Programmable and Modifiable Grid Applications

Nikos Parlavantzas

INRIA Sophia-Antipolis / CoreGRID

Context

- Problem
 - How to develop programmable and modifiable grid applications
- Solution approach
 - Component-based software development

- Ingredients
 - Component model: ProActive/Fractal
 - Design approach (methods, guidelines, modelling languages, patterns, etc)

Jem3D

- 3D electromagnetic application
- Finite volume solver for Maxwell 3D equations

Jem3D

 Evolved from initial version in Fortran MPI (CAIMAN team @INRIA)

 Based on a Java, object-oriented framework and *ProActive* library

Parallelisation following a "geometrical decomposition" pattern

Initial Component Architecture

Initial Experience

- Componentisation process
 - Architecture recovery dominated effort
 - Little additional code

- Immediate benefits
 - Main functional units and communication paths are explicit:
 - understandability, opportunities for design improvement
 - Implementation dependencies removed
 - replaceability, reusability

On-going Work

- Current architecture has no support for:
 - dynamic reconfiguration
 - exploiting 3D geometrical decomposition pattern

- Apply Component Framework-based design approach
 - Multiple, domain-specific CFs
 - CF-based reconfiguration
 - Allows designers to exploit CF-specific knowledge
 - CFs are represented as composite components with CF-specific reconfiguration managers

CF-based Jem3D

Top CF

Summary

- Programmability/modifiability in Grid applications
- Approach
 - ProActive/Fractal component model
 - Design approach based on CFs
- Initial experiments with Jem3D
- On-going/future work
 - Restructure towards a CF-based architecture
 - Study performance impact