
SuperQuant Financial Benchmark Suite for
Performance Analysis of Grid Middlewares

Abhijeet Gaikwad2, Viet Dung Doan1, Mireille Bossy1, Françoise Baude1,
and Frédéric Abergel2

1 INRIA Sophia Antipolis – Université de Nice – CNRS - I3S
First.Last@sophia.inria.fr

2 Laboratoire de Mathématiques Appliquées aux Systèmes – Ecole Centrale de
Paris First.Last@ecp.fr

Abstract : Pricing and hedging of higher order derivatives such as multidi-
mensional (up to 100 underlying assets) European and first generation ex-
otic options represent mathematically complex and computationally intensive
problems. Grid computing promises to give the capability to handle such
intense computations. With several Grid middleware solutions available for
gridifying traditional applications, it is cumbersome to select an ideal can-
didate, to develop financial applications, that can cope up with time critical
computational demand for complex pricing requests. In this paper we present
SuperQuant Financial Benchmark Suite to evaluate and quantify the overhead
imposed by a Grid middleware on throughput of the system and turnaround
times for computation. This approach is a step towards producing a mid-
dleware independent, reproducible, comparable, self-sufficient and fair perfor-
mance analysis of Grid middlewares. The result of such performance analysis
can be used by middleware vendors to find the bottlenecks and problems in
their design and implementation of the system and by financial application
developers to verify implementation of their financial algorithms. In this paper
we explain the motivation and the details of the proposed benchmark suite.
As a proof of concept, we utilize the benchmarks in an International Grid
Programming contest and demonstrate the result of initial experiments.

1 Introduction

Over the past few decades financial engineering has become a critical discipline
and have gained strategic reputation for its own. Financial mathematicians
keep coming up with novel and complex financial products and numerical
computing techniques which often increase volume of data or computational
time while posing critical time constraints for transactional processing. Gen-
erally, Monte Carlo (MC) simulations based methods are utilized to overcome

2 A. Gaikwad, V.D. Doan and al.

typical problems like “curse of dimensionality” (e.g. integration over high
dimensional space) [4]. Despite the ease of numerics, MC simulations come
at the cost of tremendous computational demand in addition to slower con-
vergence rates. However, advances in computer architectures like multi–core,
many–cores, General Purpose Graphics Processing Units (GPGPUs) and their
macro forms like clusters and federated Grids have made such MC simula-
tions a handy tool for financial engineers. Financial institution are using Grid
computing to perform more time critical computations for competitive ad-
vantage. With this unprecedented computational capacity, running overnight
batch processes for risk management or middle-office functions to re-evaluate
whole product of portfolios have almost become a passé.

Grid middleware is what makes Grid computing work and easier to work
with. It provided abstractions for core functionalities like authentication across
large number of resources, authorization, resource matchmaking, data trans-
fer, monitoring and fault–tolerance mechanisms in order to account for failure
of resources etc. Any robust financial service operation cannot be achieved
without paying a great attention to such issues. Current Grid middleware had
its beginning in the Condor Project3 and the Globus Alliance4. Recently, we
have seen an upsurge of academic and commercial middleware providers such
as gLite5, ProActive/GCM Parallel Suite6, Alchemi .NET Grid computing
framework7, and KAAPI/TakTuk8 etc. Now the question is which middleware
to choose for gridifying financial applications? An obvious way is to devise a
set of benchmarks and put different implementations through their paces. The
middleware that results in the fastest computation could be declared as a win-
ner. For this, one would need a standard well defined benchmark which would
represent a wide set of financial algorithms, for instance MC based methods,
and could also generate enough load on the middleware in test.

Benchmarks provide a commonly accepted basis of performance evaluation
of software components. Performance analysis and benchmarking, however, is
relatively young area in Grid computing compared to benchmarks designed for
evaluating computer architecture. Traditionally, performance of parallel com-
puter systems has been evaluated by strategically creating benchmark induced
load on the system. Typically, such benchmarks comprise of codes, workloads
that may represent varied computation and are developed with different pro-
gramming paradigms. Some examples are STREAM9, LINPACK10 and MPI

3 http://www.cs.wisc.edu/condor/
4 http://www.globus.org/
5 http://glite.web.cern.ch/glite/
6 http://proactive.inria.fr/
7 http://sourceforge.net/projects/alchemi/
8 http://kaapi.gforge.inria.fr/
9 http://www.gridstream.org/

10 http://www.netlib.org/benchmark/

SuperQuant Financial Benchmark Suite 3

Benchmarks11, SPEC12 and most popular NAS Parallel benchmark13. A key
issue, however, is whether these benchmarks can be used “as is” for the Grid
settings. The adoption of these benchmarks may raise several fundamental
questions about their applicability, and ways of interpreting the results. Inher-
ently, Grid is a complex integration of several functionally diverse components
which may hinder evaluation of any individual components like middleware.
Furthermore, in order to have fair evaluation, thus any benchmark would have
to account for heterogeneity of resources, presence of virtual organizations and
their diverse resource access policies, dynamicity due to inherent shared na-
ture of the Grid. Such issues in turn have led to broader implications upon
methodologies used behind evaluating middlewares as discussed in [1, 11]. In
our work, however, for the sake of simplicity we assume the benchmark are
run on Grid nodes in isolation. Thus, we primarily focus on quantifying per-
formance of financial applications, achievable scalability, ease of deployment
across large number of heterogeneous resources and their efficient utilization.

The goal of our work presented in this paper is to design and develop
SuperQuant Financial Benchmark Suite, a tool for researchers that wish to
investigate various aspects of usage of Grid middlewares using well-understood
benchmark kernels. The availability of such kernels can enable the character-
ization of factors that affect application performance, the quantitative evalu-
ation of different middleware solutions, scalability of financial algorithms ...

The rest of this paper is organized as follows: in Section 2 we discuss
the motivation behind SuperQuant Financial Benchmark Suite and propose
guidelines for designing such benchmark. In Section 3 we describe the compo-
nents of the benchmark suite. Section 4 presents the preliminary benchmark
usage in a Grid Programming Contest. We conclude in Section 5.

2 SuperQuant Financial Benchmark suite

In order to produce verifiable, reproducible and objectively comparable re-
sults, any middleware benchmark must follow the general rules of scientific
experimentation. Such tools must provide a way of conducting reproducible
experiments to evaluate performance metrics objectively, and to interpret
benchmark results in a desirable context. The financial application developer
should be able to generate metrics that quantify the performance capacity of
Grid middleware through measurements of deployability, scalability, and com-
putational capacity etc. Such metrics can provide a basis for performance tun-
ing of application or the middleware. Alternatively, the middleware providers
could utilize such benchmarks to make necessary problem specific software de-
sign changes. Hence, in order to formalize efforts to design and evaluate any

11 http://hcl.ucd.ie/project/mpiblib
12 http://www.spec.org/mpi2007/press/release.html
13 http://www.nas.nasa.gov/Resources/Software/npb.html

4 A. Gaikwad, V.D. Doan and al.

Grid middleware, in this paper we present SuperQuant financial benchmark
suite.

Some other considerations for the development of this benchmarks are
described below and significantly follow the design guidelines of NAS bench-
marks suite [2],

• Benchmarks must be conceptually simple and easy to understand for both
financial and Grid computing community.

• Benchmarks must be ”generic” and should not favor any specific middle-
ware. Many middlewares provide different high level programming con-
structs such as tailored APIs or inbuilt functionalities like provision for
parallel random number generators etc.

• The correctness of results and performance figures must be easily verifiable.
This requirement implies that both input and output data sets must be
limited and well defined. Since we target financial applications, we also
need to consider real world trading and computation scenarios and data
involved therewith. The problem has to be specified in sufficient detail and
the required output has to be brief yet detailed enough to certify that the
problem has been solved correctly.

• The problem size and runtime requirements must be easily adjustable to
accommodate new middlewares or systems with different functionalities.
The problem size should be large enough to generate considerable amount
of computation and communication. In the kernel presented in this paper,
we primarily focus on the computational load while future benchmark
kernels may impose communication as well as data volume loads.

• The benchmarks must be readily redistributable.

The financial engineer implementing the benchmarks with a given Grid
middleware is expected to solve the problem in the most appropriate way for
the given computing infrastructure. The choice of APIs, algorithms, parallel
random number generators, benchmark processing strategies, resource allo-
cation is left open to the discretion of this engineer. The languages used for
programming financial systems are mostly C,C++ and Java. Most of the Grid
middlewares are available in these languages and the application developers
are free to utilize language constructs that, they think give the best perfor-
mance possible or any other requirements imposed by the business decisions,
on the particular infrastructure available at their organization.

3 Components of SuperQuant Financial Benchmark
Suite

Our benchmark suite consists of three major components, 1) an embarrass-
ingly parallel kernel, 2) input/output data and Grid metric descriptors, and
3) output evaluator. Each of these components are briefly described in the
following sections.

SuperQuant Financial Benchmark Suite 5

3.1 Embarrassingly Parallel Kernel

We have devised a relatively “simple” kernel which consists of a batch of high
dimensional vanilla and barrier options. The objective is to compute price and
Greeks of maximum number of options with acceptable accuracy and within
definite time interval using MC based methods. The algorithm, pseudocodes
and an exemplary parallel version of MC based pricing method is provided
along with the benchmark suite.

The kernel is based on simple computationally intensive financial problems,
pricing and hedging of high dimensional European options, as described below.
The definitions of financial terms in this section can be found in common
textbooks [9, 12], although reader may find the following information self–
explanatory.

European Option Pricing

The Black–Scholes (BS) model describes the evaluation of a basket of assets
price through a system of stochastic differential equations (SDEs) [10],

dSi
t = Si

t(r − δi)dt + Si
tσidBi

t, i = 1, . . . , d, where (1)

• S = {S1, . . . , Sd} is a basket of d assets.
• r is the constant interest rate for every maturity date and at any time.
• δ = {δ1, . . . , δd} are the constant dividend rates.
• B = {B1, . . . , Bd} is a correlated d-dimensional Brownian motion (BM).
• σ = {σ1, . . . , σd} is a constant volatility vector.

A European option is a contract which can be exercised only at a fixed future
date T with a fixed price K. A call (or put) option gives option holder right
(not the obligation) to buy (or sell) underlying asset at the date T . At T , exer-
cised option contract will pay to the option holder a position payoff Φ(f(ST))
which depends only on the underlying asset price at the maturity date ST (for
Vanilla option) or Φ(f(St), t ∈ [0, T]) which depends on the entire underlying
asset trajectories price St (for Barrier option). The definition of f(·) is given by
the option’s payoff type (Arithmetic Average, Maximum, or Minimum) [9, 12].
According to the Arbitrage Pricing Theory [10], the fair price V for the option
contract is given by the following expression: V (S0, 0) = E

[
e−rT Φ(f(ST))

]
.

The expectation value is calculated by computing the mean with MC simu-
lation based methods [8] and the parallel approach for which can be found in
[5].

European Greeks Hedging

The Greeks represent sensitivities of option price with respect to parameters
like time remained to maturity, volatility, or interest rate. Usually Greeks are
higher order derivatives that are computed using finite difference methods [9,

6 A. Gaikwad, V.D. Doan and al.

8]. Since Greeks, are not observed in the real time market but, are information
that needs to be computed, their accurate values are important, and much
more compute intensive. The detail explanation of Greeks such as Delta (∆),
Gamma (Γ), Rho (ρ) and Theta (θ) can be found in [9].

The core benchmark kernel consists of a batch of 1000 well calibrated
TestCases. Each TestCase is a high–dimensional European option with up
to 100 underlying assets with necessary attributes like spot prices, payoffs
types, time to maturity, volatility, and other market parameters. In order to
constitute an option, the underlying assets are chosen from a pool of companies
listed in the equity S&P500 index14, while volatility of each asset and its
dividend rate are taken from CBOE15. The composition of the batch is as
follows,

• 500 TestCases of 10–dimensional European options with 2 years time to
maturity

• 240 TestCases of 30–dimensional European options with 9 months time to
maturity

• 240 TestCases of 50–dimensional European options with 6 months time to
maturity

• 20 TestCases of 100–dimensional European options with 3 months time to
maturity

Thus, the objective of the benchmark is pricing and hedging of maximum
number of TestCases by implementing the algorithms using a given Grid mid-
dleware.

3.2 Input/Output Data and Grid Metrics Format

To facilitate processing, exchanging and archiving of input data, output data
and Grid related metrics, we define relevant XML data descriptors. The Test-
Cases required by the kernel and the “reference” results are also included in
the benchmark suite.

• Input AssetPool : represents the database of 250 assets required to con-
struct a basket (collection) option of assets

• Input CorrelationMatrix : defines a correlation matrix of the assets in
AssetPool. The provided matrix is positive–definite with diagonal values
1 and correlation coefficients in the interval of [−1, 1].

• Input TestCases : defines a set of TestCases, input parameters, needed by
the pricing and hedging algorithm discussed above. Each TestCase includes
parameters such an option, which is a subset of AssetPool, a submatrix of
CorrelationMatrix, type of payoff, type of option, barrier value if needed,
interest rate, maturity date and etc.

14 http://www2.standardandpoors.com
15 http://www.cboe.com/

SuperQuant Financial Benchmark Suite 7

• Output Results : defines a set of Result which consists of Price and Greeks
of individual TestCase and time Metrics required to compute each output
values.

• Output Grid Metrics : defines the total time required for the entire
computation.

3.3 Output Evaluator

The output evaluator is a tool to compare the results computed by different
implementations of the benchmark kernel TestCases with “reference” results
provided in the suite.

Evaluation Criteria

In order to measure the precision, the results are estimated with a confidence
interval of 95% [8]. We decide the tolerable error in computing the results is
10−3. Since the accuracy of the computed results relies on the spot prices of
the underlying assets, we consider relative errors with respect to the “reference
results”. These reference results are computed with sufficiently large number
of MC simulations (more than 106 simulations) [8], in order to achieve lower
confidence interval. The Output Evaluator employs a point based scheme
to grade the results and also provides a detail analysis of points gained per
TestCase. For further description on the evaluation criteria, see [7].

“Reference” Results Validation

The “reference” results provided in the benchmark suite are not analytical
results and are computed using MC based methods. Pricing or hedging of
high–dimensional European options is not possible with a standard analytical
BS formula [6]. This intriguing question of correctness of the “reference” re-
sults also diverted us to investigate methods to validate the results computed
by simulation.

We observed that in some specific cases we can analytically reduce a basket
of assets into a one–dimensional “pseudo” asset. The option price on this
“pseudo” asset can be computed by using the BS formula. This way we can
compare simulated and analytical results. Further details of the reduction
techniques are given in our technical report [7]. To highlight the usefulness of
this approach, we provide below a numerical example.
Numerical Example : Consider a call/put Geometric Average (GA) option
of 100 independent assets with prices modeled by SDEs (1). The parameters
are given as Si

0 = 100, i = 1, . . . , 100, K = 100, r = 0.0, δi = 0.0, σ = 0.2
and T = 1 year. The basket option is simulated by using 106 MC simulations.
The “pseudo” asset is Σt =

∏d
i=1 Si

t

1
d and it is the solution of the one–

dimensional SDE: dΣt/Σt =
(
µ̃dt + σ̃dZt

)
where µ̃ = r + σ2

2d − σ2

2 , σ̃ = σ√
d

8 A. Gaikwad, V.D. Doan and al.

and Zt is a Brownian motion. The parameters of Σ are given as Σ0 = 100, µ̃ =
0.0198, σ̃ = 0.02. We are interested in comparing the estimated option price V
of d assets with the analytical “pseudo” one Ṽ on Σ. We denote the absolute
error ∆V = |V − Ṽ |, then the relative error is computed as follow η = ∆V

Ṽ
.

In Table 1 we present the numerical results. The first column represents the
estimated option prices and their 95% confidence interval. The second column
gives the analytical option prices. The last two columns show the absolute
and relative errors. As it can be observed, the errors are very small. We can

Table 1. Call/Put price of a GA of 100 assets option and of the “pseudo” one

Call Price V (95% CI) “Pseudo” Call Price Ṽ ∆V (10−4) η (%)

0.16815 (0.00104) 0.16777 3.8 0.22

Put Price V (95% CI) “Pseudo” Put Price Ṽ ∆V (10−4) η (%)

2.12868 (0.00331) 2.12855 1.2 0.01

reduce the errors in case of call option pricing by increasing the number of
MC simulations.

4 Proof of Concept : The V Grid Plugtest and Contest

As a proof of concept, we used the SuperQuant Benchmark Suite for the 2008
SuperQuant Monte Carlo Challenge organized as a part of V GRID
Plugtest16 at INRIA-Sophia Antipolis. The details of the contest and the
benchmark input data can be found on the Challenge website17. Each partic-
ipant was given an exclusive one hour access for evaluating the benchmark on
two academic Grids, Grid’500018 and InTrigger19, which combined consisted
around 5000 computational cores geographically distributed across France and
Japan.

4.1 Challenge Results

Figure 1 presents the final results of the Challenge. The participants primarily
used two middlewares, ProActive, an open source Java based Grid middleware
and KAAPI/TAKTUK, which coupled KAAPI , a Parallel Programming Ker-
nel and TAKTUK, a middleware for adaptive deployment. As we can see in
Figure 1, the KAAPI/TAKTUK team was successful in computing the maxi-
mum number of TestCases and was also able to deploy application on a signif-
icantly large number of nodes. The other teams used ProActive to implement
16 http://www.etsi.org/plugtests/GRID2008/About GRID.htm
17 http://www-sop.inria.fr/oasis/plugtests2008/ProActiveMonteCarloPricingContest.html
18 https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home
19 https://www.intrigger.jp/wiki/index.php/InTrigger

SuperQuant Financial Benchmark Suite 9

KAAPI/TAKTUK ACT NUDTPDL TUGrid

Final results of the 2008 Super Quant Monte Carlo Challenge

3609 nodes

4329 nodes 4279 nodes
3893 nodes

988 testcases

177 testcases 40 testcases 388 testcases

8760 points

1459 points

762 points 590 points

Successfully deployed nodes
Successfully finished testcases
Gained points

Fig. 1. Final results of the 2008 SuperQuant Monte Carlo challenge

the benchmark kernel. Both middlewares implement Grid Component Models
(GCM), recently standardized by the ETSI technical committee GRID20 for
deploying the application over large number Grid nodes [3]. The infrastructure
descriptors and application descriptors required by GCM were bundled with
the benchmark suite. From Figure 1, we can observe that the benchmarks
were not only useful to quantitatively compare two middleware solutions, but
also gave the opportunity to evaluate different benchmark implementations
using the same middleware. Such comparison is useful not only to middleware
providers but also to Grid application developers.

5 Conclusion and Perspectives

In this paper we have presented SuperQuant Financial Benchmark Suite for
performance evaluation and analysis of Grid middlewares in the financial en-
gineering context. We described the preliminary guidelines for designing the
benchmark. We also described the benchmark constituents along with a brief
overview of the embarrassingly parallel benchmark kernel. As a proof of con-
cept, we also utilized this benchmark in a Grid Programming Contest. Al-
though this is a preliminary proposal for this benchmark, the specification of
more complex kernels that can induce inter-cluster communication, high speed
I/O requirements, or data processing, is necessary for truly understanding the
overhead imposed by Grid middlewares in financial applications.

20 http://www.etsi.org/WebSite/Technologies/GRID.aspx

10 A. Gaikwad, V.D. Doan and al.

Acknowledgments

We thank the organizers of the 2008 SuperQuant Monte Carlo Challenge for
their useful support during the contest. We also thank the participants for
providing permissions to use the contest results to carry out this work. Fi-
nally, this research is supported by the French “ANR-CIGC GCPMF” research
project and Grid5000 has been funded by ACI-GRID.

References

1. P. Alexius, B.M. Elahi, F. Hedman, P. Mucci, G. Netzer, and Z.A. Shah. A
Black-Box Approach to Performance Analysis of Grid Middleware. LNCS, 2008.

2. D. Baileym, J. Barton, T. Lasinski, and H. Simon. The NAS Parallel Bench-
marks. Technical Report RNR-91-002 Revision 2, NAS Systems Division, NASA
Ames Research Center, August 1991.

3. F. Baude, D. Caromel, C. Dalmasso, M. Danelutto, V. Getov, L. Henrio, and
C. Pérez. GCM: A grid extension to fractal for autonomous distributed compo-
nents. Annals of Telecommunications, 64(1):5–24, 2009.

4. R. Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.
5. S. Bezzine, V. Galtier, S. Vialle, F. Baude, M. Bossy, V.D. Doan, and L. Henrio.

A Fault Tolerant and Multi-Paradigm Grid Architecture for Time Constrained
Problems. Application to Option Pricing in Finance. 2nd IEEE International
Conference on e-Science and Grid Computing, Netherlands, December 2006.

6. F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal
of political economy, 81(3):637, 1973.

7. V.D. Doan, A. Gaikwad, M. Bossy, F. Baude, and F. Abergel. A financial
engineering benchmark for performance analysis of grid middlewares. Technical
Report 0365, INRIA, 2009.

8. P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer, 2004.
9. J. Hull. Options, futures, and other derivatives. Prentice Hall Upper Saddle

River, NJ, 2000.
10. D. Lamberton and B. Lapeyre. Introduction to stochastic calculus applied to

finance. CRC Press, 1996.
11. G. Tsouloupas and MD Dikaiakos. Gridbench: A tool for benchmarking grids. In

Grid Computing, 2003. Proceedings. Fourth International Workshop on, pages
60–67, 2003.

12. P. Wilmott et al. Derivatives: The Theory and Practice of Financial Engineer-
ing. J. Wiley, 1998.

