
Peer-to-Peer Infrastructure
-

Branch & Bound API
Alexandre di Costanzo

The 2nd ProActive User Group
Monday October 10th 2005

2

Outline

 Peer-to-Peer Infrastructure
 Description
 Experimentations

 Branch & Bound API
 Description
 Experimentations

 Future and On Going Work
 Conclusion

Peer-to-Peer
Infrastructure

Self-Organized and Configurable

4

Motivations and Goals

 Using spare CPU cycles of desktop machines:
 Host not available all the time
 Used by their normal users

 Providing a permanent shared JVMs network for
computing

 Not a new communication protocol, not a DHT
 Self-Organized and Configurable

5

The P2P Infrastructure

 Dynamic environment:
 Bootstrapping (First contact)
 Discovering peers
 Acquiring Computational nodes

 Self Organized and Configurable:
 Time To Update (TTU): peers availability
 Number Of Acquaintances (NOA): keep the

infrastructure up
 Time To Live (TTL): in host hop for message life
 First Gnutella message protocol version inspired

6

A Gnutella Inspired Protocol
Breadth-First Search algorithm (BFS)

• Sending a message with an UID, and TTL, and number of asked
nodes, and service reference
• Receiving

• Is it an old message?
• Yes, it is: continue;
• No, it‘s not:

•Keep the UID
• I have a free node:

• Send the node reference to the callee and waiting an
ACK until timeout

• If timeout is reached or NACK
• continue;

• If ACK and asked nodes - 1 > 0 and TTL > 0 then
• Broadcast with TTL - 1 and asked nodes - 1

•continue;

7

P2P Infrastructure

Peer

Peer

Peer

Peer

Peer

NOA = 2; TTU = 1 minutes; TTL = 2

Peer

Peer

Peer

Peer

PeerFirst Contact

Heart Beat

Asking for Max Nodes

Node

Ack

8

N-Queens With n = 25

 Total of solutions found:
2,207,893,435,808,352 ≈ 2 quadrillions

 Total of tasks computed: 121,251,992
 Average time of one task computation:

2 minutes and 18 seconds
 Total computation time ≈ 185 days
 Total workers CPU time ≈ 53 years
 Total of unique machines: 260

INRIA P2P Desktop GRID
6 months of computation

Branch and Bound API

Dynamic and Simple

10

Branch & Bound API (BnB)
 Provide a high level programming model for solving BnB

problems, which manages task distribution and provides
task communications

 Goals:
 Exploring a search tree in parallel with task communications for

cutting bad tree branches
 For the user the program distribution is hidden
 Based on the Farm Skeleton (Bag of Task)
 NOT only for P2P

 Features:
 Dynamic task split
 Automatic result gather
 Broadcasting best current result
 Automatic backup and task reallocation (configurable)
 Choose and/or Create the queue for task allocation.

11

BnB: Task Queue Interface

 Providing tasks, and managing results
 Backup current solutions and none achieved

tasks
 For the moment:

 Basic Queue: FIFO
 Larger Queue: Explore the search tree in larger

 User can implements is own Task Queue

12

Global Architecture

JVM

JVM
Task

Worker

JVM
Task

Worker

JVM
Task

Worker

JVM
Task

Worker

Task Queue

Manager

13

Broadcasting a New Best Solution

JVM

JVM
Task

Worker

JVM
Task

Worker

JVM
Task

Worker

JVM
Task

Worker

Task Queue

Manager

New Best Solution

14

BnB API
package org.objectweb.proactive.branchnbound.core;

public abstract class Task implements Serializable,
Comparable {
 protected Worker worker;
 protected Object bestKnownResult;

 public abstract Result execute();

 public abstract Vector split();

 public Result gather(Result[] results) {
// Have a default behavior

 }

 public abstract void initLowerBound();

 public abstract void initUpperBound();

 public int compareTo(Object arg) {
// Have a default behavior

 }

}

Just extend the abstract Task:

import org.objectweb.proactive.branchandbound.*;
import org.objectweb.proactive.branchendbound.core.*;

Manager manager = ProActiveBranchNBound.newFarmWithBasicQueue(myTask, virtualNode);
Result futureResult = manager.start(); // This call is asynchronous

And start the computation:

15

x 3

FlowShop Experimentations

Cluster of 32 bi-Opteron @ 2Ghz, connected via Gigabit Ethernet

16

On Going and Future Work

 P2P Infrastructure:
 INRIA Coprin Research Group:

 Running Alias library:
 Kochen-Specker
 3 years of cumulated time since the July 22th 2005

 General improvements
 Branch and Bound API:

 Auto-dynamic splitting
 Providing more Queues
 More experimentations
 Wrapping native code

17

Conclusion

 A Self-Organized P2P Infrastructure for
providing JVMs:
Deployed and used at INRIA Sophia

 A simple API for distributing and solving
Branch & Bound problem:
Hiding distribution
Open API

18

Further Information

 The P2P:
Since ProActive 2.2

 The Branch and Bound API:
ProActive 3.0

 On Tuesday October 11th:
ProActive Tutorial Hands-On Grid Programming

P2P Demo with the INRIA P2P Desktop Grid

