Peer-to-Peer

Branch & Bound

Alexandre di Costanzo

Peer-to-Peer

Mixing Desktop and Cluster Machines

- Sharing JVM for grid computing
 - Deploying communicating applications
 - Achieving computations that take months on clusters
- Infrastructure
 - Unstructured P2P overlay network
 - 3 request protocols:
 - I node: Random walk algorithm
 - n nodes: Breadth-First-Search (BFS) algorithm with acknowledgement
 - max nodes: BFS without acknowledgement
 - Best-effort

P2P: Results

- n-Queens: 25 Queens instance broken
 - 6 months to achieve
- 1008 CPUs: mixing Grid'5000 and INRIA
 Sophia desktops

P2P: Perspectives

- Dynamic number of neighbors
- Visualization and Monitoring tools

- Defining families of peers:
 - Abstraction of groups => unstructured P2P
 - QoS for Fault tolerance
 - Organizing communication at the application level

Branch & Bound

Provide a high level programming model for solving BnB problems, which manages task distribution and provides task communications.

Goals:

- Exploring a search tree in parallel with communications for cutting bad tree branches
- For the user the program distribution is hidden
- Based on the Farm Skeleton (Bag of Task)

• Features:

- Dynamic task split
- Automatic result gather
- Broadcasting best current result
- Automatic backup and task reallocation
- Choose and/or Create the queue for task allocation

B&B: Results

Flow-Shop implementation:

Deployed on 628 CPUs

(G5K + INRIA Sophia)

BnB: Perspectives

- Hierarchical Master-Slaves
- Communication organization
 - Node Tags

- Scheduler of tasks
- Skeletons

Conclusion

- Large scale experimentations
- P2P + Load balancing + Fault tolerance
- Non-functional Technical Services