
Appendix : Super Quant Monte Carlo Challenge 2008

Organized by ERCIM, ETSI and INRIA
Sophia Antipolis, France,

Monday 20 - Friday 24 October 2008.

September 17, 2008

1 Introduction

This document provides mathematical representation of the Super Quant Challenge. We assume that
the reader has acquired basic knowledge of Derivative/Option pricing, Black/Scholes model and Monte
Carlo simulations for option pricing. The references provided in the problem statement can be useful
to create sufficient background to facilitate the understanding of the concepts described here. The
java implementations of the pseudocodes described in this document are available on the website. The
participants can refer to the source code and this appendix simultaneously for better understanding.

2 Black Scholes model defined for d-dimensional options

The well known Black-Scholes model describes the evolution of a stock price through the stochastic
differential equation,

dS(t)
S(t)

= (r −D)dt + σdW (t) (1)

where,

1. r is the interest risk free rate.

2. D is the dividend.

3. W a standard Brownian motion.

This equation models the percentage change
dS

S
in the stock price as increments of a Brownian motion.

The solution of (1) is,

S(T ) = S(0) exp([(r −D)− 1
2
σ2]T + σ

√
TZ) (2)

where Z is a standard normal random variable (with mean 0 and variance 1).
Extending this model for a d dimensional option, alternatively termed as a basket of d assets, the

asset prices for d underlying assets can be modeled as follows,

dSi
t = (r −D)Si

tdt− σSi
tL dBi

t, (3)

where,

1. Si
t are asset prices at time t, for i = 1, .., d. Si

0, at time 0.

2. σ is a volatility of the asset prices.

3. L is a lower-triangular matrix derived from Cholesky decomposition of a given correlation matrix
between the assets in the basket.

4. Bt = (B1
t , .., Bd

t ) is an independent Brownian motions vector.

Assuming C as a (positive definite symmetric) correlation matrix of d assets, L is computed such
that C = LLT . Given C, L can be calculated by the Cholesky decomposition. We choose C := (ρi,j of
the form ρi,i = 1, ρi,j = ρ, i 6= j with −1 < ρ < 1.

1



3 Monte Carlo methods

To illustrate Monte Carlo methods, we consider calculation of the option price which is the expected
present value of the payoff of an option. Let us take an example of a vanilla average call option. The
payoff of such call option at the maturity date T is given as,

Φ(Si
t , t) = (

d∑
i=0

wiS
i
T −K)+ (4)

where K is the strike price, wi is the weight of the ith asset in the basket (i.e. wi =
1
d
) and i = 1, .., d. We

denote the expected present by E[e−rT Φ(Si
T , T )]. The Algorithm 1 gives a pseudo–code that illustrates

the steps in simulating a number of Monte Carlo paths (nbMC) by using a discrete (Euler) approximation.
We use Zikj to denote the kth draw from the normal distribution along the ith path of the jth asset.

In this setting, we partition [0, T ] interval into NT subintervals tk of length ∆t =
T

NT
= tk − tk−1, with

k = 0, .., NT . The Algorithm 1 can be applied for pricing high–dimensional options which do not have
any analytical solutions. In the particular case of a vanilla basket option, the mechanism for generating
paths can be simplified as in the Algorithm 5.

4 Greeks hedging

Let us define Delta ∆, Gamma Γ, Speed, Rho ρ and Theta θ definitions as follows:

1. The ∆ of an instrument is the mathematical derivative of the option value P with respect to the
underlying price, ∆ = ∂P

∂S .

2. The Γ is the second derivative of the value function with respect to the underlying price, Γ = ∂2P
∂S2

3. The Speed is the third derivative of the value function with respect to the underlying price, Speed =
∂2P
∂S3

4. The ρ is the first derivative of the value function with respect to the interest free rate, ρ = ∂P
∂r

5. The Θ is the first derivative of the value function with respect to the time, Θ = ∂P
∂T

One of the popular approaches to compute such derivative in computer simulation is finite difference
methods. A finite difference is a mathematical expression of the form f(x + b)f(x + a). If a finite
difference is divided by b− a, one gets a difference quotient. The approximation of derivatives by finite
differences plays a central role in finite difference methods for the numerical solution of differential
equations, especially boundary value problems. Hence, we have the derivative of a function f at a point
x is defined by the limit,

∂f

∂x
= f ′(x) = lim

ε→0

f(x + ε)− f(x)
ε

. (5)

By appling (5) in the ∆, Γ, Speed, ρ, and Θ hedging we have,

∆ =
∂P

∂S
= lim

εS→0

P (S + εS)− P (S)
εS

. (6)

Γ =
∂2P

∂S2
= lim

εS→0

P (S + εS)− 2P (S) + P (S − εS)
ε2

S

. (7)

Speed =
∂3P

∂S3
= lim

εS→0

P (S + 2εS)− 3P (S + εS) + 3P (S)− P (S − εS)
ε3

S

. (8)

ρ =
∂P

∂r
= lim

εR→0

P (r + εR)− P (r)
εR

. (9)

Θ =
∂P

∂T
= lim

εT→0

P (T + εT )− P (T )
εT

. (10)

2



5 Sequential pseudo-code for pricing and hedging a vanilla av-
erage basket option

The Algorithms 3, 4 provide pseudo-codes for pricing and hedging a vanilla average basket of d assets.
These algorithms illustrate how to compute the price of a vanilla put option with average payoff and the
Greeks values such as the Delta ∆, Gamma Γ, Speed, Rho ρ and Theta θ. Note that the participants
will have to modify the Algorithm 3 for pricing Barrier options (Up-In, Up-Out, Down-In and Down-
out). The implementation of the generalized algorithm for pricing call/put vanilla and barrier options is
available in the application provided on the plugtest website.

3



Algorithm 1 Paths simulating of a generic basket of d assets

Require: Sj
0, r, D, σ, NT , number of simulations nbMC

1: for i = 0 to nbMC do
2: for j = 0 to d do
3: for k = 0 to NT do
4: Sj

tk
= Sj

tk−1
exp(((r −D)− σ2/2)(tk − tk−1) + σ

√
tk − tk−1Zikj)

5: end for
6: end for
7: end for

Algorithm 2 Paths simulating of a vanilla basket of d assets

Require: Sj
0, r, D, σ, NT , number of simulations nbMC

1: for i = 0 to nbMC do
2: for j = 0 to d do
3: Sj

T = Sj
0 exp(((r −D)− σ2/2)(T ) + σ

√
TZij)

4: end for
5: end for

4



Algorithm 3 Pricing Vanilla average basket put option

Require: Sj
0, r, D, σ, T , w, εS , εR, εT , K, correlation matrix C, number of simulations nbMC

Ensure: Price0, Variance, Lower interval, Upper interval
1: Get the lowertriangular matrix L using Cholesky decomposition of C.
2: for i = 0 to nbMC do
3: Vector B of random vector ∈ N(0, 1) then get vector Z = L×B.
4: for j = 0 to d do
5: S0,j

T = Sj
0 exp(((r −D)− σ2/2)T + σ

√
TZj)

6: S1,j
T = Sj

0(1 + εS) exp(((r −D)− σ2/2)T + σ
√

TZj)
7: S2,j

T = Sj
0(1− εS) exp(((r −D)− σ2/2)T + σ

√
TZj)

8: S3,j
T = Sj

0 exp((((r(1 + εR))−D)− σ2/2)T + σ
√

TZj)
9: S4,j

T = Sj
0 exp(((r −D)− σ2/2)(T (1 + εT )) + σ

√
(T (1 + εT ))Zj)

10: S5,j
T = Sj

0(1 + 2εS) exp(((r −D)− σ2/2)T + σ
√

TZj)
11: end for

12: P 0
i =

d∑
j=0

wjS
0,j
T ; P 3

i =
d∑

j=0

wjS
3,j
T ; P 4

i =
d∑

j=0

wjS
4,j
T

13: for j = 0 to d do

14: P 1,j
i =

d∑
l=0,l 6=j

wlS
0,l
T + wjS

1,j
T ; P 2,j

i =
d∑

l=0,l 6=j

wlS
0,l
T + wjS

2,j
T

15: P 5,j
i =

d∑
l=0,l 6=j

wlS
0,l
T + wjS

5,j
T

16: end for
17: X0

i = (K − P 0
i , 0)+; X3

i = (K − P 3
i )+; X4

i = (K − P 4
i )+

18: for j = 0 to d do
19: X1,j

i = (K − P 1,j
i )+; X2,j

i = (K − P 2,j
i )+; X5,j

i = (K − P 5,j
i )+

20: end for

21: Payoff0 =
nbMC∑

i=0

X0
i ; PayoffSquare0 =

nbMC∑
i=0

(X0
i )2

22: Payoff3 =
nbMC∑

i=0

X3
i ; Payoff4 =

nbMC∑
i=0

X4
i

23: for j = 0 to d do

24: Payoff1,j =
nbMC∑

i=0

X1,j
i ; Payoff2,j =

nbMC∑
i=0

X2,j
i ; Payoff5,j =

nbMC∑
i=0

X5,j
i

25: end for
26: end for

27: Price0 =
exp(−rT )

nbMC
Payoff0; Variance0 =

exp(−rT )
nbMC

PayoffSquare0 − (Payoff0)2

28: Price3 =
exp(−(r(1 + εR))T )

nbMC
Payoff3

29: Price4 =
exp(−r(T (1 + εT )))

nbMC
Payoff4

30: for j = 0 to d do

31: Price1,j =
exp(−rT )

nbMC
Payoff1,j ; Price2,j =

exp(−rT )
nbMC

Payoff2,j

32: Price5,j =
exp(−rT )

nbMC
Payoff5,j ;

33: end for
34: // Confidence interval at 95% of the put premium

Lower interval = Price0 − 1.96 ∗
√

Variance√
nbMC

35: Higher interval = Price0 + 1.96 ∗
√

Variance√
nbMC

5



Algorithm 4 Delta, Gamma, Rho, Theta and Speed hedging European basket put option

Require: Price0,Price1,Price2,Price3,Price4,Price5

Ensure: Delta, Gamma, Rho, Theta, Speed
1: for j = 0 to d do

2: Deltaj =
Price1,j −Price0

Sj
0εS

{from Equation (6)}

3: Gammaj =
Price1,j − 2Price0 + Price2,j

(Sj
0εS)2

{from Equation (7)}

4: Speedj =
Price5,j − 3Price1,j + 3Price0 −Price2,j

(Sj
0εS)3

{from Equation (8)}

5: end for

6: Rho =
Price3 −Price0

rεR
{from Equation (9)}

7: Theta =
Price4 −Price0

TεT
{from Equation (10)}

6


