2. 2 2 Grid computing with an extension

%72 5% of ProActive Groups

E. Zimeo, N. Ranaldo

RCOST- University of Sannio — Benevento - Italy
{zimeo, ranaldo}@unisannio.it

In collaboration with Francoise Baude, Laurent Baduel
{fbaude, Ibaduel}@sophia.inria.fr

Grids@Work - ProActive UserGroup - Sophia Antipolis, France - October 10th, 2005

On qoing work — ProActive user grou
ging o

Implementing the On line Power System Security Analysis (OPSSA) by
using ProActive Hierarchical Groups

Providing ProActive groups with programmable behaviors and reliable
multicast for communication among memb

RDBMS . [Taster|) servi
Device for o N T
monitoring : | RO -
i H H ‘SQ‘\ - VH]
anelectrical ; (Host L Host
grid ‘ service () < servicgl)l—e \ \\\\\\\\
[Application| ——#= 1 | W ~Tery,
component| | Master ‘ = ===
‘ S s
e
‘ \ | \\/iy/.
! \
***** ~
N\
\
\
\
\

OPSSA is a Master/Slave

application
Grids@Work - ProActive UserGroup - Sophia Antipolis, France - October 10th, 2005

Servers

Outline

* Introduction: Groups and Grids

L

Group semantics
ProActive Groups extension

L

L

Reliable multicast for Grid computing
Performance analysis of TRAM
ProActive over HIMM/TRAM

L

L

L

Case Study: master/slave computing
Performance evaluation
On going work

L

L

Grids@Work - ProActive UserGroup - Sophia Antipolis, France - October 10th, 2005

Introduction

= Most of Grid applications and middleware platforms demand for
large sets of data to be delivered to a wide collection of resources
C> to perform program and data remote submissions
C> to implement information and naming services
C> to manage data replication

*= In this work we are interested only to manage data replication;
program submission and naming services will be considered in
future works

= For object-oriented programming, a high-level abstraction is
necessary to hide the complexity of the network when data
replication is to be performed:
¢ Groups
Grids@Work - ProActive UserGroup - Sophia Antipolis, France - October 10th, 2005

x R¥ What is a group ?

= A group is a local surrogate for b
. toperationf()
a group of objects (members)

N

(C lient Group ‘ Member

£ . . '
E} The memberS can be d|Str|buted tagpernation() toperation()
across networked machines

When an operation is invoked on
the group, it is forwarded to the
members according to a policy
and the results are returned back
to the client >

£ . " operation()
& Groups are dynamic: the set of .
members can change

™

Member |
&

L
L

Grids@Work - ProActive UserGroup - Sophia Antipolis, France - October 10th, 2005

Groups and Grids

= Why group communication in Grid computing ?

& Some grid applications require the same data to be delivered to
a multitude of receivers

& Such receivers could be treated as a unique coherent entity at
programming level

& The underlying middleware should map the interaction with a
conceptual entity to a dynamic group of members

& The mapping should be performed for several reasons:
" Performance

Scalability

Responsiveness

Availability and Fault tolerance

O

O

O

Grids@Work - ProActive UserGroup - Sophia Antipolis, France - October 10th, 2005

= At system level

;KT How can a group help

At programming level

£ A group object looks like a

single object -
Performance Scalability

(performance) distributes
a task in subtasks for

different hw resources
(scalability) dispatches

requests to different
resources as the number

lient |

¢lient

Qi

of clients grows
(responsiveness) sends Responsiveness

a request to many
receivers for selecting

the most reactive one
(fault tolerance) Sends a

request to many receivers
for surviving to crashes of

hetwork oén%ggﬁl%rk - ProActive UserGroup - Sophia Antipolis, France - October 10th, 200

= Request mapping

"
3

L

L

Input parameters -

distribution

Synchronization

Output parameters
collection

§

—P ()
¢ Group Men
iwal éf/

Group Semantics (1)

Request mapping

Moember |

ember)

-—
....

Membern

Synchronization

Moenberl

[

Menbern

Grids@Work - ProActive UserGroup - Sophia Ant

Input parameters
distribution

Member |

param .

request

polis, Fra

Output parameters
collection

®

ce - October 10th, 2005

&
oY ' S
== == =2 |
xR Group Semantics: policies (2)
Request mapping
*= Request mapping
£
% One:
Y The request is delivered to one member .)
f 0 e Group Member?
v Fixed: H : .
2 The request is delivered to a specified number of .
memberS Membern
f
v All:
Y The request is delivered to all the members
Input parameters
distribution

= |nput parameters distribution

£
» Scatter:
© The parameters are split in several parts each
one assigned to a member o
request

£
% Broadcast:
" The parameters are sent to all the members

Grids@Work - ProActive UserGroup - Sophia Antipolis, France - October 10th, 2005

L

s

Synchronization
w All:

5 The overall result will be created only after the results
from all the members

d .
& Majority:

" The overall result will be created only after the results
p from the majority of the members
% One:

5 The overall result will be created after the result of a
P member
v Fixed:

5 The overall result will be created only after the results
from a fixed number of members

= Qutput parameters collection
C> Gather:

5 The parameters are collected in an aggregate object

whose parts are ordered according to the sequence of
Invocations

C> Merging:

© The parameters are collected in a single structure
according to some policy

o RE Group Semantics: policies (3)

Synchronization

Moemberl

—P> ; ‘) " .
< roup ' Member!

Output parameters
collection

Member |
®
@

| J

Grids@Work - ProActive UserGroup - Sophia Antipolis, France - October 10th, 2005

5 x= ProActive groups

* ProActive groups provides: Broadcast

& A default request mapping policy:
all

request

& A default input parameters
distribution policy: broadcast :>
+ the possibility to change in scatter
through the invocation of

setScatterGroup() :> Scatter

& A default output parameters
collection policy: gather

el

=
=

& Several synchronization policies
explicitly managed by using the
result

Grids@Work - ProActive UserGroup - Sophia Antipolis, France - October 10th, 2005

Group Architecture

GroupBehavior 1
0utputCollection -
Semantic ! <

interface OutputCollectionSemantic {
Object manageOutput(MethodCall mc, Vector futures);

;RequestMapping InputDistributionf§ ESynchronization
Semantic Semantic Semantic

§

1.method.\.._},,.,‘ : . - ‘
: group st 3 | A\::—/ : A
. o iStub_A Soenact() Communicatorimpl R - :
b:B j . GroupBehavior/v \D Proxy 3 m
l ; LZ.reHy(mc) Enactor sub) B ; ~al node 1
: A ——— i :Proxy I e
3 Stub A L DA S ‘A
[ProxyForGroup | LlgroupCompositor L ey : =
input:0biject 3 Stub Al T J = = . node 2
| 12.collectResults SWb A [=— iProxy | ==
PEIOLOIU oL (ExtendedProxyForGroup | T N T Stbs . UnjeastProxy al Z E A
N T 1. L > o node 3 | !
; Stub 0 —:FutureProxy A R R S
f 9. collect() | [0 P G S ;
Cresultstub 8. reify() | | Stub_C N 3
‘ i 3 Stub ¢) 3
> Prox ! 3 = FutureProxy < Pl noded |
: : : Stub Futuref rony U R
B | o wres T) Grid Widdleware

Grids@Work - ProActive UserGroup - Sophia Antipolis, France - October 10th, 2005

= Consider for example a class for a group:

g class A {
public A() {}
public C methodl (Object input) ({}
public C method2 (Object input) ({}
public C method3 (Object input) ({}
}

class AMappings extends Mappings {
public Vector getMembers(MethodCall mc, Vector ml) {

+ ~ Applying semantics to methods

if (<mc==methodl>) { one(ml, 0);} // One
else if (<mc==method2>) { fixed(ml, new int[]{0,1}); } // Fixed

else if (<mc==method3>) { all(ml); }
return mapped;

}

class AlInputs extends Inputs {
public Vector managelnputs(MethodCall mc, Vector ml,
Communicator comm) {
if (<mc==method2>) { scatter(mc.getParameter(0), ml);
else if (<mc==method3>) {
broadcast(mc.getParameter(0), ml);

Grids@Work - ProActive UserGroup - Sophia Antipolis, France - October 10th, 2005

// All

} // Scatter

// Broadcast

£
)
i
W
i e
i
Ay

‘1

:ﬁ@
w

Selecting a transport layer

class AlInputs extends Inputs ({
private Parameters par = new Parameters();
public Vector managelInputs(MethodCall mc, Vector ml,

if (<mc=

Communicator comm) {

=method2>) { scatter(mc.getParameter(0), ml); // Scatter

Parameter p = new Parameter(“reliability”, “reliable”); par.add(p);
comm.setLogicalCommunication(“unicast”, par); }

else if

(<mc==method3>) { broadcast(mc.getParameter(0), ml); // Broadcast

Parameter p = new Parameter(”reliabjlity”, “unreliable”); par.add(p);
comm. setLogicalCommunication(“multigast”, par);

Group Behavior
Enactor

Unrielable | | —w
mop:MulticdstProx : ‘ :
H:Communcatorlmpli) JI ' Rielable : ‘
| | MulticastTransport
L cRroxy N
Proxy Unrielable
Proxy Rielable — !
: CUnicastTransport \
Prony " Communicatiory } if
UnicastProxy : Services |

sendExecRequest)

— Sh\

Grid Middleware ===
Grids@Work - ProActive UserGroup - Sophia Antipolis, France - October 10th, 2005

e Coding the semantics (1)

= Known semantics can be collected in abstract classes:
& RequestMappingSemantic

abstract class Mappings implements RequestMappingSemantic {
protected Vector mapped = new Vector();
protected void one(Vector ml, int i) {
mapped.add(ml.elementAt(i));

}

protected void fixed(Vector ml, int[] 1) {
for (int j = 0; j < i.length; j++)
mapped.add(ml.elementAt(i[j]));

}
protected void all(Vector ml) {

mapped = ml;

}
abstract Vector getMembers(MethodCall mc, Vector ml);

Grids@Work - ProActive UserGroup - Sophia Antipolis, France - October 10th, 2005

Coding the semantics (2)

= Known semantics can be collected in abstract classes:
& InputDistributionSemantic

== abstract class Inputs implements InputDistributionSemantic {
protected Vector scatter(Object par, Vector ml) {
if (par.getClass().isArray()) {
Object[] o = (Object[])par;
Class c¢c = par.getClass().getComponentType();
Object part = null;
int size = ml.size();
int elemNum = o.length/size;
for (int k=0 ; k< size ; k++) {
part = Array.newlnstance(c, elemNum);
for (int j=0; j< Array.getlLength(part); j++)
Array.set(part, j, o[(k*elemNum)+j]);
ml.add(k, part);
}
} else if . . .
}
protected Vector broadcast(Object par, Vector ml) {
for (int i = 0; i < ml.size(); i++)
ml.add(i, par);
return ml;
1) Grids@Work - ProActive UserGroup - Sophia Antipolis, France - October 10th, 2005

Reliable Multicast for ProActive Groups

Grids@Work - ProActive UserGroup - Sophia Antipolis, France - October 10th, 2005

Reliable Multicast Protocols:
problems

* Sender-initiated schemes

& A critical issue is the reduction of the number of feedback messages
that are returned to the sender

Receiver-initiated schemes

& Avoid ACK implosion by sending feedbacks only when a receiver
notices a loss (negative acknowledgement — NACK)

L

L

However, also in this case a large number of NACKs can be sent to
the sender when the number of receivers grows

L

To control the NACK implosion problem more sophisticated
mechanisms are needed

Grids@Work - ProActive UserGroup - Sophia Antipolis, France - October 10th, 2005

L

L

L

-~ Reliable Multicast Protocols: solutions

NACK suppression
& SRM (Scalable Reliable Multicas)

Local recovery
& LRMP (Light-weight Reliable Multicast Protocol)

Local recovery + static tree-based topology
& RMTP (Reliable Muliicast Transport Protocol)

Local recovery + dynamic tree-based topology
& TRAM (Tree-Based Reliable Multicas?)

Grids@Work - ProActive UserGroup - Sophia Antipolis, France - October 10th, 2005

K RE TRAM details

= Hierarchy is a key concept for ensuring scalability to reliable

&

Al
ﬂ
it

i

N

L

multicast protocols

Therefore, among the discussed protocols we have considered
TRAM for our objective ,

Sender, Group Head
Receiver, Group Head
Receiver, Group Member
Groups

Data Cache

Multicast Data Message

Unicast Ack Message
Multicast Local Repair (Retransmission)

Grids@Work - ProActive UserGroup - Sophia Antipolis, France - October 10th, 2005

ELE LI L

RF TRAM and TCP throughputs

—* TRAM-1
TRAM-2
TRAM-3

- -® - TCP-1
- B - TCP-2
- -® - TCP-3

Throughput 10Mbps (PARADISE)
10,0 |
9,0 - --4-=
7 8,0 . -
o 7,0 :
=) L]
— 6,0
g- 5.0 "' B e . e SN ST
J . — 1 - . -
S 40 P =P PSR EREL LAAR LA B
O T e Rt
= ./
2,0 [Vs
1,0
0,0
o1 05 10 20 30 40 5,0 7,0 10,0
Message Size [MB]

Pentium Il dual-processor

Hub 10Mbps

With an optimal setting of TRAM configuration parameters

Grids@Work - ProActive UserGroup - Sophia Antipolis, France - October 10th, 2005

Throughput [Mbps]

I's
&)
!
W
!4 e
il
LAY

‘1

AN
W ‘!1 " £y
>~J\"v)

d |

v

Scalability - 10 Mbps (PARADISE)

TRAM and TCP scalability (1)

e S

1 2 3 4 5 6 7

Receivers

Homogeneous cluster

8 9 10
100,0 T

Scalability - 100 Mbps (PARADISE)
11 12

90,0

* TRAM 4 TCP

80,0

370,0

= 60,0

Tram ldaal

3500

=
40,0

o
= 30,0
[

20,0 ¥ —

10,0

0,0

—— T—f 1%;”4

I .. [|
9

2 3 4 5 6 7 8 10 11 12

Grids@Work - ProActive UserGroup - Sophia AntipoﬁgfeiEFsance - October 10th, 2005

P4 1.8:

P4

1,8 Ghz

256 MB
Windows XP
Java 1.5.0

AMD _1.5:
AMD Athlon XP 1800+
1,5 Ghz

384 MB

Windows XP

Java 1.5.0

P4 2.0:
P4
2,0 GHz
512 MB
Windows Xp
Java 1.5.0

P4_2.4:

TRAM and TCP scalability (2)

Throughput (10MB)

(o]
o
|

~
o
/

RAM — TCP —

[<2]
o

|
—

a
o
/

Throughput [Mbps]
8 &

N
o

-y
o

o

Receivers

Heterogeneous cluster

Grids@Work - ProActive UserGroup - Sophia Antipolis, France - October 10th, 2005

Case Study

Grids@Work - ProActive UserGroup - Sophia Antipolis, France - October 10th, 2005

28

|

|

o
=,

-
3

L

L

L

L

%
g

~ ~ Implementing the master/slave

=3

model with ProActive Groups

Request Mapping
£
v Request must be sent to all slaves
U Slaves can be chosen in order to minimize the computation time

Inﬁput Distribution
v Constructor parameters can be broadcasted to the slaves

£
v Method parameters must be scattered to the slaves
1 Slaves can receive different task sizes if the computational resources are heterogeneous

Synchronization
C> All the results must be available to continue the computation

Output Collection
C> Each result is assembled (merged) to form a single object

Constructor invocations

C> The transport layer is reliable multicast (TRAM)
Method invocations

C> The transport layer is reliable unicast (TCP)

Grids@Work - ProActive UserGroup - Sophia Antipolis, France - October 10th, 2005

. Matrix multiply with native groups:
Y\ VAN .
code writing (1)

w= public class MatrixMultiplyl {
public static void main (String args[]) {
Matrix mRxGroup, mLxGroup result;
Node[] nodes = null; // nodes list for slaves
float[][] a, b;
// def. of the left mat. a and right mat. b
int totalRows = b.length;
Object[] po = new Object[] {b};
mRxGroup = (Matrix)ProActiveGroup.newGroup("Matrix", po,
nodes) ;
Object[] parts = createSubMatrices(a, nodes.length);
Object[][] pars = new Object[nodes.length][];
for (int i=0 ; i < nodes.length ; i++) {
po = new Object[] {parts[il};

pars[i] = po; }
mLxGroup = (Matrix)ProActiveGroup.newGroup("Matrix", pars,
nodes) ;

ProActiveGroup.setScatter (mLxGroup) ;
Matrix gResult = mRxGroup.multiply(mLxGroup);
Matrix result = reconstruction(gResult, totalRows);} }

Grids@Work - ProActive UserGroup - Sophia Antipolis, France - October 10th, 2005

— = Matrix multiply with native groups:
code writing (2)

== public Object[] createSubMatrices(float[][] m, int n){
Object[] parts = new Object[n];
int widthSubMatrix = m.length / n;

for (int i=0 ; i < n ; i++) {

float[][] d = new float[widthSubMatrix][];
for (int j=0 ; j < d.length ; j++)
d[j] = m[(i*widthSubMatrix)+3j];
parts[i]=d;
}

return parts; }

== public Matrix reconstruction(Matrix group, int rows) {

int index = 0;
Matrix partial = null;

int size = ProActiveGroup.size(group);
float[][] d = new float[rows][];
for (int i=0 ; i < size ; i++) {

14
partial = ((Matrix) (ProActiveGroup.get(group,i)));

int widthTmp = partial.getWidth();
for (int j=0 ; j < widthTmp ; j++) {

14

d[index] = partial.getRow(j); index++;

b}
return new Magramfai i ploActive UserGroup - Sophia Antipolis, France - October 10th, 2005

£ 2% Matrix multiply with extended
groups: code writing

= The master/slave semantics and policies are provided by
the class MSGroupBehavior

E_

public class MatrixMultiply2 ({

public static void main (String args[]) {
Matrix mRxGroup, result;

Node[] nodesList = null;// nodes list for slaves
float[][] a, b;// .. def.left mat. a, right mat. b
GroupBehavior msbeh = new MSGroupBehavior();

Object[] po = new Object[] {b};
mRx = (Matrix) ProActiveGroup.newGroup("Matrix",

po, nodesList, msbeh);
result = mRx.multiply(a);

// use of the result matrix

Grids@Work - ProActive UserGroup - Sophia Antipolis, France - October 10th, 2005

£ 2% Performance of matrix multiply:
data transters

= Times for group members creation (transfers of right matrices)

Times 800x800 Times 1600x1600
16 - 70
14 - 60 “
% 10 - z 40 W -
£ s - g =
= — £ 30 -
a7 - ¢ 20 *———= o ¢ —+—
2 10 L
0 0
1 2 3 4 5 6 1 2 3 4 5 6
Nodes Nodes
—4— ProActive/HIMM/TRAM ® ProActive/RMITCP —®— ProActive/HIMM/TRAM —® ProActive/RMI/TCP

Grids@Work - ProActive UserGroup - Sophia Antipolis, France - October 10th, 2005

£ 2% Performance of matrix multiply:
overall computation
= Speedups
= In this case we consider
§ Group member creation (right matrix broadcasting)
& Left matrix scattering
& Product processing on each slave
< Output collection
Sneedup 800x800 Speedup 1600x1600
. —* ProActive/HIMM/TRAM " ProActive/RMITCP . —— ProActive/HIMM/TRAM ™ ProActive/RMITCP
f s
0 0
1 2 3 4 5 6 1 2 3 4 5 6
Slaves Slaves

Grids@Work - ProActive UserGroup - Sophia Antipolis, France - October 10th, 2005

Future work

= Testing hierarchical groups over a large hierarchical
network

*= Implementing automatic group member allocation with
resource management system based on QoS

& This way in the m/s model, the number of slaves can be chosen
dynamically on the basis of available resources and desired
computation time

Grids@Work - ProActive UserGroup - Sophia Antipolis, France - October 10th, 2005

