · |ωs

2|.
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Decomposition of correlation-immune classes.

• Let ω1 ∈ Ωp1
n−1, ω2 ∈ Ωp2

n−1 and m = p1 + p2. From our recursive construction
we have the equivalence ω1 ? ω2 ∈ Corm

n ⇐⇒ ω2 = ω1..

Theorem 3 (Decomposition of correlation-immune classes).
Corm

n =
⋃

ω1∈Ωm
n−1

ωs
1 × ω1

s, for 0 ≤ m ≤ 2n−1.

Theorem 4 (Counting correlation-immune functions).

|Corm
n | =

∑
ω1∈Ωm

n−1

|ωs
1|2,

|Corn| =
∑

ω1∈Ωn−1

|ωs
1|2.
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Counting 1-resilient boolean functions.

• We denote by Bn the set of balanced first-order correlation classes with n variables.

• We have |Bn| =
` 2n

2n−1

´
.

Corollary 4 (Counting 1-resilient boolean functions).

Since Res1n = Cor2n−2

n , we have

|Res1n| =
X

ω1∈Bn−1

|ω1|2.

• Then, to compute Res1n we only need to know the cardinality of all balanced first-order
correlation classes with n− 1 variables.

• We find an efficient algorithm by working with correlation classes and not with correlation
functions.

n 5 6 7
Res1n 807980 95259103924394 23478015754788854439497622689296
Time 0.028 s 0.526 s 1 h 02 min 27.332 s
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Normalized classes

• Let m ≤ 2n−1 and ω = 〈m, δn, . . . , δ1〉 ∈ Ωm
n . There exits a permutation

σ : {1, . . . , n} → {1, . . . , n} which satisfies{
αi = |δσ(i)|
αn ≤ αn−1 ≤ . . . ≤ α1.

• The class N(ω) = θ = 〈m, αn, . . . , α1〉 will be called the normalised class
of ω.

• Every Boolean function in ω may be transformed in a unique Boolean
function in θ.

Example:

• N(〈7, 1, 5,−3,−3)〉) = 〈7, 1, 3, 3, 5〉.
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New characterization of 1-resilient functions.

• Each set ωs corresponding to a class ω with N(ω) = θ has the same
cardinality as θs. Then,

Theorem 5 (Number of 1-resilient functions).

|Res1n| =
∑

θ∈Θ2n−2
n

n(θ) |θs|2.

• Normalized classes help to still speed up our counting algorithm and find
the number of 1-resilient functions for n = 7 in 50 seconds! .

• By only computing a fraction of all normalized classes, we obtain the lower
bound 4 1067 for the number of 1-resilient functions with n = 8 variables.
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Upper bounds on the number of first-order correlation
classes

• Let ω = 〈m, δn, . . . , δ1〉 ∈ Ωm
n . Then we define δ(ω) =

∑n
i=1 |δi|.

• We may see δ(ω) as a measure of how far from first-order correlation is ω.

• Define δ(n,m) = supω∈Ωm
n

δ(ω), µ(n,m) = δ(n,m)/2 if m is even and
µ(n,m) = (δ(n,m)− n)/2 otherwise.

Lemma 3 (Upper bound for number of classes)

Let 0 ≤ m ≤ 2n−1 and Um
n defined by

Um
n =


n∑

j=0

(
µ(n,m)

j

) (
µ(n,m)+n−j

µ(n,m)

)
m even(

µ(n, m) + n

n

)
2n otherwise.

• Um
n is an upper bound for the number of classes in Ωm

n .
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New lower bound on the number of 1-resilient functions

Theorem 7 |Res1n| ≥
(
2n−1

2n−2

)2

U2n−2

n−1

≥
(
2n−1

m

)2(
µ(n−1,2n−2)+n−1

n−1

)
2n−1

.

Theorem 8 |Res1n| ≥ 22n
(nπ)n/2

2n2−3
2n−1en−1/2

.

• [Maitra & Sarkar 1999]:

|Res1n| ≥ 2
2n−2

+
“2n−1

2n−2

”
+
“2n−2

2n−3

”
∗
 “2n−2

2n−3

”
− 2

!
+
“2n−3

2n−4

”
− 2

2n−3
.

n [Maitra & Sarkar 1999] Our lower bound
5 17876 503430
6 7.667 108 7.523 1012

7 2.193 1018 1.312 1029

8 2.730 1037 1.134 1064

9 6.342 1075 8.884 10136

10 5.058 10152 2.128 10286

• Dramatic improvements are due to our general construction . The previous bounds have
been found by building and counting restricted classes .
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New lower bound on the number of k-resilient functions

• Given a 1-resilient function in n − k + 1 variables, we have a construction
that leads to a k-resilient function in n variables.

• As a consequence we have the following new lower bound for the number of
k-resilient functions:

Theorem 9 Let k ≥ 2, and n > k. The set of k-resilient functions with n
variables satisfies |Res1

n−k+1| ≤ |Resk
n|.

n Maiorana-McFarland Our lower bound
[Camion,Carlet,Charpin & Sendrier 1991]

Res1
10 3.0 1079 5.1 10285

Res2
10 4.3 1040 3.4 10136

Res3
10 1.2 1021 2.6 1063

Res4
10 1.4 1011 2.3 1031

Res5
10 1.1 106 9.5 1013
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Summary of results

• We present a complete characterization of 1-correlation immune functions
and give efficient algorithms to generate and count them.

• The number of 1-resilient functions in 7 variables is
23478015754788854439497622689296.

• We drastically improve knwon bounds specially lower bonds.

n 8 9 10 11 12 13
Maitra 1037 1075 10152 10306 10614 101231

New Lower Bound 1064 10136 10286 10589 101199 102426

New Upper Bound 1068 10144 10297 10603 101218 102449

Schneider 1071 10147 10299 10606 101221 102452

• We conjecture that the probability of a boolean function being 1-resilient is

∼ 2−
n2
2

√
2π

n+1
2

.

• Use of the generating function derived from our constructions. Work in
progress with P. Flajolet, S. Mesnager.
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