Industrial Views on

Existing and Future Grid Middlewares

Wolfgang Gentzsch D-Grid

Unicore Summit

Sophia Antipolis, October 9 – 10, 2005

Industry is on a Journey

Old World

Static Silo Physical

Manual

Application

New World

Dynamic Shared Virtual Automated Service

Transitioning from Silo Oriented Architecture

to Service Oriented Architecture

Unicore Summit

Sophia Antipolis, October 9 - 10, 2005

Industry View of Grids

- Cluster Grids (better: grid-enabled clusters)
- Departmental Grids
- Enterprise Grids (BofA, J&J), Campus Grids (Houston, White Rose)
- Partner Grids (Automotive companies)
- Service Provider Grid (T-Systems, BT)
- Vertical Grids (Theme Grids: e.g. BioGrid, BIRN, NEESgrid)
- Regional Grids (NCgrid, CoGrid)
- National Grids (D-Grid, Naregi, Teragrid)
- International Grids (EGEE, DAISA)
- The GRID

The Industry View is not

The Industry View is not, this:

TERAGRID

Gritikiréland

Grid.it

project

EGA – Reference Model, May 2005

Definition:

"An Enterprise Grid is a collection of interconnected

grid components under the control of a

Grid Management Entity."

1000s of those Grids in Industry

 Life Sciences Startup and cost efficient Custom research or limited use applications Multi-day application runs (BLAST) Exponential Combinations Limited administrative staff Complementary techniques 	 Electronic Design Time to Market Fastest platforms, largest Grids License Management Well established application suite Large legacy investment Platform Ownership issues
 Financial Services Market simulations Time IS Money Proprietary applications Multiple Platforms Multiple scenario execution Need instant results & analysis tools 	 High Performance Computing Parallel Reservoir Simulations Geophysical Ray Tracing Custom in-house codes Large scale, multi-platform execution

Sophia Antipolis, October 9 – 10, 2005

EGA – Basic Views of a Data Center

Unicore Summit

EGA Grid Middleware

Consists of layers of increasingly abstract objects

EGA – Grid Component Classes

	Biz Process/- Service	E-Bookstore		ERP Service		Online Bank	
	Virtualized Platform	Aggregations	Web Server Farm	Federation	Clusters	Load Balanced Farms	
	Platform Instance	Database	LDAP	Web Server		Application Server	
	Virtualized OE	Network Filesystems - NFS, CIFS	eg	Virtualized OS N1 Grid Containe BSD Jails etc.	818)	Load Balancers, Global IP in clusters	
	OE	File Systems	0	OS - eg AIX, HP/UX, Linux, Solaris, Windows etc.		IP, TCP, UDP etc	
	Virtualized Physical	LUNs, Volumes	Ń	/MMs & Hyperviso Hardware Partition	ns	VLANs	Jor J
Unicore Sum	Physical	Disks, Array Controlle	975,	Servers,	-	Switches,	D GRiD

EGA – Grid Management Entity

GME is logical entity that manages

- the grid components
- the relationship between various grid components
- their life cycles

GME manipulates life cycle:

• Create, Configure, Start, Update, Notify, Monitor Control, Stop, Unconfigure, Destroy

GME and Policies:

• applies policies (e.g. Service Level Objectives and constraints) defined by the enterprise, to the enterprise grid

Industry Challenges/Requirements for Enterprise Grids

- \$ "We don't care about VO Grids, we care about the enterprise grids"
- \$ Lack of trust in new technologies, fear of being the first
- **\$** Need to support existing applications
- \$ Interoperability between disparate vendors' components
- \$ Securing investment in grid => components and standard interfaces
- \$ Scalability (scale out: department => enterprise => partners)
- **\$** Easy use, reduced complexity, automation,...
- \$ Agility: provision and decommission grid components as biz needs change
- \$ Security: what can be done today ?? (and what not) (in enterprises!)
- \$ Need for policy engines in A-A-A-A-
- \$ Need to standardize and automate provisioning of servers and data
- \$ Provide cross-platform, service based, billing
- \$ Easily map biz goals onto resource and services utilization
- \$ Create demos and reference implementations/architecture

Unicore Summit

Sophia Antipolis, October 9 – 10, 2005

But, there will be more in the future:

DAME is an e-Science pilot project, demonstrating the use of the GRID to implement a distributed decision support system for deployment in maintenance applications

Partners: Universities of York, Leads, Sheffield, Oxford and Rolls Royce

Business Challenges, Potential Grid Inhibitors

- Difficult to differentiate reality from hype
- Sensitive data, sensitive applications (medical patient records)
- Different organizations have different ROI
- Accounting, who pays for what (sharing!)
- Security policies: consistent and enforced across the grid !
- Lack of standards prevent interoperability of components
- Current IT culture is not predisposed to sharing resources
- Not all applications are grid-ready or grid-enabled
- Open source is not equal open source (read the little print)
- SLAs based on open source (liability?)
- "Static" licensing model don't embrace grid
- Protection of intellectual property
- Legal issues (FDA, HIPAA, multi-country grids)

Business Challenges, Potential Grid Inhibitors

- Difficult to differentiate reality from hype
- Sensitive data, sensitive applications (medical patient records)
- Different organizations have different ROI
- Accounting, who pays for what (sharing!)
- Security policies: consistent and enforced across the grid !
- Lack of standards prevent interoperability of components
- Current IT culture is not predisposed to sharing resources
- Not all applications are grid-ready or grid-enabled
- Open source is not equal open source (read the little print)
- SLAs based on open source (liability?)
- "Static" licensing model don't embrace grid
- Protection of intellectual property
- Legal issues (FDA, HIPAA, multi-country grids)

Grid Adoption in Business

- Think big, start small (be a visionary and a realist)
- □ Grid is a good opportunity to revisit existing IT infrastructure
- Look for comparable success stories and use case analyses
- □ Identify gaps, problems, concerns, … Can grids help ?
- Find out in talking/listening to your users / customers !
- Build YOUR list of grid business benefits and inhibitors
- Create awareness -> training -> testbed (6 wks 6 months)
- Get help from Grid Service Providers
- □ Get buy-in from upper management
- Eventually, evolve from testbed into production

