

Peer-to-Peer Infrastructure Branch & Bound API

Alexandre di Costanzo

The 2nd ProActive User Group Monday October 10th 2005

Outline

Peer-to-Peer Infrastructure

 Description
 Experimentations

 Branch & Bound API

 Description
 Experimentations

 Future and On Going Work
 Conclusion

2

Peer-to-Peer Infrastructure

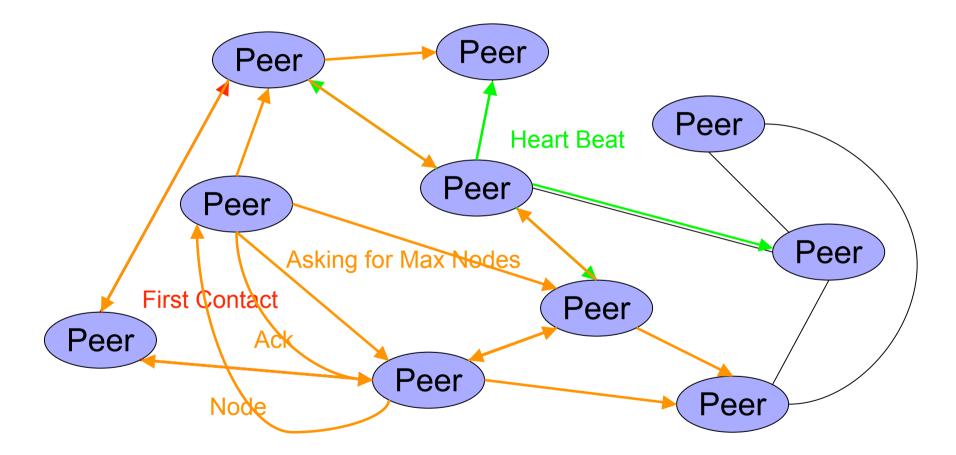
Self-Organized and Configurable

Motivations and Goals

- Using spare CPU cycles of desktop machines:
 Host not available all the time
 Used by their normal users
- Providing a permanent shared JVMs network for computing
- Not a new communication protocol, not a DHT
- Self-Organized and Configurable

The P2P Infrastructure

Dynamic environment:
 Bootstrapping (First contact)
 Discovering peers
 Acquiring Computational nodes


- Self Organized and Configurable:
 - □ Time To Update (TTU): peers availability
 - Number Of Acquaintances (NOA): keep the infrastructure up
 - □ Time To Live (TTL): in host hop for message life
 - □ First Gnutella message protocol version inspired

A Gnutella Inspired Protocol

Breadth-First Search algorithm (BFS)

- Sending a message with an UID, and TTL, and number of asked nodes, and service reference
- Receiving
 - Is it an old message?
 - Yes, it is: continue;
 - No, it's not:
 - •Keep the UID
 - I have a free node:
 - Send the node reference to the callee and waiting an ACK until timeout
 - If timeout is reached or NACK
 - continue;
 - If ACK and asked nodes 1 > 0 and TTL > 0 then
 - Broadcast with TTL 1 and asked nodes 1
 - •continue;

P2P Infrastructure

NOA = 2; TTU = 1 minutes; TTL = 2

N-Queens With n = 25

INRIA P2P Desktop GRID 6 months of computation

■ Total of solutions found: 2,207,893,435,808,352 ≈ 2 quadrillions

- Total of tasks computed: 121,251,992
- Average time of one task computation:

2 minutes and 18 seconds

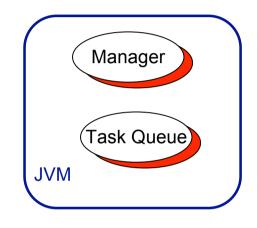
- Total computation time ≈ 185 days
- Total workers CPU time ≈ 53 years
- Total of unique machines: 260

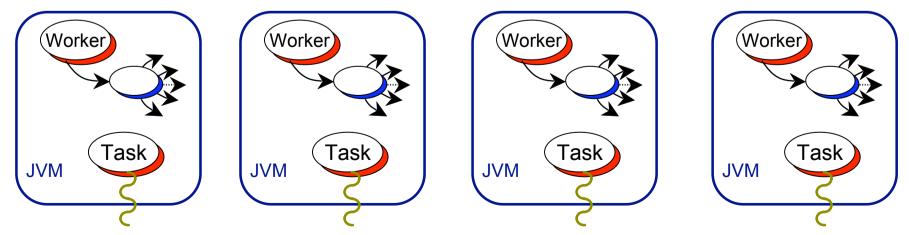
Branch and Bound API

Dynamic and Simple

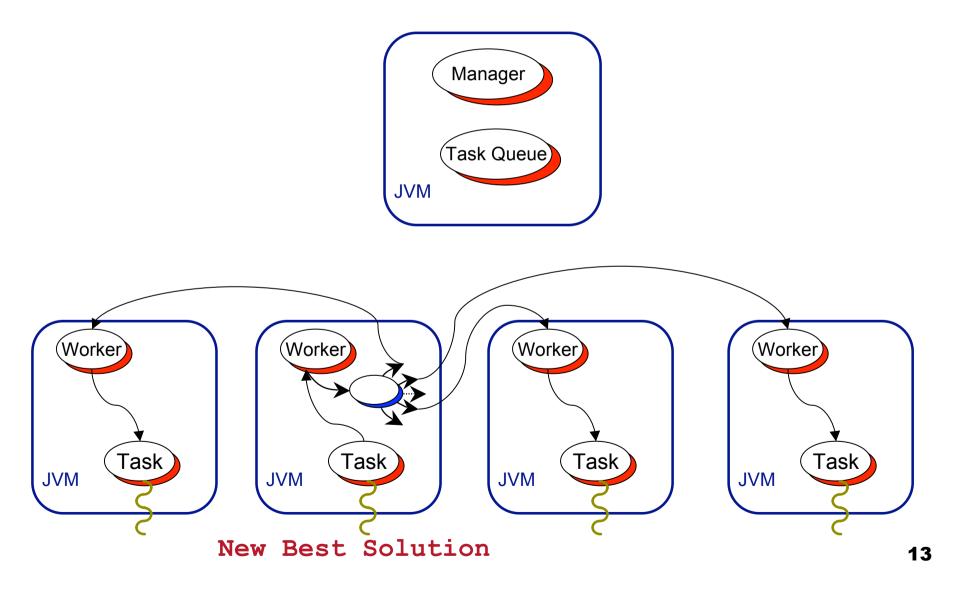
Branch & Bound API (BnB)

- Provide a high level programming model for solving BnB problems, which manages task distribution and provides task communications
- Goals:
 - Exploring a search tree in parallel with task communications for cutting bad tree branches
 - □ For the user the program distribution is hidden
 - □ Based on the Farm Skeleton (Bag of Task)
 - □ **NOT** only for P2P


Features:

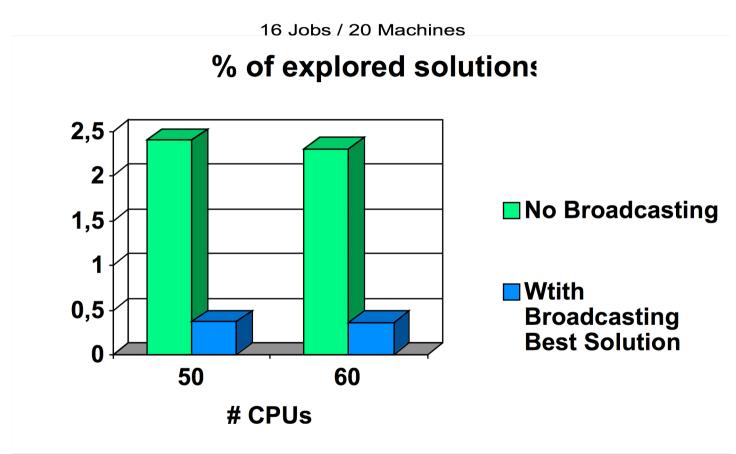

- Dynamic task split
- Automatic result gather
- Broadcasting best current result
- □ Automatic backup and task reallocation (configurable)
- □ Choose and/or Create the queue for task allocation.

BnB: Task Queue Interface


- Providing tasks, and managing results
- Backup current solutions and none achieved tasks
- For the moment:
 - □ Basic Queue: FIFO
 - □ Larger Queue: Explore the search tree in larger
- User can implements is own Task Queue

Global Architecture

Broadcasting a New Best Solution


BnB API Just extend the abstract Task:

package org.objectweb.proactive.branchnbound.core:

public abstract class Task implements Serializable, Compared start the computation: protected Object bestKnownResult;

```
import org.objectwebubbbacehore.Brangesenlate oemerster);
Manager manager = ProActiveBranchNBound.newFarmWithBasicQueue(myTask, virtualNode);
Result futureResultpub manager.stagether(Result[]angesults);
// Have a default behavior
                     public abstract void initLowerBound();
                     public abstract void initUpperBound();
                     public int compareTo(Object arg) {
                          // Have a default behavior
                     }
                 }
```

FlowShop Experimentations

Cluster of 32 bi-Opteron @ 2Ghz, connected via Gigabit Ethernet

On Going and Future Work

P2P Infrastructure:

- □ INRIA Coprin Research Group:
 - Running Alias library:
 - Kochen-Specker
 - □ 3 years of cumulated time since the July 22th 2005

General improvements

- Branch and Bound API:
 - □ Auto-dynamic splitting
 - □ Providing more Queues
 - □ More experimentations
 - □ Wrapping native code

Conclusion

A Self-Organized P2P Infrastructure for providing JVMs:

Deployed and used at INRIA Sophia

A simple API for distributing and solving Branch & Bound problem:

□ Hiding distribution

Open API

Further Information

The P2P:

Since ProActive 2.2

The Branch and Bound API: ProActive 3.0

 On Tuesday October 11th: ProActive Tutorial Hands-On Grid Programming P2P Demo with the INRIA P2P Desktop Grid