
Discovery of Components and Services within
the ProActive/Fractal Framework

Diego Puppin

Institute for Information Sciences and Technology
Pisa, Italy

October 10 2005

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 1 / 44

Introduction

Outline

1 Introduction
Service-Oriented Architecture
A Market of Components

2 How to Rank Software Components
Our Proposal
Experiments

3 Fractal

4 Searching Fractal Components

5 Conclusions

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 2 / 44

Introduction Service-Oriented Architecture

Service-Oriented Architecture

Thanks to their ability to be dynamically assembled, services can
provide a much required layer of integration between the different
global computers that [...] are supporting the operation of the future
Information Society. As a result, service-oriented computing is bound
to play the role of an ideal overlay computer for Global Computing.a

afrom Martin Wirsing, “Software Engineering for Service-Oriented Overlay
Computers: SENSORIA”, FP6-2004-IST-FET

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 3 / 44

Introduction Service-Oriented Architecture

Why Searching?

A progamming model based on components

Developing and publishing code as a component
Component search: general problem

since day 1 of programming

FORTRAN
several libraries available for the same problem

.NET
assemblies can be (down)loaded at run-time

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 4 / 44

Introduction Service-Oriented Architecture

Why Searching?

E-science and e-business applications are evolving, chasing
technological progress

Monolithic applications are gone
Multi-domain, heterogeneous applications
Big choice of tools, computing resources etc.

Real-world applications are getting more complex

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 4 / 44

Introduction Service-Oriented Architecture

When Searching?

More and more difficult and important for the GRID

Resources are not dependable
Heterogeneous platform→ adaptation
Extremely variable environment

Old problem, new challenge

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 5 / 44

Introduction Service-Oriented Architecture

When Searching?

At design-time

Choice of tools that are most fit to the task
Minimizing prototyping time
Improve SW quality with stable solutions

At run time
Adaptation to guarantee performance contract
C2C Interaction
Fault management

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 5 / 44

Introduction A Market of Components

An open market of components

Several vendors will sell competing components
Different prices
Different QoS
Different trust

How to choose?
Economy-based scheduling
Component search engine

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 6 / 44

Introduction A Market of Components

Components: Models

In general, we can think of a SW component as
Independently developed, composable, clear interface, well-defined
black-box behavior

Several choices
Deployed Web Service
CCM Component
CCA use-provide model
Java Class, .NET assembly
Fractal Component

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 7 / 44

Introduction A Market of Components

Goals

A programming model suitable (that is user friendly and efficient)
to program individual components is needed

Component definition, usage and composition must be arranged
according to standards that allow interoperability to be achieved
[...]

Component composition must support and, in the meanwhile,
guarantee that scalability is achieved

Semantics must be defined, precisely modelling both the single
component semantics and the semantics of composition[...]

Performance/cost models must be defined, to allow the
development of tools

CONGRATULATIONS FRACTAL!!!

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 8 / 44

Introduction A Market of Components

GRID.it

A programming environment is needed that 1:
1 supports structured exploitation of parallelism
2 allows interoperability with existing SW
3 supports reuse of legacy code

1M. Aldinucci, S. Campa et al., title = ”Components for high-performance grid
programming in Grid.IT”, in ”Component Models and Systems for Grid Applications”,
ed. Vladimir Getov and Thilo Kielmann, Springer, 2004

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 9 / 44

Ranking

Outline

1 Introduction
Service-Oriented Architecture
A Market of Components

2 How to Rank Software Components
Our Proposal
Experiments

3 Fractal

4 Searching Fractal Components

5 Conclusions

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 10 / 44

Ranking Our Proposal

Our proposal: GRIDLERank

Similar to Google PageRank

Static analysis of code links

INTERFACES ONLY

Every time a class is used, there is a rank boost

No source code is needed

No runtime information is needed

Only public interfaces

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 11 / 44

Ranking Our Proposal

Why only interfaces?

Commercial component will hide source code

Will also hide runtime profile information

Interfaces must be public, in order to use a component

We suggest to base ranking on this

A composed application should also make public the composition
structure

use/provide ports

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 12 / 44

Ranking Our Proposal

Why composition should be public?

To improve trust

To become more popular

To support a standard
Open Source...

Compare with digital libraries

bib. references VS full-text

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 13 / 44

Ranking Our Proposal

Class Graph: Static vs Dynamic

Abstract static information→ Progr. Interface:Class Rank

Executable information→ Program Code:Comp. Rank

Dynamic information→ Process:Scale Free

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 14 / 44

Ranking Our Proposal

A Model for Ranking

Assumptions:
Avoid ontologies

An ontology for the whole Grid?

Heavy emphasis on LINKS
Positive experience on the Web

No use of source code and dynamic data
Hidden in commercial apps

Use only public interfaces
Maybe semantic info can be used

Sub/super-types...

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 15 / 44

Ranking Experiments

Initial Experiments

Java classes, simple composition model

Strong documentation (Java Docs)

Unique ID (Package names)

Class links are very easy to see

We collected 49000 classes

We parsed and built a social graph

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 16 / 44

Ranking Experiments

Social Network in Java Classes

Java programmer↔ component user
S/he chooses most general and useful classes

Power-law behavior
Web pages, blogs, social networks sociali etc

see On Power-Law Relationships of the Internet Topology, by
Faloutsos et al.

component usage↔Web linking!!!

Component search↔Web Search

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 17 / 44

Ranking Experiments

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 18 / 44

Ranking Experiments

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 19 / 44

Ranking Experiments

Class Rank

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 20 / 44

Ranking Experiments

Top-rank classes

String, Object, Class, Exception

#7: Apache MessageResources

#11: Tomcat CharChunk

#14: DBXML Value

#73: JXTA ID

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 21 / 44

Fractal

Outline

1 Introduction
Service-Oriented Architecture
A Market of Components

2 How to Rank Software Components
Our Proposal
Experiments

3 Fractal

4 Searching Fractal Components

5 Conclusions

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 22 / 44

Fractal

Fractal and Proactive

The Fractal framework was recently re-implemented under
Proactive

Proactive’s Objects now have the Fractal component interface

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 23 / 44

Fractal

Fractal

Fractal is a modular and extensible component model that can be used
with various programming languages to design, implement, deploy and
reconfigure various systems and applications, from operating systems
to middleware platforms and to graphical user interfaces.

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 24 / 44

Fractal

Goals

The goal of Fractal is to reduce the development, deployment and
maintenance costs of software systems. It uses some well known
design patterns, such as separation of interface and implementation
and, more generally, separation of concerns, in order to achieve this
goal.

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 25 / 44

Fractal

Main features

A Fractal component is composed of two parts:
1 a content that manages the functional concerns,
2 a controller that manages zero or more non functional concerns

(introspection, configuration, security, transactions,).

The content is made of other Fractal components, i.e. Fractal
components can be nested (and shared) at arbitrary levels.

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 26 / 44

Fractal

More comments

Reusable object-oriented abstract classes, components and
frameworks have lifecyles of their own that are distinct from those
of the applications that incubate them

Objects evolve within and beyond the applications that spawned
them

Structure emerges as objects evolve

Because the pattern in which they evolve is similar at each level,
the overall pattern can be thought of as a fractal curve

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 27 / 44

Fractal

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 28 / 44

Searching Fractal Components

Outline

1 Introduction
Service-Oriented Architecture
A Market of Components

2 How to Rank Software Components
Our Proposal
Experiments

3 Fractal

4 Searching Fractal Components

5 Conclusions

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 29 / 44

Searching Fractal Components

Documentation

No standard for documentation file or distribution.

Only interfaces have a standard description (ADL)

Detailed description of the interfaces is usually released in the
form of a Java documentation file for the corresponding Java
interface.

When more detailed information about a given implementation is
needed,

No easy way to document composite components

Basic components = Java classes, documented as such

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 30 / 44

Searching Fractal Components

Limitations of the Java Doc model

1 Methods and fields that are peculiar to the framework (e.g. the
bindFc mechanism to bind components) are listed among the
methods that implements the class logic.

2 Component dependencies (client interfaces) to other components
can be inferred only through a detailed analysis of class fields,
among which the binding variables are listed.

3 Redundant information is present about, for instance, methods
inherited through the Java class structure (e.g. clone, equals,
finalize, getClass, toString...) or interfaces implemented for other
reasons related to implementation details (e.g. javax.swing.Action,
java.lang.Cloneable, java.io.Serializable...).

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 31 / 44

Searching Fractal Components

Searching?

Component interface describes the services offered
We could search and choose services!

Implementations are not well described
We cannot easily choose among competitors!

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 32 / 44

Searching Fractal Components

Integrating GRIDLE and Fractal

We run GRIDLE over the documentation of Proactive and Fractal

We studied the Julia Fractal implementation

and the Proactive Fractal implementation
We wrote a tool to inject components into the GRIDLE database

it takes Fractal ADLs and returns the chain of (recursive)
component dependencies

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 33 / 44

Searching Fractal Components

Is Search Possible?

Component interfaces are well described
We could search and choose among different services

No standard description for implementation
How can we choose among competitors?

What about dependencies?
Should we choose the one with fewer dependencies?

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 34 / 44

Searching Fractal Components

Packaging is fundamental

A package component should include ADL, exec. files,
description, list of dependencies, maybe dependent modules

We should look for packaged components (with few dep.)

Rank: description, usage within other appls.

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 35 / 44

Searching Fractal Components

Right now...

Applications = big Fractal components

Dependencies are not well managed
WE CAN do some mining on final basic components

Is the right level?

WE CAN see what interfaces are most used

WE CANNOT match description and components!

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 36 / 44

Conclusions

Outline

1 Introduction
Service-Oriented Architecture
A Market of Components

2 How to Rank Software Components
Our Proposal
Experiments

3 Fractal

4 Searching Fractal Components

5 Conclusions

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 37 / 44

Conclusions

Conclusions

Growing use of component-oriented frameworks
Vision: open-market of COTS components

Strong need for searching tools
New metrics needed

based on social graph

Strong potential
Use of class↔ Linking of pages

Public compositions

Fractal is an interesting comp. model but not clear std. for
distribution and packaging

At what level do we search?

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 38 / 44

Conclusions

Open issues

Components depend from interfaces
Java and .NET depend from specific classes

Used components are listed in the Composition
Is the ADL always available?

Apparently... there aren’t many components available so far

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 39 / 44

Conclusions

Acknowledgments

MIUR CNR Strategic Project L 499/97-2000 (5%)

NextGrid

CoreGRID

Università degli Studi di Pisa

ISTI-CNR

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 40 / 44

Backup Slides

Outline

6 Backup Slides

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 41 / 44

Backup Slides

GRIDLE 0.1

Ranking using two metrics:
TF.IDF (term frequency times inverted document frequency)

GRIDLE Rank

Bells and whistles:
Snippets, Links and Reverse Links

http://gridle.isti.cnr.it

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 42 / 44

Backup Slides

A search engine for SW components

GRIDLE: Google-like Ranking, Indexing and Discovery service for a
Link-based Eco-system of software components

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 43 / 44

Backup Slides

Diego Puppin (ISTI-CNR) GRIDs@Work October 10 2005 44 / 44

	Main Part
	Introduction
	Service-Oriented Architecture
	A Market of Components

	How to Rank Software Components
	Our Proposal
	Experiments

	Fractal
	Searching Fractal Components
	Conclusions

	Backup Slides
	Backup Slides

