
© 2006 GridCOMP Grids Programming with components. An advanced component platform for an effective invisible grid 
is a Specific Targeted Research Project supported by the IST programme of the European Commission (DG Information Society and Media, project n°034442)

Grid programming with components: 
an advanced COMPonent platform
for an effective invisible grid 

GCM Non-Functional 
Features and ProActive 

M a r c o  A l d i n u c c i
&

M .  D a n e l u t t o ,  S .  C a m p a , 
D .  L a f o r e n z A ,  N .  T o n e l l o t t o ,  P. D a z z i

U n i P i s a  &  I S T I - C N R

e-mail: aldinuc@di.unipi.it



Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Outline

Not really Proactive user case
Bringing some ideas

Proposed for GCM (CoreGRID/GridCOMP)

Experienced with ASSIST

Also, currently experimenting using ProActive

Proactive User case
Already described last monday

I repeat if time

2



Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

GridComp MODEL key points

Hierarchic model
Expressiveness

Structured composition

Interactions among components
Collective/group

Configurable/programmable

Not only RPC, but also stream/event

NF aspects and QoS control
Autonomic computing paradigm

3



Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

GCM implementation aspects
(in my viewpoint at least)

Membrane is an active object
Centralized implementation

Controller are components
One possible choice, among the others

Lightweight components

Communication protocol
Asynchronous communications
Krakow feedback. Rodolfo Toledo, Eric Tanter, Jose Piquer: USING REFLEXD FOR 
A GRID SOLUTION TO THE N-QUEENS PROBLEM: A CASE STUDY. 
CoreGRID Integration Workshop, Karkow, October 2006

4



Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Autonomic Computing Paradigm 
(AC)

Aims to tackle the complexity of QoS 
management providing self-managing 
components, i.e. :

Self-configuring

Self-optimizing

Self-healing

Self-protection

Basically control loops
Basic theory dates back to last mid-century decade

Recently re-vamped and propelled by IBM

5



Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

AC Bare Bones

A complex system is usually set up by distinct 
elements

composed in horizontal fashion (i.e. used_by/provided_to)

nested in vertical fashion  (i.e. implemented_by)

AC idea:
Each entity exhibits certain self-management capability

At each level, entities cooperate to self-manage their 
aggregation

Each level subsumes capability at the next level down

6



Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

AC element
Managed Element

Autonomic Manager

AC elements co-operate to achieve a common goal

An AC Element & its 
“horizontal” Companions

Managed Element

Monitor

Analyze Plan

 ExecuteKwowledge

Autonomic Manager

Autonomic Element

Possibly with dynamic patterns along running time

8



Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Insulated AC Element Cycle 

Monitor: collect execution stats: machine load, service time, input/output 
queues lengths, ...
Analyze: instantiate performance models with monitored data, detect broken 
contract, in and in the case try to individuate the problem
Plan: select a (predefined or user defined) strategy to re-convey the contract 
to valid status. The strategy is actually a list of mechanism to apply.
Execute: leverage on mechanism to apply the plan

Monitor Plan

Execute

Analyze
broken
contract

next
configuration

QoS data

Managed element
(module, component)

9



Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

AC Element - ASSIST Experience

Some experiences already done
Based on QoS contracts

Autonomic parmod 

Autonomic supercomponents
Higher order components

DAG, Farm

M. Aldinucci and M. Danelutto. Algorithmic skeletons meeting grids. Parallel Computing, 32(7-8): 449–462, 2006.
M. Aldinucci, M. Danelutto, M. Vanneschi. Autonomic QoS in ASSIST Grid-aware components. In Euromicro PDP 2006: Parallel Distributed 
and network-based Processing, IEEE, Montbéliard, France, February 2006.
M. Aldinucci, C. Bertolli, S. Campa, M. Coppola, M. Vanneschi, L. Veraldi, C. Zoccolo. Self-Configuring and Self-Optimising Grid 
Components in the GCM model and their ASSIST implementation. In HPC-GECO/Compframe 2006 (held in conjuction with HPDC-15), 
IEEE, Paris, France, June 2006.
M. Aldinucci, A. Petrocelli, E. Pistoletti, M. Torquati, M. Vanneschi, L. Veraldi, and C. Zoccolo.  Dynamic reconfiguration of grid-aware 
applications in ASSIST. In J. C. Cunha, and P. D. Medeiros, editors, Proc. of 11th Intl Euro-Par 2005: Parallel and Distributed Computing, 
volume 3648 of LNCS, Lisboa, Portugal. Springer Verlag, August 2005.
....

10



Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

QoS contract Example (ASSIST)

11

Perf. features QLi (input queue level), QLo (input queue
level), TISM (ISM service time), TOSM

(OSM service time), Nw (number of VPMs),
Tw[i] (VPMi avg. service time), Tp (parmod
avg. service time)

Perf. model Tp = max{TISM ,
∑n

i=1
Tw[i]/n, TOSM},

Tp < K (goal)

Deployment arch = (i686-pc-linux-gnu ∨ powerpc-apple-
darwin*)

Adapt. policy goal based



Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Exp 1: Stateless FARM

Contract:
keep a given service time
contract change along the run

Input stream pressure
VPMs aggregated power

N. of VPMs in parmod

QoS contract

 50

 200 180 160 140 120

Wall Clock Time (s)

 20  100

 2
 4
 6
 8

 10

 2
 4
 6
 8

 80 60 40

F
ill

 %
It

e
m

s/
s

N
. 

o
f 

V
P

M
s

 100

 0
Input stream queue fill level 

12



Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Exp 2: Data-Parallel(STP)

13

0

1,500

3,000

4,500

6,000

A B C D
Platforms

D
35%

C
24%

B
30%

A
11%

A B C D

Bo
go

M
IP

S

P4@2.5GHz P4@2GHz P4@2.8GHzP3@868MHz
Expected work
balance among

platforms

mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz


Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Exp 2: Data-Parallel(STP)

25%

25%25%

25%
36%

22%

31%

11%

51%

1%

41%

8%
35%

23%

32%

11%

Iteration time

Relative Unbalance

A

D

C

B

Distribution of load among platforms (n. of VPs)

14



Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Overhead? (mSecs)

15

60

!"# $"#

%&#

#'#

!"!#!$%&'("!)*+$#!("&+*",&-.&/0,1

!"# $"#

#'#

%&#

!"# $"#

%&#

#'#

%&#

2+('3,,

("&/04

!"$%&'("!)*+$#!("&+*",&-.56&/0,1

$"$%7832%$" 9:9

;:9&-<!==%3>$+31!"#$%&'()*#'(&"$'

"33=&6&/0 /04

+,-.'/0-12$3*#'(&"$'

343'*#3

2$+<(=&+3$'?3,&$
+3'("@A,$@3&2(!"#

+3'("@B&%$#3"'7

+3'("@B&#!<3

<("!#(+

#!<3

C$*"'?-D/9E/041 $'.

4("5*6%2",%(*#'(&"$'

D/,&$+3
+3=!,#+!F*#3=

G?3&"3>&2+('3,,
'("#$'#,&#?3&9:9

Fig. 2. Reconfiguration dynamics and metrics.

TCP/IP or Globus provided communication channels. The two applications are
composed by one parmod and two sequential modules. The first is a data-parallel
application receiving a stream of integer arrays and computing a forall of sim-
ple function for each stream item; the matrix is stored in the parmod shared
state. The second is a farm application computing a simple function on different
stream items. Since Rt also depends on sequential function cost, in both cases
we choose sequential functions with a close to zero computational cost in order
to evaluate mechanism on the finest possible grain.

The reconfiguration overhead (Ro) measured during our experiments, with-
out any reconfiguration change actually performed, is practically negligible, re-
maining under the limit of 0,004%, the measurement of the other two metrics
are reported in Table 1.

Notice that in the case of a data-parallel parmod, Rl grows linearly with
(x + y) for the reconfiguration x → y for both kinds of reconf-safe points, and
depends on shared state size and mapping. Farm parmod cannot be reconfigured
on-barrier since it has no barrier, and achieves a negligible Rl (below 10−3 ms).
This is due to the fact that no processes are stopped in the transition from one
configuration to the next. Rt, which includes both the protocol cost and time to
reach next reconf-safe point, grows linearly with (x + y) for the former cost and
heavily depends on user-function cost for the latter.

parmod kind Data-parallel (with shared state) Farm (without shared state)

reconf. kind add PEs remove PEs add PEs remove PEs

# of PEs involved 1→2 2→4 4→8 2→1 4→2 8→4 1→2 2→4 4→8 2→1 4→2 8→4

Rl on-barrier 1.2 1.6 2.3 0.8 1.4 3.7 – – – – – –
Rl on-stream-item 4.7 12.0 33.9 3.9 6.5 19.1 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0

Rt 24.4 30.5 36.6 21.2 35.3 43.5 24.0 32.7 48.6 17.1 21.6 31.9

Table 1. Evaluation of reconfiguration overheads (ms). On this cluster, 50 ms are
needed to ping 200KB between two PEs, or to compute a 1M integer additions.

GrADS papers reports overhead in the order of hundreds of seconds (K. Kennedy et al. 
2004),  this is mainly due to the stop/restart behavior, not to the different running env. 



Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Vertical Composition

16

B2 B3

B4 B5

A
1

A
2

A
3

c
1 c

2
c
3

A distributed App is an assembly 

components, which may be primitive or

formed by other components 

App

A2 A1 A3

B2 B1 B3 B4 B5

C1 C2 C3

The QoS of a component depends by its nested 

components and their functional relations. Components 

may include either sequential or distributed code

App

A2 A1 A3

B2 B1 B3 B4 B5

C1 C2 C3

Provided QoS can be synthesized in a bottom-up fashion,

while requested QoS imposed in top-down fashion. 

Application management can be distributed along the 

hierarchy to improve management locality

functional 

dependencies

management

and QoS

hierarchy



Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Autonomic Cycle & Vertical

Autonomic cycle manage some further points
Accepts new QoS contracts from father manager

Raises locally unmanageable contract violations

At each level, implements cooperation with other partners

Formalization is an open problem

17



Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Horizontal & Vertical 
orchestration

Open problems

A satisfactory formalization is missing
how describe QoS proprieties

Describe distributed parametric analysis strategies & 
reconfiguration plans

How to generate them automatically, how to enforce locality of actions

Some experiences already done with ASSIST, 
some promising ideas

Exploiting structured orchestration of activities (super-
components)

18



Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Rationale

AC promising

Something can be already done
Experiences in ASSIST given good feedbacks in 
terms of reactivity, low-overhead, ...

Documented in literature

Several, very interesting open problems
At the border with Global Computing community

Very interesting for EU VII FP



Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

CoreGRID GCM NF features

Autonomic behavior
EU 7 FP, NGG3, blah blah ...

Renewed proposal based on:
Fractal style level of compliance

Passive or active vertical interaction



Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Fractal Conformance levels

21

Minor (κ) 1 1 1 1

Major (Θ) 0 0 1 1 2 2 3 3

Component ✓ ✓ ✓ ✓ ✓ ✓

Interface ✓ ✓ ✓ ✓
Component Type
Interface Type ✓ ✓
Attribute, Content, Binding 
LifeCycle Controller ✓ ✓ ✓ ✓

Factory

Template

2 3

3 3

✓ ✓

✓ ✓

✓ ✓

✓ ✓

✓ ✓

✓

Conformance level Θ.κ



Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Fractal Conformance levels
Rephrased and GCM

Major (Θ) ≥ 1 ⇔ “it is a component”

Minor (κ) ≥ 1 ⇔ “it exhibits AC, CC, BC, LC” 

Minor (κ) =2&3 have a bit uneven meaning (F, T)

Add another counter describing NF behavior 
Θ.κ.α (as partial function)
α=0 ⊥, only if (Θ<1 or κ<1) (observationally undecidable)

α=1 No autonomicity

α=2 Passive autonomicity (low-level, server only NF intf)

α=3 Active autonomicity (high-level, client/server NF intf)

22



Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Some Aspect still not Clear

Main concerns
How much the model should be specified?

Not that much, at the end this is why we adopted Fractal ...

It should be a Model not the specification of an implementation
OO Model is not Java specification

Membrane

Fractal/ProActive implementation 
Maps 1:1 to GCM reference implementation?
Are group communications implemented by controllers?

Controllers=components? (in which component model?)
How controllers interoperate and how are programmed?

Is  membrane admitting a distributed implementation?



Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Our Fractal/ProActive 
experience (First 6 months)

Understanding
Install, learn, understand Fractal & ProActive 

Understand Fractal/Proactive architecture
Documentation; not layered architecture

Fractal interoperability
Proactive vs Julia implementations

AOP with Fractlet

Case study
Self-optimizing only (performance)

pipe(S1, Farm(S2), S3)

Fractal/ProActive features to support NF control 



Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Self-optimizing
Pipe(g,Farm(f),h)

A simple three stages application, working on 
a data stream (e.g. video frames)

pipe performance max(Tg,Tfarm(f),Th)

farm performance Tf/#n, n variable along run

Self-optimizing w.r.t. nodes power along time

25

g h

f

f

f

...

stage 1 stage 2 stage 3

User programmable 
unicast Collects from any



Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Farm

A clean implementation needs:
Unicast “programmable” communications

send to a single ID in a set, collect from any (not all)

probably not excluded by GCM specification, not clear our to implement in 
the current version

Distributed implementation of the membrane
is it a single Active Objects?

Currently two inner components act as 
distributor and collector

26

f

f

f

...

f

f

f

...

e c



Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Pipe

Two versions
Passive inner components

Each component exposes server NF interface (GetBandwidth)

They are periodically polled from a controller in the membrane, which then 
expose a GetBandwidth server port for the pipe component

Implementation pretty tricky, polling is programmed at hand within the  
controller

Active inner components
How to open server ports on the membrane toward the inner part (import-
binding)? Is it possible?

We simulated with a functional component

Both versions expose all ports through a single JVM
Membrane and Active Objects

27



Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Pipe with Passive NF stages

Implemented, works
Overheads not yet measured

Managing code completely up to the user
NF binding programmatically described

28

stage 1 stage 2 stage 3

long getBW(){

return min(...);

}

getBW getBWgetBW

getBW

producer consumer



Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Pipe with Active NF Stages

Not succeed to express this
Maybe not impossible, but we don’t 
succeeded in several weeks

Can be simulated by inserting an 
functional component (explicit manager)

Import/export bindings for NF 
controllers appears under-specified (-
studied, -implemented

29

stage 1 stage 2 stage 3

setBW
stage BW

violation

pipe BW

violation

set pipe

BW

stage 1 stage 2 stage 3

setBW

stage BW

violation

pipe BW

violation hook

set pipe

BW

F/NF

mediator



Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Points needing further 
investigation

Programming controllers
GCM specification should be refined

Interactions among controllers
Ports exposed by controllers, toward in and out

Interaction among ports

Mapping membrane & controllers
VN, ActiveObjects, JVM, nodes, ...

Low-level points
Sent to Proactive Q&A

30



Grid programming with components: an advanced COMPonent platform for an effective invisible grid 

CoreGRID: The European Research Network on Foundations, Software 
Infrastructures and Applications for large scale distributed, GRID and P2P Technologies

Conclusion

High-level research issues
Formalization of QoS property ongoing

Interaction among managers is still a black hole

Implementation issues
Middleware expressiveness/effectiveness tradeoff 
can (should?) be improved

Low-level issues submitted to Proactive Q&A

Layering of features
In our idea, some of middleware features may require a promotion 
to QoS features (e.g. load balancing, communication 
synchronicity, group communication semantics, security ...) 
because they are supposed to be dependent by semantics of GCM 
application not on ProActive




