Uniform Random Number Generators

Pierre L'Ecuyer
Canada Research Chair in Stochastic Simulation and Optimization
DIRO, Université de Montréal, Canada

e Requirements, applications, multiple streams and substreams.

e Design principles and quality criteria.

e Examples: generators based on linear recurrences.
Theoretical analysis and implementation issues.

e Combined and mixed linear/nonlinear generators.

e Empirical statistical testing.
Empirical evaluation of some widely-used generators.

e Conclusion. RNGs for grid computing?

Articles and software: http://www.iro.umontreal.ca/~lecuyer

Random numbers? What do we want?

Produce randomly-looking sequences; e.g.:
— bit sequences: 011010100110110101001101100101000111...

— integers from 0 to 99 (say): 31, 83, 02, 72, 54, 26, ...
— real numbers between 0 and 1.

Random numbers? What do we want?

Produce randomly-looking sequences; e.g.:
— bit sequences: 011010100110110101001101100101000111...

— integers from 0 to 99 (say): 31, 83, 02, 72, 54, 26, ...
— real numbers between 0 and 1.

Physical devices: dices, balls, roulette wheels,
thermal noise in resistances of electronic circuits,
devices that rely on quantum physics, and so on.

Random numbers? What do we want?

Produce randomly-looking sequences; e.g.:

— bit sequences: 011010100110110101001101100101000111...
— integers from 0 to 99 (say): 31, 83, 02, 72, 54, 26, ...

— real numbers between 0 and 1.

Physical devices: dices, balls, roulette wheels,
thermal noise in resistances of electronic circuits,
devices that rely on quantum physics, and so on.

Contains true entropy, but not very convenient, not reproducible, not always
reliable, and no (or little) mathematical analysis.

Can improve reliability by combining bits (XOR).

Many such devices on the market.

Random numbers? What do we want?

Produce randomly-looking sequences; e.g.:
— bit sequences: 011010100110110101001101100101000111...
— integers from 0 to 99 (say): 31, 83, 02, 72, 54, 26, ...

— real numbers between 0 and 1.

Physical devices: dices, balls, roulette wheels,
thermal noise in resistances of electronic circuits,
devices that rely on quantum physics, and so on.

Contains true entropy, but not very convenient, not reproducible, not always
reliable, and no (or little) mathematical analysis.

Can improve reliability by combining bits (XOR).

Many such devices on the market.

Algorithmic generators (or pseudo-random): Once the parameters and the seed are
selected, everything else becomes deterministic. But much more convenient. No
special hardware required.

1. Computer games: Good looking appearance may suffice.

1. Computer games: Good looking appearance may suffice.

2. Stochastic simulation (Monte Carlo): Simulate the behavior of complex
systems. Want to reproduce the relevant statistical properties of the mathematical
model.

Typical RNG: imitates a sequence Uy, Uy, Us, ... of independent random variables
uniform over the interval (0,1).

1. Computer games: Good looking appearance may suffice.

2. Stochastic simulation (Monte Carlo): Simulate the behavior of complex
systems. Want to reproduce the relevant statistical properties of the mathematical
model.

Typical RNG: imitates a sequence Uy, Uy, Us, ... of independent random variables
uniform over the interval (0,1).

3. Lotteries, casino machines, Internet gambling, etc.

It should not be possible (or practical) to make an inference that provides an
advantage in guessing the next numbers. Stronger requirements than for
simulation.

1. Computer games: Good looking appearance may suffice.

2. Stochastic simulation (Monte Carlo): Simulate the behavior of complex
systems. Want to reproduce the relevant statistical properties of the mathematical
model.

Typical RNG: imitates a sequence Uy, Uy, Us, ... of independent random variables
uniform over the interval (0,1).

3. Lotteries, casino machines, Internet gambling, etc.

It should not be possible (or practical) to make an inference that provides an
advantage in guessing the next numbers. Stronger requirements than for
simulation.

4. Cryptology: Requirements are even stronger. Observing any part the output
should not help guessing (with reasonable effort) any other part.

Requirements for stochastic simulation

We want to use an RNG to imitate a sequence Uy, Uy, Us, . .. of independent
random variables, uniformly distributed over (0,1).

Requirements for stochastic simulation

We want to use an RNG to imitate a sequence Uy, Uy, Us, . .. of independent
random variables, uniformly distributed over (0,1).

To generate variates from other distributions, we apply transformations to these

U;. For example, inversion: if X; = F~*(U;), then X, imitates a random variable
with distribution function F'.

Requirements for stochastic simulation

We want to use an RNG to imitate a sequence Uy, Uy, Us, . .. of independent
random variables, uniformly distributed over (0,1).

To generate variates from other distributions, we apply transformations to these

U;. For example, inversion: if X; = F~*(U;), then X, imitates a random variable
with distribution function F'.

Simulation on multiple processors: need multiple streams of random numbers.

Requirements for stochastic simulation

We want to use an RNG to imitate a sequence Uy, Uy, Us, . .. of independent
random variables, uniformly distributed over (0,1).

To generate variates from other distributions, we apply transformations to these
U;. For example, inversion: if X; = F~*(U;), then X, imitates a random variable
with distribution function F'.

Simulation on multiple processors: need multiple streams of random numbers.

Also for comparing similar systems with common random numbers.

Suppose we simulate a communication network, or a telephone call center, or a
supply chain or logistic system, or a factory, or the dynamic management of an
investment portfolio, etc.

We want to compare two similar configurations (or control policies) for a given
system.

The difference in performance will be due partly to the difference of configuration,
and partly to stochastic noise. We want to minimize this second part.

Basic idea: simulate the two configurations with the same uniform random

numbers U;, used at exactly the same places.
There are several theoretical results concerning the efficiency improvement

(variance reduction) that this brings.
This requires good synchronization of the random numbers, and this can be

complicated to implement and manage when the two configurations do not need
the same number of U;'s (e.g., we may need one random variate in one case and

not in the other case).

Basic idea: simulate the two configurations with the same uniform random
numbers U;, used at exactly the same places.

There are several theoretical results concerning the efficiency improvement
(variance reduction) that this brings.

This requires good synchronization of the random numbers, and this can be
complicated to implement and manage when the two configurations do not need
the same number of U;'s (e.g., we may need one random variate in one case and
not in the other case).

A solution: RNG with multiple streams and substreams.

Each stream can be seen as a virtual RNG.
It is also partitioned into substreams.
We should be able to create as many “independent’ streams as we want.

Etat
courant

début début prochaine
suite sous-suite sous-suite

Basic idea: simulate the two configurations with the same uniform random
numbers U;, used at exactly the same places.

There are several theoretical results concerning the efficiency improvement
(variance reduction) that this brings.

This requires good synchronization of the random numbers, and this can be
complicated to implement and manage when the two configurations do not need
the same number of U;'s (e.g., we may need one random variate in one case and
not in the other case).

A solution: RNG with multiple streams and substreams.

Each stream can be seen as a virtual RNG.
It is also partitioned into substreams.
We should be able to create as many “independent’ streams as we want.

Etat
courant

début début prochaine
suite sous-suite sous-suite

Basic idea: simulate the two configurations with the same uniform random
numbers U;, used at exactly the same places.

There are several theoretical results concerning the efficiency improvement
(variance reduction) that this brings.

This requires good synchronization of the random numbers, and this can be
complicated to implement and manage when the two configurations do not need
the same number of U;'s (e.g., we may need one random variate in one case and
not in the other case).

A solution: RNG with multiple streams and substreams.

Each stream can be seen as a virtual RNG.
It is also partitioned into substreams.
We should be able to create as many “independent’ streams as we want.

Etat
courant

début début prochaine
suite sous-suite sous-suite

Basic idea: simulate the two configurations with the same uniform random
numbers U;, used at exactly the same places.

There are several theoretical results concerning the efficiency improvement
(variance reduction) that this brings.

This requires good synchronization of the random numbers, and this can be
complicated to implement and manage when the two configurations do not need
the same number of U;'s (e.g., we may need one random variate in one case and
not in the other case).

A solution: RNG with multiple streams and substreams.

Each stream can be seen as a virtual RNG.
It is also partitioned into substreams.
We should be able to create as many “independent’ streams as we want.

Etat
courant

début début prochaine
suite sous-suite sous-suite

début début prochaine
suite sous-suite sous-suite

Suppose that for a sequence of customers arriving to a system, we must generate:
(1) the arrival time of each customer;

(2) a service time at server A for each customer;
(3) a service time at server B for groups of 10 to 20 customers.

To maintain synchonization, we can use one stream for each of these.

Etat

courant
début début prochaine
suite sous-suite sous-suite

Suppose that for a sequence of customers arriving to a system, we must generate:
(1) the arrival time of each customer;

(2) a service time at server A for each customer;
(3) a service time at server B for groups of 10 to 20 customers.

To maintain synchonization, we can use one stream for each of these.

Example of a Java interface (in SSJ)

public interface RandomStream {
public void resetStartStream ();

Reinitializes the stream to its initial state.
public void resetStartSubstream ();

Reinitializes the stream to the beginning of its current substream.
public void resetNextSubstream ();

Reinitializes the stream to the beginning of its next substream.

public double nextDouble ();

Returns a U (0, 1) (pseudo)random number, using this stream, after advancing its state by
one step.

public int mnextInt (int i, int j);

Returns a (pseudo)random number from the discrete uniform distribution over the integers
{i,i+1,..., 7}, using this stream.

public class MRG32k3a implements RandomStream {

An implementation based on a combined MRG with period length near 28!, partitioned
into streams whose initial states are 2127 steps apart. The substreams have length 276,

public MRG32k3a();

Constructs a new stream.

public class LFSR113 implements RandomStream {

An implementation based on a combined LFSR, with period length near 2113,

public LFSR113Q);

Constructs a new stream.

This system (with MRG32k3a) has been adopted by leading simulation and

statistical software such as SAS, Arena, Witness, Simul8, Automod, ns2,
MATLAB, etc.

Non-uniform variate generators

Continuous or discrete. Default method: inversion.
public class RandomVariateGen A
public RandomVariateGen (RandomStream s, Distribution dist)

Creates a new generator from the distribution dist, using stream s.

public double nextDouble()

By default, generates a variate by inversion.

Non-uniform variate generators

Continuous or discrete. Default method: inversion.

public class RandomVariateGen A
public RandomVariateGen (RandomStream s, Distribution dist)

Creates a new generator from the distribution dist, using stream s.

public double nextDouble()

By default, generates a variate by inversion.

Also specialized (faster) generators for certain distributions.

public class Normal extends RandomVariateGen {
public Normal (RandomStream s, double mu, double sigma);

Constructs a new normal r.v. generator.

public static double nextDouble (RandomStream s, double mu,
double sigma) ;

Generates a new normal random variate using stream s.

Example: comparing two configurations:

RandomStream genArr
RandomStream genServA
RandomStream genServB

new RandomStream(); // Inter-arriv.
new RandomStream(); // Serveur A.
new RandomStream(); // Serveur B.

10

Example: comparing two configurations:

RandomStream genArr
RandomStream genServA
RandomStream genServB

new RandomStream(); // Serveur A.
new RandomStream(); // Serveur B.

for (int rep = 0; rep < n; rep++) {

genArr .resetNextSubstream() ;
genServA.resetNextSubstream() ;
genServB.resetNextSubstream() ;

—-—— simuler configuration 1 ---

genArr.resetStartSubstream() ;
genServA.resetStartSubstream() ;
genServB.resetStartSubstream() ;

--— simuler configuration 2 ---

new RandomStream(); // Inter-arriv.

10

Multiple streams are very useful (on a single processor), for example for:

e comparing similar systems
e sensitivity analysis, gradient estimation by finite differences
e optimization of sample function, etc.

e using a (simplified) similar system for an external control variate

11

Multiple streams are very useful (on a single processor), for example for:

e comparing similar systems
e sensitivity analysis, gradient estimation by finite differences
e optimization of sample function, etc.

e using a (simplified) similar system for an external control variate

Can also be used on multiple processors.

11

Multiple streams are very useful (on a single processor), for example for:

e comparing similar systems
e sensitivity analysis, gradient estimation by finite differences
e optimization of sample function, etc.

e using a (simplified) similar system for an external control variate

Can also be used on multiple processors.

In SSJ, a RandomStream can also be an iterator on a randomized quasi-Monte
Carlo point set.

11

How to Define and Desigh an RNG?

A (Pseudo)random number generator (RNG):

S, finite state space; S, seed (initial state);
f:S — &, transition function; Sn = f(Sn—1)

U, output set, often U = (0, 1);

g:S — U, output function. Up = g(sn)

12

How to Define and Desigh an RNG?

A (Pseudo)random number generator (RNG):

S, finite state space; S, seed (initial state);
f:S — &, transition function; Sn = f(Sn—1)

U, output set, often U = (0, 1);

g:S — U, output function. Up = g(sn)

12

How to Define and Desigh an RNG?

A (Pseudo)random number generator (RNG):

S, finite state space; S, seed (initial state);
f:S — 8, transition function; Sn = f(Sn—1)
U, output set, often U = (0, 1);
g : S — U, output function. Up = g(sn)
S0

12

How to Define and Desigh an RNG?

A (Pseudo)random number generator (RNG):

S, finite state space; S, seed (initial state);
f:S — &, transition function; Sn = f(Sn—1)
U, output set, often U = (0, 1);
g:S — U, output function. Up = g(sn)
S0 7, S1

12

How to Define and Desigh an RNG?

A (Pseudo)random number generator (RNG):

S, finite state space; S, seed (initial state);
f:S — &, transition function; Sn = f(Sn—1)
U, output set, often U = (0, 1);
g:S — U, output function. Up = g(sn)
S0 7, S1

|

Uuop uy

12

How to Define and Desigh an RNG?

A (Pseudo)random number generator (RNG):

S, finite state space; S, seed (initial state);
f:S — &, transition function; Sn = f(Sn—1)
U, output set, often U = (0, 1);
g : S — U, output function. Up = g(sn)
f
So—>81—> —)Sn—>8n+1%
|l |
Uo U1 Unp, Un41

Period: p <|S|. siyp, =8 Vi>T. Assume 7 = 0.

12

How to Define and Desigh an RNG?

A (Pseudo)random number generator (RNG):

S, finite state space; S, seed (initial state);

f:S — &, transition function; Sn = f(Sn—1)

U, output set, often U = (0, 1);

g : S — U, output function. Up = g(sn)
-—>Sp_1—>80—>81—>-°-—>Sn—>8n+1%-'-

oLl ol

Up—1 Uop Ui Tt Unp Un+1

Period: p <|S|. siyp, =8 Vi>T. Assume 7 = 0.

12

Up—1 Uo Ui e (079 Un+-1

Aim: By observing only the output (ug, u1,-..), it should be hard to distinguish it
from the realizations of i.i.d. uniform random variables over U.

Utopia: cannot distinguish better than by flipping a fair coin.
That is, passes all statistical tests.

13

13

Up—1 Uo Ui e (079 Un+-1

Aim: By observing only the output (ug, u1,-..), it should be hard to distinguish it
from the realizations of i.i.d. uniform random variables over U.

Utopia: cannot distinguish better than by flipping a fair coin.
That is, passes all statistical tests.

Also want high speed, ease of implementation, and perfect reproducibility.

Compromise between speed / good statistical behavior / predictability.

13

Up—1 Uo Ui e (079 Un+-1

Aim: By observing only the output (ug, u1,-..), it should be hard to distinguish it
from the realizations of i.i.d. uniform random variables over U.

Utopia: cannot distinguish better than by flipping a fair coin.
That is, passes all statistical tests.

Also want high speed, ease of implementation, and perfect reproducibility.
Compromise between speed / good statistical behavior / predictability.

With random seed sp, an RNG is like a gigantic roulette wheel.
Selecting sy at random and generating t random numbers means spinning the
wheel and taking u = (ug, ..., us_1).

The uniform distribution over [0, 1]*:
The multiset V; = {(ug,...,u—1) = (9(S0),.--,9(st-1)), So € S}
is viewed as the sample space, approximation of [0, 1]*.

14

The uniform distribution over [0, 1]*:
The multiset V; = {(ug,...,u—1) = (9(S0),.--,9(st-1)), So € S}
is viewed as the sample space, approximation of [0, 1]*.

We suggest: Want W, uniformly spread over [0, 1]* for all £ up to some ty.

14

The uniform distribution over [0, 1]*:

The multiset V; = {(ug,...,u—1) = (9(S0),.--,9(st-1)), So € S}
is viewed as the sample space, approximation of [0, 1]*.

We suggest: Want W, uniformly spread over [0, 1]* for all £ up to some ty.

Need a measure of uniformity of W, (or a measure of discrepancy from the uniform
distribution). Several possible definitions.

Important: Must be efficiently computable.
For this, must understand the mathematical structure of W,.

This is why most good RNGs are based on linear recurrences.

14

The uniform distribution over [0, 1]*:
The multiset W, = {(ug,...,us—1) = (9(s0),---,9(s¢—1)), So € S}
is viewed as the sample space, approximation of [0, 1]*.

We suggest: Want W, uniformly spread over [0, 1]* for all £ up to some ty.

Need a measure of uniformity of W, (or a measure of discrepancy from the uniform
distribution). Several possible definitions.

Important: Must be efficiently computable.
For this, must understand the mathematical structure of W,.

This is why most good RNGs are based on linear recurrences.

Why not insist that ¥; behaves as a typical set of random points instead?
We need that behavior only for the tiny fraction of W, that we use.

14

The uniform distribution over [0, 1]*:
The multiset W, = {(ug,...,us—1) = (9(s0),---,9(s¢—1)), So € S}
is viewed as the sample space, approximation of [0, 1]*.

We suggest: Want W, uniformly spread over [0, 1]* for all £ up to some ty.

Need a measure of uniformity of W, (or a measure of discrepancy from the uniform
distribution). Several possible definitions.

Important: Must be efficiently computable.
For this, must understand the mathematical structure of W,.

This is why most good RNGs are based on linear recurrences.

Why not insist that ¥; behaves as a typical set of random points instead?
We need that behavior only for the tiny fraction of W, that we use.

Generalization: measure the uniformity of ¥; = {(u;,,...,u;,) | so € S}
for selected sets [= {i1, 2, -, i} of nonsuccessive indexes.
Make sure that ¥; is uniform for all I € 7, for a given family 7.

14

Multiple Recursive Generator (MRG)

Tn = (@1Tn—1 + - + agpTp_) mod m,

Max. period length: p = m* — 1, for m prime.

Up = Ty /M.

15

15

Multiple Recursive Generator (MRG)

Ty, = (a1Tp_1+ -+ axxp_k) mod m, Up = Ty /M.

Max. period length: p = m”* — 1, for m prime.

Structure of Wy;: (xq,...,Tr_1) can take any value in {0,1,...,m — 1}*,
then zx,xr11,... are determined by the linear recurrence.
So, (g, ..., Tg—1) — (g, .-+, Tk—1,Tk,.--,T¢_1) iS A linear mapping.

It follows (details omitted) that ¥, = L; N[0, 1)* where

¢
L, = {v = Z%LV?; | z; € Z} , a lattice in RY, with

i=1
vi = (1,0,...,0,21,...,21¢-1)/m
vo = (0,1,...,0,29,...,Z2¢-1)/m
Vi = (O,O,...,1,$k,k,...,$k,t_1)/m
virr = (0,0,...,0,1,...,0)

V¢ = (0,0,...,0,0,...,1).

16

Un+1

0

0

LCG with m = 101 and a; = 12;

Un

17

Un+1

o

r
0

LCG with m = 101 and a; = 12;

Un

1

vi = (1,12)/m, vo =

17

0.005

Un+1

0.0 Jrit il it et e
0.0 0.005

Un,

x, = 4809922 x,,_1 mod 60466169 and u,, = x,,/60466169

18

1.0 / /

Unp+1 4 /

0.0

0.0 1.0

Un,

x, = 30233086 x,,_1 mod 60466169 and u,, = x,, /60466169

19

Uniformity can be measured in terms of this lattice structure in various
dimensions.

20

Uniformity can be measured in terms of this lattice structure in various
dimensions.

Can also take into account projections on subsets of coordinates
I = {’il,ig, < ,it}i

\If[— {(uil,...,uit)\soz(xo,...,a:k_l)Ean}:LIﬂ[O,l)t.

Can make computer searches for good parameters w.r.t. a criterion that account
for the uniformity of a selected set of projections.

20

Uniformity can be measured in terms of this lattice structure in various
dimensions.

Can also take into account projections on subsets of coordinates
I = {’il,ig, < ,it}i

\If[— {(uil,...,uit)\soz(xo,...,a:k_l)Ean}:LIﬂ[O,l)t.

Can make computer searches for good parameters w.r.t. a criterion that account
for the uniformity of a selected set of projections.

Remark: it can be proved that if 1 + a7 +---+ a7, is small, then the lattice
structure of Wy is bad.

20

Efficient Implementations

Requires efficient computation of ax mod m for large m.

21

Efficient Implementations

Requires efficient computation of ax mod m for large m.

Approximate factoring.
Valid if (a* < m) or (a = |m/i| where i < m). Uses integer arithmetic.

Precompute ¢ = |m/a] and » = m mod a. Then,

y=l|z/q|; z=oalx—yq)—yr; ifx<0thenz=2x+m.

21

Efficient Implementations

Requires efficient computation of ax mod m for large m.

Approximate factoring.

Valid if (a* < m) or (a = |m/i| where i < m). Uses integer arithmetic.

Precompute ¢ = |m/a] and » = m mod a. Then,
y=l|x/q|l; x=alx—1yq)—yr; ifx<0thenx=2x+m.
Floating point in double precision. Valid if am < 2°3.

double m, a, x, y; int k;

y=axz; k=|y/m|; x=y—kxm;

21

Efficient Implementations

Requires efficient computation of ax mod m for large m.

Approximate factoring.

Valid if (a* < m) or (a = |m/i| where i < m). Uses integer arithmetic.

Precompute ¢ = |m/a] and » = m mod a. Then,
y=l|x/q|l; x=alx—1yq)—yr; ifx<0thenx=2x+m.
Floating point in double precision. Valid if am < 2°3.

double m, a, x, y; int k;

y=axz; k=|y/m|; x=y—kxm;

Straightforward 64-bit integer arithmetic.
On 64-bit computers, just make sure that am < 29°.

21

Decomposition in powers of 2.

Suppose a = +29 £+ 2" and m = 2¢ — h for small h.
(Wu 1997 for h = 1; L'Ecuyer and Simard 1999 for A > 1.)

To compute y = 29 mod m, decompose x = xg + 2°7 9x;

q bits

(e — q) bits

r — 1

X0

For h =1, y is obtained by swapping zy and x.

For h > 1, requires a single multiplication of x1 by A, plus a few shifts, masks,

additions, and subtractions.

22

Decomposition in powers of 2.

Suppose a = +29 £+ 2" and m = 2¢ — h for small h.
(Wu 1997 for h = 1; L'Ecuyer and Simard 1999 for A > 1.)

To compute y = 29 mod m, decompose x = xg + 2°7 9x;

q bits

(e — q) bits

r — 1

X0

For h =1, y is obtained by swapping zy and x.

For h > 1, requires a single multiplication of x1 by A, plus a few shifts, masks,

additions, and subtractions.

22

Lagged-Fibonacci (widely used, but bad idea):
Ty, = (£x,_ + xp_k) mod m.

All vectors (U, Untk—r, Unak) lie in only two planes!

23

Lagged-Fibonacci (widely used, but bad idea):
Ty, = (£x,_ + xp_k) mod m.
All vectors (U, Untk—r, Unak) lie in only two planes!

Same problem with add-with-carry and subtract-with-borrow RNGs.

Common mistake: if we cannot exhaust the period, then we are okay...

23

Lagged-Fibonacci (widely used, but bad idea):
Ty, = (£x,_ + xp_k) mod m.
All vectors (U, Untk—r, Unak) lie in only two planes!

Same problem with add-with-carry and subtract-with-borrow RNGs.

Common mistake: if we cannot exhaust the period, then we are okay...

Variants that skip values are recommended by Luscher (1994) and Knuth (1997).

23

23

Lagged-Fibonacci (widely used, but bad idea):
Ty, = (£x,_ + xp_k) mod m.
All vectors (U, Untk—r, Unak) lie in only two planes!

Same problem with add-with-carry and subtract-with-borrow RNGs.

Common mistake: if we cannot exhaust the period, then we are okay...
Variants that skip values are recommended by Luscher (1994) and Knuth (1997).

Safer AWC/SWB versions proposed by Couture and L'Ecuyer (1995), Klapper and
Goresky (2003). But no significant advantage over MRGs.

24

Combined MRGs. Consider two MRGs (or more...) evolving in parallel:

L1n = (a1,1961,n_1 + al,k$1,n—k) mod my,

Lo2n = (a2,1$2,n—1 e o CLQ,kQZQ,n_k) mod mo.

Define the two combinations:

Zn = (1, — T2,) mod my; Up = Zn/Ma1;
wy, = (x1n/Mm1 —22,/m2) mod 1.

24

Combined MRGs. Consider two MRGs (or more...) evolving in parallel:

L1n = (a1,1961,n_1 + al,kil?1,n—k) mod my,

Lo2n = (a2,1$2,n—1 e o GQ,kQJQ,n_k) mod mo.

Define the two combinations:

Zo (1,n — T2.n) mod my; Up = Zn/Ma1;
wy, = (x1n/Mm1 —22,/m2) mod 1.

One can show (L'Ecuyer 1996) that {w,,, n > 0} is the output sequence of yet
another MRG, with modulus m = myms, and {u,,, n > 0} is almost the same
sequence if m; and my are close. Can reach period length (m{ — 1)(m5 —1)/2.

24

Combined MRGs. Consider two MRGs (or more...) evolving in parallel:

L1n = (a1,1961,n_1 + al,kil?1,n—k) mod my,

Lo2n = (a2,1$2,n—1 e o GQ,kQTQ,n_k) mod mo.

Define the two combinations:

Zo (1,n — T2.n) mod my; Up = Zn/Ma1;
wy, = (x1n/Mm1 —22,/m2) mod 1.

One can show (L'Ecuyer 1996) that {w,,, n > 0} is the output sequence of yet
another MRG, with modulus m = myms, and {u,,, n > 0} is almost the same
sequence if m; and my are close. Can reach period length (m{ — 1)(m5 —1)/2.

Permits efficient implementation of an MRG with large m and several large
nonzero coefficients.

24

Combined MRGs. Consider two MRGs (or more...) evolving in parallel:

L1n = (a1,1961,n_1 + al,k$1,n—k) mod my,

Lo2n = (a2,1$2,n—1 e o GQ,kQTQ,n_k) mod mo.

Define the two combinations:

Zo (1,n — T2.n) mod my; Up = Zn/Ma1;
wy, = (x1n/Mm1 —22,/m2) mod 1.

One can show (L'Ecuyer 1996) that {w,,, n > 0} is the output sequence of yet
another MRG, with modulus m = myms, and {u,,, n > 0} is almost the same
sequence if m; and my are close. Can reach period length (m{ — 1)(m5 —1)/2.

Permits efficient implementation of an MRG with large m and several large
nonzero coefficients.

Tables of good parameters and codes in L'Ecuyer (1999) and L'Ecuyer and Touzin
(2000).

24

Combined MRGs. Consider two MRGs (or more...) evolving in parallel:

L1n = (a1,1961,n_1 + al,k$1,n—k) mod my,

Lo2n = (a2,1$2,n—1 e o GQ,kQTQ,n_k) mod mo.

Define the two combinations:

Zo (1,n — T2.n) mod my; Up = Zn/Ma1;
wy, = (x1n/Mm1 —22,/m2) mod 1.

One can show (L'Ecuyer 1996) that {w,,, n > 0} is the output sequence of yet
another MRG, with modulus m = myms, and {u,,, n > 0} is almost the same
sequence if m; and my are close. Can reach period length (m{ — 1)(m5 —1)/2.

Permits efficient implementation of an MRG with large m and several large
nonzero coefficients.

Tables of good parameters and codes in L'Ecuyer (1999) and L'Ecuyer and Touzin
(2000). Packages with multiple streams are available.

Jumping ahead (to make streams and substreams):

If x,, = (Tr—gr1,--

then

and therefore

., &)t and
0 1 0
A=1lo o 1
a ag—1 --- a1

X, = Ax,,_1 mod m

Xpty = (AY mod m)x,, mod m.

25

Generators Based on Linear Recurrences in F,

Matrix linear recurrence over Fy (= {0,1}, mod 2):

X, = Axp,_1, (k-bit state vector)

yn = Bx,, (w-bit output vector)

Up = Zyn,j_12_j = Yn,0 Yn,1 Yn,2 """, (OUtPUt)
j=1

26

26
Generators Based on Linear Recurrences in F,

Matrix linear recurrence over Fy (= {0,1}, mod 2):

X, = Axp_1, (k-bit state vector)
yn = DBxp, (w-bit output vector)
w
Un = Zyn,j—12_‘7 = Yn,0 Yn,1 Yn,2 ", (OUtPUt)
j=1

Each coordinate of x,, and of y,, follows the linear recurrence
Tnj = (01Tn—1,5+ - + Qkln—k,j),
with characteristic polynomial
P(2)=2"—an2" ' — . —ap_12 — ay = det(A4 — 2I).

Max. period length p = 2% — 1 is reached iff P(z) is primitive over Fs.

With clever choice of A, implementation involves bit shifts, xor's, and’s, etc.

Special cases: Tausworthe, linear feedback shift register (LFSR), GFSR, twisted
GFSR, Mersenne twister, xorshift, polynomial LCG, etc.

27

With clever choice of A, implementation involves bit shifts, xor's, and’s, etc.

Special cases: Tausworthe, linear feedback shift register (LFSR), GFSR, twisted
GFSR, Mersenne twister, xorshift, polynomial LCG, etc.

Would also like the number N} of nonzero «;'s to be roughly around k/2.

27

: : : .. : : , , 27
With clever choice of A, implementation involves bit shifts, xor's, and’s, etc.

Special cases: Tausworthe, linear feedback shift register (LFSR), GFSR, twisted
GFSR, Mersenne twister, xorshift, polynomial LCG, etc.
Would also like the number N} of nonzero «;'s to be roughly around k/2.

To jump ahead, again:

Xty = QXV mod 22 x,, mod 2.

precc;rrn pute

This is time-expensive when £ is large. A more efficient algorithm proposed by
Haramoto, L'Ecuyer, Matsumoto, Nishimura, Panneton (2006)

LCG in space of formal series
The generating function of coordinate j of the state is the formal series

O
B —1 _9 B _
si(2) =m0 2+ X152 "+ = g Tp_152
n=1

We can easily show that

—1
9i(2) = s;(2)P(2) = ¢;12" " + -+ ¢; € Fal2],
where
Cj,l 1 0 0 ajO,j
C],Q . a1 1 0 5131,]
Cj k X1 ... O 1 Lk—1,5
Thus, there is a one-to-one correspondence between

(1) the states (zgj,...,xkx—1,) of the recurrence;
(2) the polynomials g;(z) of degree < k (i.e., in Fay[z]/P(2));
(3) the formal series of the form s;(z) = g;(2)/P(2).

28

29
Equidistribution. For j = 1,...,t, partition the jth axis of [0,1)" into 2% equal

parts: this gives 29 boxes, where ¢ = q1 + - - - + q;.
1.0

Un+1

0.0

0.0 1.0

Un
Example: t =2, g1 =4, ¢ = 2.

30
Equidistribution. For j = 1,...,t, partition the jth axis of [0,1)" into 2% equal

parts: this gives 29 boxes, where ¢ = q1 + - - - + q;.

If each box contains exactly 2°~4 points from ¥;, then U, is called
(q1, - - -,q¢)-equidistributed.

Means that all ¢-dim. vectors, up to g, bits of resolution for each coordinate j,
appear the same number of times.

30
Equidistribution. For j = 1,...,t, partition the jth axis of [0,1)" into 2% equal

parts: this gives 29 boxes, where ¢ = q1 + - - - + q;.

If each box contains exactly 2°~4 points from ¥;, then U, is called
(q1, - - -,q¢)-equidistributed.

Means that all ¢-dim. vectors, up to g, bits of resolution for each coordinate j,
appear the same number of times.

Can express the ¢ bits of interest as Mx, for some matrix M.
One has (q1, - .., q:)-equidistribution iff M has full rank.

1.0

Un+41

0.0

0.0

Un,
Toy example: LFSR generator with || = 1024 = 210,

1.0

31

1.0

Un+1

0.0 +
0.0

Un,
Toy example: LFSR generator with || = 1024 = 210,

1.0

31

1.0

Un+1

0.0

0.0 1.0

Un
Toy example: LFSR generator with || = 1024 = 210, 128 x 8

31

1.0

Un+1

0.0 +
0.0

Un,
Toy example: LFSR generator with || = 1024 = 210,

1.0

16 x 64

31

For general set of indices [= {i1,i2,...,4:}, resolution gap:

0y = min(|k/t|,w) — max{¢: Wy is (¢,...,¢)-equidist.}.

Potential figures of merit:

A7=max 0r or V=)
Ieg

where 7 is a selected class of sets I.

Choice of J is a question of compromise.

32

Tausworthe or LFSR generator (Tausworthe 1965):

Tn = (@1Tp_1+ -+ 6Ty
o
Up — E xnl/—l—j—12_Ja
=l
1
A —
ar QAk—1

Often, only two nonzero a;'s: bad!

33

Polynomial LCG (Couture, L'Ecuyer, Panneton 2000):

Q(2) P — a2t — o —ap_12—ai primitive and pged(v,2F — 1) = 1;

pn(z) — Zypn—l(z) mod Q(Z) — Cn,lzk_l = 00 9 Cn.k,
k
Uy = ch,jZ_j.
j=1

If we define the output as

00
sn(2) = pu(2)/Q(2) :an,j—lz_jB
j=1
Unp = an,j—lz_ja
j=1

we just get an alternative definition of the LFSR (Tezuka and L'Ecuyer 1991).

34

Generalized feedback shift register (GFSR) (Lewis and Payne 1973):

t
Vn = (alvn—l + e arvn—r) mod 2 = (Un,()a s 7Un,w—1))
Yn — Vn,
w
Uyp — E Un’j_12_J.
j=1

State has rw bits, but maximal period length is 2" — 1.

Usually, only two nonzero a;'s:
Vi = (aqVn—q + arVyp—p) mod 2.

= characteristic polynomial is too “lean.”

35

Twisted GFSR (Matsumoto and Kurita 1992, 1994):

Ve = (Vptm—r+ Avy_p) mod 2

Yn — Vp OU Yy, = Tvy.
Maximal period length is 2™ — 1.

Flag carrier: TT800, with period length 2890 — 1.

36

Mersenne Twister (Matsumoto and Nishimura 1998):

Vn = (Vn+m—T+A(V7(zw—;p)|V1(zp—)r+1

Yn = Tvy,.
Maximal period length is 2"“~P — 1.

Flag carrier: MT19937, with period length 219937 — 1.

)) mod 2

37

Linear cellular automata (e.g., Wolfram 1983):

In one dimension, we have

0,0 ao,1
aj,—1 a1.,0 1,1
a2 -1 Q20 Q21

p—2,—1 Ar—2.0 Ap—2.1
K g—1,—1 Ak—1,0

Maximal period length: 2% — 1.
Rule 150: Q; —1 = Q50 — Q51 — 1.

Rule 90: ajo = 0 et a1 =051 = 1.

Xorshift generators (Marsaglia 2003).
Xorshift operation: x =x @ (x < a) or X=X (x>0D).

Marsaglia proposes specific parameters for generators with:
— maximum of 3 xorshifts per transition;
— maximal period.

These generators are extremely fast.

Unfortunately, they have bad equidistribution and fail miserably several simple
statistical tests (Panneton and L'Ecuyer 2004).

39

Linear output tempering.

Take (carefully selected) B # I to improve the uniformity of the output.

Example: Matsumoto and Kurita's tempering for the TGFSR:

X, = trunc,(x;,)

S, = Xn,® (Xp> u)

r, = $,® ((sn < 51)&Db)
t, = r,® ((r, < s2) & c)
Yn = th® (t,> 1)

where w = 32, s1,...,S84 are integers, and b and c are bit vectors.

40

The WELL RNGs (Well-Equidistributed Long-period Linear)
(Panneton, L'Ecuyer, et Matsumoto 2004).

|ldea: Build the transition matrix A by placing simple operations on 32-bit blocs
(exclusive-or's, shifts, bit masks, etc.) at strategic places.

We optimise the figure of merit
Z min(|k/¢],w) — max{t : W, is (£,...,¢)-équidist.}),
/=1

under the constraints: (1) maximal period and (2) comparable speed with
MT19937.

Specific generators for period lengths ranging from 2°2! — 1 to 244497 — 1.

Better equidistribution than MT19937 for same speed and period length.
Also larger number N7 of nonzero coefficients in P(z).

41

Examples of WELL generators, vs MT, for w = 32 bits:

Name k r Ny AN
WELL19937a 19937 624 8585 4
WELL19937c 19937 624 8585 0
WELL44497a 44497 1391 16883 7
WELL44497b 44497 1391 16883 O
MT19937 19937 624 135 6750

42

43
Impact of N; too small and/or A; too large.

Experiment: start from an initial state with a single bit at 1.
Try all k possibilities and average the outputs after each transition.

WELL19937 vs ; moving averate over 1000 transitions.
0.6 ;

0.4
0.3
0.2

0.1-

0.0 w w x y
0 200000 01010100 600000 300000

Number of transitions

Combined F5-Linear Generators

Run two or more smaller generators with relatively prime period lengths.
Combine outputs by bitwise xor.

Equivalent to a single larger Fo-linear generator.

Advantages: easier to implement and jump ahead with smaller components.

44

Nonlinear Generators

Cubic Congruential:

r, = (ax’_;+1)modm,
Up = Tp/M.
Explicit Inversive:
r, = (an+ ¢) mod m,
u, = (z;' mod m)/m.

Arbitrary permutation implemented as a table.
Can combine several tables: efficient.

AES, SHA-1, etc. Used in cryptology.
Chaotic dynamical systems? No.

45

Combined linear/nonlinear generators

All the Fo-linear generators discussed here fail (of course) a statistical test that
measures the (binary) linear complexity.

46

Combined linear/nonlinear generators

All the Fo-linear generators discussed here fail (of course) a statistical test that
measures the (binary) linear complexity.

We would like:

e to eliminate this linear structure;
e to keep some theoretical guarantees for the uniformity;
e a fast implantation.

46

Combined linear/nonlinear generators

All the Fo-linear generators discussed here fail (of course) a statistical test that
measures the (binary) linear complexity.

We would like:

e to eliminate this linear structure;

e to keep some theoretical guarantees for the uniformity;
e a fast implantation.

L'Ecuyer and Granger-Picher (2003): Large Fo-linear generator combined with a
small nonlinear one, via XOR.

46

46
Combined linear/nonlinear generators

All the Fo-linear generators discussed here fail (of course) a statistical test that
measures the (binary) linear complexity.

We would like:

e to eliminate this linear structure;
e to keep some theoretical guarantees for the uniformity;
e a fast implantation.

L'Ecuyer and Granger-Picher (2003): Large Fo-linear generator combined with a
small nonlinear one, via XOR.

Theorem: If the linear component is (g1, - .., g¢)-equidistributed, then this holds
also for the combination.

46
Combined linear/nonlinear generators

All the Fo-linear generators discussed here fail (of course) a statistical test that
measures the (binary) linear complexity.

We would like:

e to eliminate this linear structure;
e to keep some theoretical guarantees for the uniformity;

e a fast implantation.

L'Ecuyer and Granger-Picher (2003): Large Fo-linear generator combined with a
small nonlinear one, via XOR.

Theorem: If the linear component is (g1, - .., g¢)-equidistributed, then this holds
also for the combination.

Empirical tests: excellent behavior, more robust than linear generators.

Some generators used in SSJ

gen. time: CPU time to generate 10” uniform random numbers.
jump time: time to get a new stream (jump ahead) 10° times.

47

Some generators used in SSJ

gen. time: CPU time to generate 10” uniform random numbers.
jump time: time to get a new stream (jump ahead) 10° times.

Java JDK 1.5, 2.4 GHz 64-bit computer

RNG period gen. time jump time
LFSR113 P 31 0.1
WELL512 oL 33 234
WELL1024 1024 34 017
LFSR258 e 35 0.2
MT19937 LR 36 46 *
MRG31k3p PEe 51 0.9
MRG32k3a i 70 1.1
RandRijndael | 213Y 127 0.6

Empirical statistical Tests

Hypothesis Ho: “{ug, u1,uso, ...} are ii.d. U(0,1) r.v.'s".
We know that Hj is false, but can we detect it 7

48

Empirical statistical Tests

Hypothesis Ho: “{ug, u1,uso, ...} are ii.d. U(0,1) r.v.'s".
We know that Hj is false, but can we detect it 7
Test:

— Define a statistic 1', function of the u;, whose distribution under Hg is known

(or approx.).
— Reject Hy if value of T' is too extreme.

Power and efficiency of the test strongly depend on the class of alternatives.
Different tests detect different deficiencies.

48

Empirical statistical Tests

Hypothesis Ho: “{ug, u1,uso, ...} are ii.d. U(0,1) r.v.'s".
We know that Hj is false, but can we detect it 7

Test:

— Define a statistic 1', function of the u;, whose distribution under Hg is known
(or approx.).

— Reject Hy if value of T' is too extreme.

Power and efficiency of the test strongly depend on the class of alternatives.
Different tests detect different deficiencies.

Utopian ideal: T mimics the r.v. of practical interest. Not easy.

Ultimate dream: Build an RNG that passes all the tests? Formally impossible.

48

Empirical statistical Tests

Hypothesis Ho: “{ug, u1,uso, ...} are ii.d. U(0,1) r.v.'s".
We know that Hj is false, but can we detect it 7
Test:

— Define a statistic 1', function of the u;, whose distribution under Hg is known
(or approx.).

— Reject Hy if value of T' is too extreme.

Power and efficiency of the test strongly depend on the class of alternatives.
Different tests detect different deficiencies.

Utopian ideal: T mimics the r.v. of practical interest. Not easy.
Ultimate dream: Build an RNG that passes all the tests? Formally impossible.

Compromise: Build an RNG that passes most reasonable tests.
Tests that fail are hard to find.

Formalization: computational complexity framework.

48

Example: A Collision Test

Partition the box [0,1)! into k = d* cubic boxes of equal sizes.
Generate n points (u;, ..., u;1¢—1) in [0,1)%.
Let X; = number of points in box j.

Number of collisions: .
-1

O Zmax((), Xj — 1)

=0
Under Hy, C =~ Poisson with mean \ = n2/k, for large k, small .

If we observe c collisions, we compute the right and left p-values as

pT(c) = P[X >c|X ~ Poisson(\)],
p (c) = P[X <c|X ~ Poisson()\)],

We reject Hy if p™(c) is consistently very close to 0 (too many collisions)
or p~(c) is consistently very close to 1 (too few collisions).

49

Example: Birthday spacings

Partition [0,1)? into & = d* cubic boxes and generate n points as before.
Let [; < Iy < .-- < [, the box numbers where the points fall.

Compute the spacings S; =141 —1;, 1 <j<n-—1.

Let S(1),...,S5m—1) be the sorted spacings.

Number of collisions between the spacings:

n—1

Y =) I[Sys1) = Syl

j=1

50

Example: Birthday spacings

Partition [0,1)? into & = d* cubic boxes and generate n points as before.
Let [; < Iy < .-- < [, the box numbers where the points fall.

Compute the spacings S; =141 —1;, 1 <j<n-—1.

Let S(1),...,S5m—1) be the sorted spacings.

Number of collisions between the spacings:

n—1
Y =) I[Sys1) = Syl

j=1

For large k, Y is approx. Poisson with mean \ = n°/(4k).

50

Example: Birthday spacings

Partition [0,1)? into & = d* cubic boxes and generate n points as before.
Let [; < Iy < .-- < [, the box numbers where the points fall.

Compute the spacings S; =141 —1;, 1 <j<n-—1.

Let S(1),...,S5m—1) be the sorted spacings.

Number of collisions between the spacings:

n—1
Y =) I[Sys1) = Syl

j=1

For large k, Y is approx. Poisson with mean \ = n°/(4k).
If Y takes the value y, the right p-value is

pT(y) = P[X >y | X ~ Poisson()\)].

50

Other examples of tests

Nearest pairs of points in [0,1)%.

Sorting card decks (poker, etc.).

Rank of random binary matrix.

Linear complexity of binary sequence.

Measures of entropy.

Complexity measures based on data compression.

Etc.

51

52

The TestUQ1 software

[L'Ecuyer and Simard, ACM Trans. on Math. Software, 2007].

e Implements a large variety of statistical tests and RNGs (hardware or software),
written in C, freely available.

e Also contains predefined batteries of tests:
SmallCrush: quick check, 15 seconds;
Crush: 96 test statistics, 1 hour;
BigCrush: 144 test statistics, 6 hours;
Rabbit: for bit strings.

e Many widely-used generators fail these batteries unequivocally.

Some test results.
p = period length;
t-32 and t-64 gives the CPU time to generate 10® random numbers.

Number of failed tests (p-value < 1071% or > 1 — 10719) in each battery.

Results of test batteries applied to some well-known RNGs

53

Generator logo p | t-32 | t-64 | SmallCrush Crush BigCrush
LCG in Microsoft VisualBasic 24 3.9 | 0.66 14 — —
LCG(2%, 65539, 0) 29 | 33| 065 | 14 125 (6) | —
LCG(2°%, 69069, 1) 32| 32067 | 11 (2)]| 106 (2) | —
LCG(2%2, 1099087573, 0) 30| 321|066 | 13 110 (4) | —
LCG(2°, 5%, 0) 44 | 42 | 0.75 5 38 (2) | —
LCG(28, 25214903917, 11), Unix 48 | 4.1 | 0.65 4 21 (1) | —
Java.util.Random 47 | 6.3 | 0.76 1 9 (3) |21 (1)
LCG(2*, 5%, 0) 46 | 4.1 | 0.65 4 21 (2) | —
LCG(2*®, 33952834046453, 0) 46 | 4.1 | 0.66 5 24 (5) | —
LCG(2*®, 44485709377909, 0) 46 | 4.1 | 0.65 5 24 (5) | —
LCG(2°?, 13", 0) 57 | 42 | 0.76 1 10 (1) | 17 (5)
LCG(2%, 5, 1) 63 | 42| 0.75 5 8
LCG(2°'-1, 16807, 0), Wide use 31| 38| 36 3 42 (9) | —
LCG(2%'-1, 2*° — 210 () 31| 38| 17 8 59 (7) | —
LCG(2%'-1, 397204094, 0), (SAS) 31 | 190 | 4.0 2 38 (4) | —
LCG(2%!-1, 742938285, 0) 31 | 190 | 4.0 2 42 (5) | —
LCG(2°!-1, 950706376, 0) 31 | 20.0 | 4.0 2 42 (4) | —
LCG(10*%-11, ..., 0), in Maple 39.9 | 87.0 | 25.0 1 22 (2) | 34 (1)
LCG(2%1-1, 2°0 — 219 () 61 | 71.0 | 4.2 1 4] 3 (1)

Generator logo p | t-32 | t-64 | SmallCrush Crush BigCrush
Wichmann-Hill, in Excel 427 | 100 | 112 | 1 12 (3) | 22 (8)
CombLec88 61 7.0 1.2 1

Knuth(38) 56 | 79| 74 1 (1) | 2

ran2, in Numerical Recipes 61 7.5 2.5

CLCG4 121 | 12.0 5.0

Knuth(39) 62 | 81.0 | 43.3 (1) 3 (2
MRGk5-93 155 6.5 2.0

DenglLin (2°'-1, 2, 46338) 62 | 6.7 | 15.3 (1) 11 (1) | 19 (2)
Denglin (2°'-1, 4, 22093) 124 | 6.7 | 14.6 (1) 2)
DX-47-3 1457 — 1.4

DX-1597-2-7 49507 — 1.4

Marsa-LFIB4 287 3.4 0.8

CombMRG96 185 9.4 2.0

MRG31k3p 185 7.3 2.0 (1)

MRG32k3a SSJ + others 191 | 10.0 2.1

MRG63k3a 377 — | 4.3

LFib(2%", 55, 24, +) 85 | 38| 1.1]2 9 14 (5)
LFib(2°', 55, 24, —) 85| 39| 15 |2 11 19

ran3, in Numerical Recipes 22 | 09 (1) 11 (1) | 17 (2)
LFib(2*%, 607, 273, +) 638 | 2.4 | 14 2 2
Unix-random-32 37 4.7 16 | 5 (2) 101 (3) | —
Unix-random-64 45 | 4.7 1514 (1) 57 (6) | —
Unix-random-128 61 | 4.7 1.5 | 2 13 19 (3)
Unix-random-256 93 | 47| 15 |1 (1) 8 11 (1)

54

Generator logo p | t-32 | t-64 |SmallCrush Crush BigCrush
Knuth-ran_array2 129 5.0 2.6 3 4
Knuth-ranf_array2 129 11.0 4.5

SWB(2%4, 10, 24) 567 9.4 | 34 30)
SWB(2%, 10, 24)[24, 48] 566 | 18.0 | 7.0 6 (1) |16 (1)
SWB(2%*, 10, 24)[24, 97] 565 | 32.0 | 12.0

SWB(2%4, 10, 24)[24, 389] 567 | 117.0 | 43.0

SWB(2%2-5, 22, 43) 1376 390 | 15 (1) | 8 17
SWB(2°!, 8, 48) 1480 44 | 15 2| 8 (2) |11
Mathematica-SWB I yde — — (2) | 15 (3) | —
SWB(2%2, 222, 237) 7578 3.7 | 09 2 5 (2)
GFSR(250, 103) 250 36 | 09 8 14 (4)
GFSR(521, 32) 521 32| 08 7 8
GFSR(607, 273) 607 40 | 1.0 8 8
Ziffo8 9689 32| 08 6 6

T800 800 39 | 1.1 25 (4) | —
TT800 800 40 | 1.1 12 (4) | 14 (3)
MT19937, widely used 19937 43| 16 2 2
WELL1024a 1024 40 | 1.1 4 4
WELL19937a 19937 43| 1.3 2 (1) 2
LFSR113 113 40 | 1.0 6 6
LFSR258 258 6.0 | 1.2 6 6
Marsa-xor32 (13, 17, 5) 32 32| 07 50 (10) | —
Marsa-xor64 (13, 7, 17) 64 40 | 0.8 8 (1) 7

55

Generator logo p | t-32 | t-64 |SmallCrush Crush BigCrush
Matlab-rand 1492 | 27.0 | 8.4 5 8 (1)
Matlab-LCG-Xor (normal) 64 | 3.7 | 038 3 5 (1)
SuperDuper-73, in S-Plus 62 | 33| 038 1 (1) |25 (3) | —
SuperDuper64 128 5.9 1.0

R-MultiCarry 60 | 39| 08| 2 (1) |40 (4) | —
KISS93 95 | 38| 0.9 1 1
KISS99 123 | 40| 1.1

Brent-xor4096s 131072 | 39 | 1.1

ICG(2°"-1, 22211, 11926380) 31 | 74.0 | 69.0 5 10 (8)
EICG(2%'-1, 1288490188, 1) 31 | 55.0 | 64.0 6 14 (6)
SNWeyl 32120 42| 1 56 (12) | —
Coveyou-32 30| 35| 07| 12 80 (5) | —
Coveyou-64 62 — 0.8 1 2
LFib(2%¢, 17, 5, %) 78| — | 11

LFib(2°%*, 55, 24,) 116 | — | 1.0

LFib(2°¢, 607, 273, *) 668 | — | 0.9

LFib(2°%¢, 1279, 861, x) 1340 | — | 0.9

ISAAC 37 | 13

AES (OFB) 108 | 5.8

AES (CTR) 130 | 103 | 5.4 (1)
AES (KTR) 130 | 102 | 5.2

SHA-1 (OFB) 65.9 | 22.4

SHA-1 (CTR) 442 | 30.9 | 10.0

56

i 57
Conclusion

A flurry of computer applications require RNGs.
A poor generator can severely bias simulation results, or permit one to cheat in
computer lotteries or games, or cause important security flaws.

Don't trust blindly the RNGs of commercial or other wisely-used software,
especially if they hide the algorithm (proprietary software...).

Some software products have good RNGs; check what it is.

RNGs with multiple streams are available from my web page in Java, C, and
C—+-+. Just type Pierre L'Ecuyer in Google.

What about grids?

