Improving Peer-to-Peer Resource Usage Through Idle Cycle Prediction

Elton Nicoletti Mathias, Andrea Schwertner Charão, Marcelo Pasin

LSC - Laboratório de Sistemas de Computação UFSM - Universidade Federal de Santa Maria

Table Of Contents

- Goals
- Motivation
- Related Work
- The Idleness Detection Model
- Preliminary Results
- Further Benefits
- Conclusion and Future Work

Goals

- Dynamic mechanism to exploit idle resources
- Efficient use of resources
 - take the most of the resources
 - low disturbance

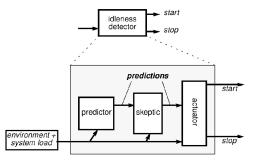
- Large fraction of workstations are unused for a large fraction of time
- The computational power of these workstation is increasing steadily
- By the exploitation of such idle resources, a great computational power can be gathered for parallel processing
- ProActive offers a peer-to-peer infrastructure that can take profit of idle CPU cycles, but their availability must be expressed statically in configuration files.

- Large fraction of workstations are unused for a large fraction of time
- The computational power of these workstation is increasing steadily
- By the exploitation of such idle resources, a great computational power can be gathered for parallel processing
- ProActive offers a peer-to-peer infrastructure that can take profit of idle CPU cycles, but their availability must be expressed statically in configuration files.

- Large fraction of workstations are unused for a large fraction of time
- The computational power of these workstation is increasing steadily
- By the exploitation of such idle resources, a great computational power can be gathered for parallel processing
- ProActive offers a peer-to-peer infrastructure that can take profit of idle CPU cycles, but their availability must be expressed statically in configuration files.

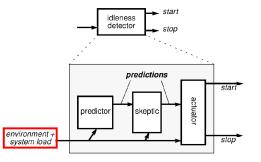
- Large fraction of workstations are unused for a large fraction of time
- The computational power of these workstation is increasing steadily
- By the exploitation of such idle resources, a great computational power can be gathered for parallel processing
- ProActive offers a peer-to-peer infrastructure that can take profit of idle CPU cycles, but their availability must be expressed statically in configuration files.

Related Work


- Seti@home (BOINC)
 - Static Prediction
 - Based on keyboard and mouse interruptions
 - Completely independent tasks
- Condor (and XTremWeb)
 - Adaptive prediction
 - Based on CPU utilization and load averages
 - Fully integrated on job scheduler
 - Related to job deadlines
 - Batch processing approach

Related Work

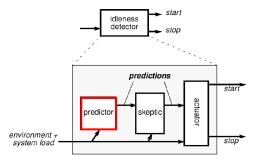
- Seti@home (BOINC)
 - Static Prediction
 - Based on keyboard and mouse interruptions
 - Completely independent tasks
- Condor (and XTremWeb)
 - Adaptive prediction
 - Based on CPU utilization and load averages
 - Fully integrated on job scheduler
 - Related to job deadlines
 - Batch processing approach


Proposed Model for Idleness Detection Metric Collection Predicting Values Adjusting Predictions Integration with ProActive's P2P

Proposed Model

Proposed Model for Idleness Detectio Metric Collection Predicting Values Adjusting Predictions Integration with ProActive's P2P

Metric Collection


Proposed Model for Idleness Detection Metric Collection Predicting Values Adjusting Predictions Integration with ProActive's P2P

Metric Collection

- Use of native library
 - Keep Java portability
 - Low Overhead
- Currently Suported:
 - OSs: Linux, Solaris, FreeBSD, AIX, IRIX, HPUX, MacOS X and Windows NT/XP/2000
 - archs: i386, ia64, sparc, powerpc, s390
- Interfaced with common-use tools, such as:
 - Ganglia, Performance Co-Pilot, Parmon and SCMS (SNMP support is also being implemented)

Proposed Model for Idleness Detectio Metric Collection Predicting Values Adjusting Predictions Integration with ProActive's P2P

Predicting Values

Proposed Model for Idleness Detection Metric Collection Predicting Values Adjusting Predictions Integration with ProActive's P2P

Predicting Load Values

Important concepts:

- Interval of idleness
- Horizon of prediction

Approach Used:

- Larger horizon: Usage Pattern Analysis through Wavelet Compression
- Smaller horizon: Time Series Models (Moving Averages, ...)

Proposed Model for Idleness Detection Metric Collection Predicting Values Adjusting Predictions Integration with ProActive's P2P

Predicting Load Values

Important concepts:


- Interval of idleness
- Horizon of prediction

Approach Used:

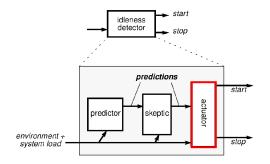
- Larger horizon: Usage Pattern Analysis through Wavelet Compression
- Smaller horizon: Time Series Models (Moving Averages, ...)

Proposed Model for Idleness Detectio Metric Collection Predicting Values Adjusting Predictions ntegration with ProActive's P2P

Adjusting Predictions

Proposed Model for Idleness Detection Metric Collection Predicting Values Adjusting Predictions Integration with ProActive's P2P

Adjusting Predictions


- Accuracy of predictions depends on environment behaviour
- Past prediction analysis can improve the future ones

How:

- Threshold adjusts
- Prediction algorithm adjusts

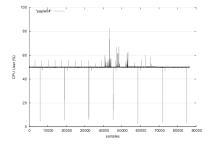
Proposed Model for Idleness Detection Metric Collection Predicting Values Adjusting Predictions ntegration with ProActive's P2P

Integration with ProActive's P2P

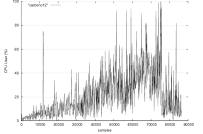
Proposed Model for Idleness Detection Metric Collection Predicting Values Adjusting Predictions ntegration with ProActive's P2P

Integration with ProActive's P2P

- Availability of P2P Service daemon guided by idleness detector instead of xml file
- Control of keyboard and mouse interruptions on workstations
- So far, no changes on the P2P protocol


Prediction Accuracy

- Collected values: CPU usage on 30 nodes
- Nodes with different usages: dedicated cluster machines, a frontend and users' workstations
- Interval of reading: 10 seconds
- Hit rates table:

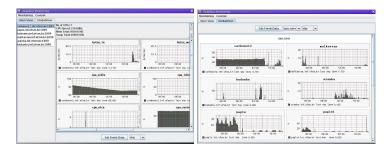

Steps ahead	Wavelet Compression	Time Series	Both
01	97.5 %	98.3%	98.5 %
10	90.8 %	92.1%	93.5 %
30	85.7 %	82.0%	86.3 %

Preliminary Tests and Results Obtained

Prediction Accuracy

Steps ahead	Wavelet Compression	Time Series	Both
01	99.5 %	99.4%	99,6 %
10	97,2 %	96.8%	98,5 %
30	96,5 %	92,1%	97,9 %

Steps ahead	Wavelet Compression	Time Series	Both
01	84.4 %	92.2%	96,6 %
10	68,8 %	74.1%	78,2 %
30	46,1 %	66,9%	67,5 %


100

Integration with ProActive

- Intervals of idleness
 - Shorter than 3-5 min: system can become unstable
 - Longer than 15 min: not advisable for non-dedicated environments
- Horizon of prediction
 - Shorter are strong co-related. Longer, not too much
- More tests are required for evaluating the model...

Further Benefits

- Extension to the IC2D
 - Graphical visualization of load history (CPU, memory, network usage, load average, ...)

Further Benefits

- Package for obtaining on demand informations about hardware and machines' load indexes
 - Portability
 - Low Overhead

Conclusions

- It is possible to roughly "predict" the resource usage for the future based on the past;
- Non-dedicated environments, such as workstations connected by ordinary networks, can offer a great computational power for parallel processing;
- Usage of resources can be improved through the constant use of their idle times;
- It is possible to keep P2P self-organization, by adjusting the horizon of idleness detection

Future Work

- Evaluate the behaviour of the model for larger environments
- Analyse finer grain usage (smaller horizons)
- Measure the impact of addition or subtraction of workstations on applications and look for ways to minimize it
- Asses the worthiness of using non-dedicated environments for parallel processing

References

- Matt W. Mutka, Estimating Capacity for Sharing in a Privately Owned Workstation Environment, IEEE Transactions on Software Engineering, v.18 n.4, p.319-328, April 1992
- A. Acharya, G. Edjlali, and J. Saltz. The utility of exploiting idle workstations for parallel computation. In Proceedings of SIGMETRICS'97, 1997
- R. Golding, P. Bosch, C. Staelin, T. Sullivan, and J. Wilkes. Idleness is not sloth. In Proc. of the USENIX Conf., pages 201–212, New Orleans, LA, Jan. 1995
- M. Litzkow, M. Livny, and M. Mutka. Condor A Hunter of Idle Workstations. In Proceedings of the 8th International Conference of Distributed Computing Systems, 1988.
- G. Fedak, C. Germain, V. N'eri, and F. Cappello. XtremWeb: A Generic Global Computing System. In IEEE Int. Symp. on Cluster Computing and the Grid, 2001
- David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, Dan Werthimer, SETI@home: an experiment in public-resource computing, Communications of the ACM, v.45 n.11, p.56-61, November 2002
- C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and W. S. Stornetta. "Spawn: A Distributed Computational Economy,"IEEE Transactions on Software Engineering, February 1992.

Improving Peer-to-Peer Resource Usage Through Idle Cycle Prediction

Elton Nicoletti Mathias, Andrea Schwertner Charão, Marcelo Pasin

LSC - Laboratório de Sistemas de Computação UFSM - Universidade Federal de Santa Maria

