
INTEROPERABILITY OF GRID COMPONENT
MODELS: GCM AND CCA CASE STUDY ∗

Maciej Malawski † and Marian Bubak
Institute of Computer Science and ACC CYFRONET
AGH University of Science and Technology
Al. Mickiewicza 30, 30-059 Krakow, Poland
malawski@agh.edu.pl

Francoise Baude, Denis Caromel, Ludovic Henrio and Matthieu Morel
INRIA Sophia Antipolis – CNRS – Univ. of Nice Sophia Antipolis
2004, Route des Lucioles, BP 93 FR-06902 Sophia Antipolis, France
francoise.baude@inria.fr

Abstract This paper presents a case study in the generic design of Grid component models.
It defines a framework allowing two component systems, one running in a CCA
environment, and another running in a Fractal environment, to interact as if they
were elements of the same system. This work demonstrates the openness of both
Fractal and CCA component models. It also gives a very generic and exhaustive
overview of the interaction strategies that can be adopted to allow full integration
of these two models, like strategies for reusing in Fractal single components
from the CCA world and connecting a Fractal system to an already running CCA
assembly. Finally, it presents the implementation and results of investigation
of interoperability between two given component frameworks: MOCCA and
ProActive. In generall, this paper presents the key concepts useful to make any
two component models interoperate.

Keywords: Component model, interoperability, CCA, Fractal, GCM, MOCCA, ProActive

1. Introduction
Component model may be considered as one of the most appropriate paradigm

for programming Grid applications [7]. It allows to tackle the problem of com-
plexity originating from an application and an infrastructure by providing such

∗This work was supported by EU IST CoreGRID project and Polish grant SPUB-M.
†Support from the Foundation for Polish Science is kindly acknowledged.



2

features as composition by interfaces, support for flexible deployment and re-
configuration mechanisms.

There are few component models which address the Grid applications: the
most important ones are Common Component Architecture (CCA) [3], Grid
extensions of CCM (CORBA Component Model) [10] and Grid Component
Model (GCM) [1] developed recently by CoreGRID project. GCM is based
on the Fractal [5] and is being developed as a standard component model
for programming the Grid. To achieve this goal, the abilities to interoperate
with existing applications and to integrate existing "legacy" components are
required. The CCA model which has been developed by the HPC community
for several years, now has a number of implementations (frameworks) such
as CCAFFEINE [3], XCAT [9] and MOCCA [11], and scientific components
are expected to be available soon. Therefore, the problem of interoperability
between GCM and CCA becomes an interesting and important issue.

In this paper, we address the problem of interoperability between GCM and
CCA component models. We focus on the base component model of GCM,
namely Fractal, as it defines the fundamental properties of the components
and their interactions. We start with an analysis of both models to identify
similarities and differences between them. Next, we discuss integration strate-
gies and propose the solutions to the identified problems, such as issues with
typing system. We propose a generic and framework independent solution,
which is based on the adapter (wrapper) design pattern. In order to validate
the approach, we have developed a prototype, which allows ProActive (a GCM
prototype) [4] and MOCCA (a CCA implementation) [11] frameworks to in-
teroperate. The extensions to Fractal introduced in GCM, such as collective
interfaces and autonomic controllers are left for the future work.

2. Background
Interoperability can be defined as an ability of two or more entities to com-

municate and cooperate despite differences in the implementation language, the
execution environment, or the model abstraction [14]. Today, a popular solution
for interoperability between components is Web Services where standardized
protocols based on XML provide the common language for applications to
communicate [6]. This has been successfully applied also to high-performance
modules like ASSIST modules, wrapped as GRID.it components [2].

Interoperability has been outlined as a requisite for the Grid Component
Model: a realistic programming model, in the context of heterogeneous sys-
tems, component frameworks and legacy software, must be able to interoperate
with existing component frameworks and allow applications to be built from
a mixture of various kinds of components. Naturally, the GCM proposes to
achieve general component interoperability through standardized web services.



Interoperability of Grid component models: GCM and CCA case study 3

Besides of it there are alternative interoperability approaches: our idea is to
introduce mediators and adapters to build up an ad-hoc interoperability layer
between selected component frameworks without superimposing on them an-
other general-purpose interoperability framework (like a CORBA bus, or a
meta-component model implemented on top of some selected existing compo-
nent frameworks [13]). This alternative approach is undertaken in the work
described in this paper.

3. Overview of CCA and GCM
The CCA[3] specification is defined using the Scientific Interface Descrip-

tion Language (SIDL) [8] which specifies the core entities: components, ports
and a framework. Ports are the external interfaces of a component and they must
extend the Port interface. A component declares both its client and server inter-
faces called uses and provides ports respectively. The framework is represented
to the component by the Services interface, which is used by the component to
register its ports. This interface also defines a getPort()method which allows
a component to obtain a reference to the uses port in order to invoke methods
on this client interface. The external interface exposed by the framework to
the application developers is called BuilderService. It provides methods for
creating/destroying component instances and connecting/disconnecting their
ports. Besides of these core interfaces, CCA also specifies optional ports, such
as component repository, connection event service, service registry and param-
eter ports, intended to facilitate interoperability between different frameworks.

Fractal is a hierarchical component model that provides introspection and
intercession; it is easily extensible [5]. There are two kinds of components
in Fractal: primitive components which are black boxes, and composite com-
ponents that are composed of other components and can be used to build up
yet other composites. Fractal enforces a clear separation between functional
and non-functional aspects; non-functional features are provided by controllers,
and encapsulated in a membrane. This model provides reconfiguration (adding,
removing, binding, and unbinding) of the functional content of composites com-
ponents, in order to support adaptivity of the component systems.

The GCM is a component model targeted at Grid computing, which focuses
on the following extensions to the base Fractal model:

A deployment paradigm based on virtual nodes allowing to specify a
logical deployment of a system, and a physical deployment separately.

Support for several communication patterns. First, asynchronous method
calls is considered as the default semantics, and other semantics as stream-
ing and event-based communication may be supported. A major contri-
bution of the GCM is to standardize multicast and gathercast interfaces
that allow 1-to-n and n-to-1 communications.



4

Support for non-functional adaptivity and autonomicity. The GCM spec-
ifies how to design non-functional aspects in a component way, and thus
allow the reconfiguration of the non-functional features of a component
system. Finally, a set of autonomic controllers is also standardized and
they allow component to adapt themselves in a much hierarchical and
autonomous way.

4. Comparison of CCA and Fractal
Both CCA and Fractal component models enforce a separation between inter-

face and their implementation, allow composition of applications by connecting
client and server ports of components, and provide some reflective capabilities.

The basic and obvious similarity is that the functional interfaces of compo-
nents in both models are equivalent, e.g. when considering Java implementa-
tion, both Fractal and CCA components are Java classes implementing their
functional interfaces and some additional interfaces imposed by the specifica-
tion. Interaction between components in both models is based on the method
invocation on the client interface which is connected to a server counterpart.

The first conceptual difference is the way the components in both models
interact with the outside world. In CCA, a component is given an explicit
reference to the framework, and the component itself has the “initiative” to
actively inform the framework about its internals, i.e. ports (interfaces). On the
other hand, the Fractal model assumes that the component has a passive role in
the introspection process and can reveal its internals on demand.

The second difference is the way the component interfaces are connected.
In CCA the BuilderService is responsible for creating the connections and
the framework manages them, while the component is only required to invoke
getPort() method to get a valid reference to the port before using its client
interface. In Fractal, the connection is managed by the component, by imple-
menting a BindingController interface.

ContentController in Fractal does not have its counterpart in CCA be-
cause CCA does not support composite components as explicitly as Fractal.
Also, there is no standard life cycle controller mechanism.

Although CCA does not distinguish non-functional interfaces (controllers)
there are some standard ports, which are optional. One of them is is a Basic-
ParameterPort which can be used to read and modify arbitrary properties of
a component, analogously to Fractal Attribute controller.

The mechanism of component creation is also different in both models. The
method for creating instances in CCA is included in the BuilderService port,
whereas Fractal defines the Factory interface for this purpose. In both cases
the creation mechanism may be implementation specific, and depends on the
actual framework.



Interoperability of Grid component models: GCM and CCA case study 5

Although there is no standard Application Description Language (ADL) for
CCA components, the BuilderService provides all the required functionality
to construct such a description. The Application Factory project defined the
XML-based ADL for XCAT [9], whereas CCAFFEINE [3] defines its own
scripting language for composing applications.

5. Overcoming Typing and ADL Issues
One of the main issues in this work is to deal with the fact that Fractal (and

GCM) components have an immutable type (i.e. a set of exported interfaces
cannot evolve dynamically) whereas CCA component can subscribe new ports
to be exported at any time. More precisely, in CCA, each component can register
a port at any moment, so there is no concept such as a component type. On
the contrary, in Fractal, except collection interfaces which can be instantiated
several times along the life of the component, the type of a component and the
set of its interfaces is fixed upon its instantiation. The “static” typing of Fractal
components can be used to verify the correctness of the bindings, according to
interface types. We propose the following ways of solving the typing issue:

1 Generate a Fractal component automatically upon instantiation of a CCA
component, i.e. to use only the port declared by the setServices
method. This allows to build a Fractal component automatically without
any additional code (no ADL need to be specified) but prevents adding
new ports after component initialization.

2 A programmer should specify the ADL for the CCA component. This
means more manual effort, but no set of interfaces has to be automatically
inferred. One of the main advantages of this approach is that some ports
provided during the component lifetime could be specified as Fractal
optional interfaces.

3 An improvement of the previous approach consists in generating the ADL
specification upon a CCA component instantiation (not necessarily the
real one) and then reuse the ADL inferred in the scenario 2 above. The
user may then modify the ADL generated (to add some of the ports that
will be provided during the component lifetime).

4 One can also generate an ADL from available CCA description (e.g. as
SIDL [8]). The CCA script language (used by frameworks, but not stan-
dardized) may be reused to declare which ports of the CCA component
/ assembly should be exported.

We have chosen the second approach as it seems the most general, it enables a
very good understanding of the differences between CCA and Fractal, and it is



6

centered on the interaction between the two frameworks. Moreover, it can be
automatized later on with solutions 3 and 4.

In the all aforementioned approaches a mapping between exported CCA
ports and GCM interfaces is required. More precisely, CCA ports are identified
by the component name and port name, and this must be mapped to Fractal
interfaces defined in the ADL. In other words, we need to define a bijection
between CCA ports (i.e., component name + port name) and Fractal interfaces
as it is defined in the ADL.

6. Integration Strategies
We separate CCA integration inside a GCM component system into two

approaches: the encapsulation of a single CCA component (Section 6.1) and of
a complete CCA system, consisting of several CCA components (Section 6.2).

Along the life time of a CCA-Fractal composition, the integration framework
must support: (a) communication from the Fractal component system to the
CCA system; (b) communication from the CCA system to Fractal components;
(c) plugging or unplugging of Fractal interfaces to the CCA system (both on
the client and on the server side); (d) exportation of new CCA ports if this is
supported (see Sec. 5).

Additionally, we are looking for solution that are as general as possible, i.e.
independent of CCA framework implementation as much as possible.

6.1 Simple Integration
We first focus on a simple case: how to encapsulate a single CCA component

into a Fractal one?
The proposed solution enables the creation (instantiation) of a CCA compo-

nent as a primitive Fractal component in a single address space. It relies on a
wrapper that encapsulates a CCA component, and exposes cca.Services in-
terface to a CCA component (see Fig. 1). Before instantiation we should know
the type of a component in order to define the Fractal type of the component;
this might be obtained from a provided ADL description.

In practice, the wrapper stores the references to bound interfaces and pass
them to getPort() method. All the communication is done by a Fractal
framework (no need to have any CCA framework running at all – the wrapper
will constitute a mini-framework for that component).

6.2 Real Interoperability
In this case CCA components are created in their own framework and they

are connected to Fractal components running in their framework.
Complete interoperability between two frameworks requires instantiation of

a whole CCA assembly, and ability to interact with it from a Fractal framework



Interoperability of Grid component models: GCM and CCA case study 7

Wrapper

CCA 
Component

C BC

cca.Services

Wrapper

CCA 
Component

C BC

CCA 
Component

CCA 
Component

Builder
Service

GlueGlue

CCA 
Framework

Figure 1. Integration of a single CCA
component into a Fractal one

Figure 2. Interoperability between CCA
and Fractal components

as if it was a Fractal composite component. In this case, we have a CCA
component or a set of CCA components which are created and connected among
themselves by a CCA framework (e.g. MOCCA). So, we wrap the component
assembly as a Fractal component in such a way that it can be connected to other
Fractal components.

The solution we propose is based on a wrapper which adds a Membrane
to a CCA assembly. The wrapper should interact with the CCA framework
only via BuilderService external interface (obtained in framework depen-
dent manner). The wrapper is given the mapping between CCA system ports
and external Fractal ports as discussed in Sec. 5 and using this information it
creates GluePorts as CCA components (using BuilderService for each of
the exported ports). The implementation of a GluePort is framework specific,
and translates the Fractal invocations to CCA invocations and reversely. The
GluePorts expose Fractal interfaces to the outside world, and they can be con-
nected (bound) to other Fractal components using BindingController and
Component interfaces of the wrapper. The wrapper uses the BuilderService
to connect exported CCA ports to corresponding GluePorts using CCA frame-
work, so the communication between CCA component assembly and GluePorts
is handled by the CCA framework.

In other words, the Wrapper component is both a CCA and a Fractal compo-
nent. Although Fig. 2 shows the CCA system "inside" the wrapper, it is possible
also to see the Fractal system from the CCA perspective as "wrapped’ one, so
the solution is symmetric.



8

CCA
Controller

CCA 
Component

C

CCA 
Component

CCA 
Component

Builder
Service

Server 
Glue A

CCA 
Framework

Client
Glue B

BC

BC

WA

CCA

A A
A A B B B

BB

H2O Kernel

H2O Kernel

H2O Kernel

1

2 3

4b4a
5 66

Figure 3. Wrapping an assembly of CCA components running in MOCCA framework as
composite Fractal/ProActive component

7. Implementation - ProActive and MOCCA
In order to verify the proposed above solution a prototype using Java-based

ProActive and MOCCA implementations was developed.
Integration of a single component was realized as planned in Sec. 6.1. A

wrapper which encapsulates a CCA component and which exposes Services
interface to a CCA component is created by the Fractal framework. The wrapper
instantiates the CCA component as a local object and it invokes setServices
(this) on a CCA component, passing the reference to itself. The CCA com-
ponent registers its uses and provides ports, and consequently the wrapper can
create direct (local) bindings to exported CCA ports.

In the real interoperability scenario we assume that there are CCA compo-
nents running in a framework and connected using a mechanism specific to this
framework (e.g. a script, or Java API), forming the existing CCA assembly.
Fig. 3 shows the example of wrapping an assembly of three CCA components
which provides one port of type A and uses one port of type B. The scenario
consists of the following steps:

1 The Fractal framework creates a CompositeWrapper Component.

2 The wrapper implements a CCAControllerwhich is used to pass the de-
scription of the CCA assembly to the wrapper. This description includes
all parameters allowing to connect the external ports of the assembly.

3 The reference to BuilderService is returned by a framework-specific
bootstrap method. In the case of MOCCA the reference is obtained from
the URI to Builder pluglet.



Interoperability of Grid component models: GCM and CCA case study 9

4 The type of Wrapper Component is obtained from an ADL or Fractal
API invocations. Provided with the mapping from CCA ports to Fractal
interfaces (Sec. 5), the wrapper creates the GluePorts:

(a) For each Provides port of wrapped CCA assembly one ServerGlue
port is created. It is created as a primitive Fractal component with
one server interface and it has one attribute controller called Wrap-
perAttributes, which is immediately used to pass the reference to
the corresponding CCA provides port (see e.g. ServerGlue A on
the Fig. 3). The ServerGlue component has a MOCCA client code
which delegates the method invocation to the wrapped component.

(b) For each Uses port of the wrapped system one ClientGlue is cre-
ated: it is a primitive one, becoming at the same time the Fractal
and CCA component. It is instantiated in H2O kernel (a container
for MOCCA) and upon creation it launches ProActive runtime to
expose the BindingController (BC). Consequently, ClientGlue can
be connected to CCA components on its server side and to Fractal
interfaces on the client side (see ClientGlue B on the Fig. 3).

5 The wrapper uses the BuilderService to connect the exported CCA
uses ports to corresponding GluePorts.

6 CCAController connects all Glue ports to the composite Wrapper using
standard Fractal bindings.

7 Fractal BindingController of a composite wrapper may be used to connect
exported ports to other interfaces of the Fractal application.

It should be noted that both Client and Server Glue components are conceptually
symmetric and their role is to translate invocations from one framework to the
other. It was the implementation choice to create a Server Glue as ProActive
component which includes the MOCCA code, whereas a Client Glue is created
as MOCCA component with an "embedded" ProActive one (Fig. 3).

8. Conclusions and Future Work
The analysis of CCA and GCM component models, shows that despite some

differences, it is feasible to integrate components from one model into another
framework, as well as to create the glue code which enables inter-framework
interoperability. The prototype functionality has been verified with a number
of examples, including a non-trivial application (simulation of gold cluster
formation[12]) and integrated with the ProActive library.

We observed that if the properties of two different component models can be
well understood, then the generation of wrappers and glue code bridging two
different component frameworks can be generic and thus automated.



10

Our approach resembles the one adopted in SciRun2 [13]with Bridge compo-
nents acting like our GluePort ones. However, we avoid introducing the notion
of a new (meta) component model and we allow components running in their
native frameworks to interoperate (i.e. not requiring an additional one).

Future work will focus on automatic ADL building, generation of glue at
runtime, investigating advanced features by which GCM extends Fractal model
and performance tests to measure the overhead introduced by glue layer.

References
[1] CoreGRID Programming Model Virtual Institute. Basic features of the grid component

model (assessed), 2006. Deliverable D.PM.04, CoreGRID, http://www.coregrid.
net.

[2] M. Aldinucci et al. Building interoperable grid-aware ASSIST applications via WebSer-
vices. In PARCO 2005: Parallel Computing, pages 145–152, Malaga, Spain, 2005.

[3] R. Armstrong et al. The CCA component model for high-performance scientific comput-
ing. Concurr. Comput. : Pract. Exper., 18(2):215–229, 2006.

[4] F. Baude et al. From distributed objects to hierarchical grid components. volume 2888 of
LNCS, pages 1226 – 1242. Springer, 2003.

[5] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The FRACTAL
component model and its support in Java. Softw., Pract. Exper., 36(11-12):1257–1284,
2006.

[6] I. Foster. Service-oriented science. Science, 308(5723):814 – 817, 2005.

[7] V. Getov and T. Kielmann, editors. Component Models and Systems for Grid Applications.
Springer, 2005.

[8] S. R. Kohn et al. Divorcing Language Dependencies from a Scientific Software Library.
In Proc. of the 10th SIAM Conf. on Parallel Processing for Sci. Comp., Portsmouth, USA,
Mar. 2001. SIAM.

[9] S. Krishnan and D. Gannon. XCAT3: A Framework for CCA Components as OGSA
Services. In Proc. Int. Workshop on High-Level Parallel Progr. Models and Supportive
Environments (HIPS), pages 90–97, Santa Fe, New Mexico, USA, Apr. 2004. IEEE.

[10] S. Lacour et al. Deploying CORBA components on a computational grid. volume 3083
of LNCS, pages 35 – 49. Springer, 2004.

[11] M. Malawski et al. MOCCA – towards a distributed CCA framework for metacomputing.
In Proceedings of the 10th HIPS Workshop in Conjunction with IPDPS. IEEE, 2005.

[12] M. Malawski et al. Experiments with distributed component computing across grid bound-
aries. In Proceedings of the HPC-GECO/CompFrame workshop in conjunction with
HPDC 2006, Paris, France, 2006.

[13] S. Parker et al. Integrating component-based scientific computing software. In M. A. Her-
oux et al., editors, Frontiers of Parallel Processing For Scientific Computing, chapter 15.
SIAM, 2005.

[14] A. Vallecillo et al. Component interoperability. Technical Report ITI-2000-37, Depart-
mento de Lenguajes y Ciencias de la Computacion, University of Malaga., 2000.


