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1

INTRODUCTION

Time is gold. This is particularly true in financial markets because every second is
passing you can’t go back to change previous actions. Any delays are generally unacceptable
as the financial market is continually changing in a liquid market (e.g. Chicago Board
Options Exchange (CBOE) 1 or Eurex and International Securities Exchange (ISE)2 the two
derivative markets which are the most well-known and actively traded market nowadays).
Any decision generally needs to be made in seconds or at most minutes to be useful to
traders thus making time constraints is a hot topic for financial institutions. Everyday
more complex financial contracts are created in order to enhance the market liquidity.
Having more sophisticated products with more complex mathematical models leads the
decision making processes to become more computationally intensive. Meanwhile, recent
advances in computer technology have led to a proliferation of powerful networked computers
that form large distributed systems (e.g. grid computing) to solve advanced computation
problems including computational intensive ones. Obviously, financial institutions are the
first major leaders that profit from applying high performance computing (HPC) for their
needs. Therefore, during the last decade, both academy and industrial works have made
every effort to solve such interesting combination of HPC and computational finance.

Particularly, we focus on the derivative market and are interested in the evaluation of
high dimensional option contracts, one of the main contract types in the derivative mar-
ket. As mentioned above, there are more and more sophisticated option contracts with a
very large volume of underlying assets that have significant computational requirements.
However for high dimensional problems, analytical methods which are very efficient, are not
always applicable due to the “curse of dimensionality”. The term “curse of dimensionality”
due to Bellman (1961) [17] means the exponential growth in volume when adding more
extra dimensions in the problem space. For example, the evolution of the option value
can be modelled using a partial differential equation (PDE) (e.g. the BlackScholes partial
differential equations (PDE) [19]) and a common used numerical method to obtain such op-
tion price is the finite difference method which can solve the PDE using a discretized form
with tree approaches, see Schwartz (1977) [104]. However because the method presents the
evolution of option price using a lattice tree in time and underlying asset price, hence it is

1www.cboe.com/

2http://www.eurexchange.com
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limited whenever increasing the number of underlying assets (increasing the dimension of
the problem space). That is why in such high dimensional cases, numerical methods such
as Monte Carlo (MC) based methods can be used, see [52]. Another main advantage of
the MC method is that its nature is well suited to parallel computing, see [43]. However,
to date, although parallel computing for finance is a very active area of research, there has
been limited public discussion on the parallelization of computational algorithms, and even
less on the reliance on a grid computing environment. The reasons for this are firstly due to
the trade secrets that financial institutions have invested in developing their own mathemat-
ical models and computing environments to give them advantages over their competitors
and secondly because of the difficulties in parallelizazing the quite complex computational
algorithms and employing them in a large-size computing environment safely and smoothly.

Research objectives

The research work presented within this thesis had a objective to study the use of HPC
for Monte Carlo based methods for computational demanding financial pricing applications.
As a consequence, our objectives can be summerized as follows: The first one is a grid pro-
gramming framework for computational finance which especially targets derivative pricing
applications. The second one is the design of implementation of a parallel approach for
the Classification Monte Carlo (CMC) algorithm proposed by Picazo (2002) [94] for high
dimensional American option pricing.

For the first objective, we aim to provide a framework which includes fault tolerance,
load balancing, dynamic task distribution and deployment mechanism for a heterogeneous
grid computing environment. This framework should support both either common users
who just want a tool to run their applications faster on a grid and the financial software
developers who want a programming framework to implement their distributed algorithms
and applications. Hence it should abstract both common users and developers from the
underlying computing resource infrastructure. For the second objective, we aim to find a
parallel algorithm for high dimensional American option pricing that can be scalable in a
grid computing environment.

Contributions

In face of those objectives, this thesis presents the following contributions:

• A grid-enabled programming framework for financial applications especially for Monte
Carlo based ones (e.g. option pricing and hedging using Monte Carlo methods),
named PicsouGrid: PicsouGrid is able to provide fault tolerance, load balancing,
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dynamic task distribution and deployment on a heterogeneous environment (e.g. a
grid environment). It is also designed to support both large Bag-of-Tasks (BoT)
problems and parallel algorithms requiring communications.

• A parallel approach for Monte Carlo based algorithm for high dimensional American
option pricing: We particularly investigated the Classification–Monte Carlo algorithm
for pricing high–dimensional American options. The CMC Algorithm estimates the
characterization of the boundary and it can be used for pricing different option types
such as maximum, minimum or geometric average basket options using a generic clas-
sification configuration. Our parallel approach was scaled up to 64 processors in a grid
environment. The experiments were realized with the real world basket option size
with a large number of underlying assets (e.g. 40 assets in the CAC40 index3). We
also analyzed the performance and the accuracy of the CMC algorithm with several
classification algorithms such as AdaBoost proposed by Freund and Schapire (1996)
[45], Gradient Boost proposed by Friedman (2001) [47] and Support Vector Machines
from Cristianini and Shawe-Taylor (2000) [39]. In term of numerical results, using
PicsouGrid, we were able to evaluate our option pricing with a large high number of
opportunity dates (e.g. up to 100s opportunity dates) in order to obtain the Amer-
ican option prices with high accuracy. Beside, we provided a full explanation and
some detailed numerical experiments of the dimension reduction technique which is
very useful in validating the estimated option prices that we calculated using CMC
algorithm.

• A financial benchmark suite for performance evaluation and analysis of grid middle-
ware: The benchmark suite includes 1000 testcases where each one consists of one
high dimensional European option pricing and hedging problem. Such benchmark
suite is conceptually simple and easy to understand for both the grid computing and
financial communities. For the grid computing community, it is readily redistributable
and “generic” to evaluate some specific middleware performance. In the financial con-
text, the benchmark suite includes both algorithms implementation and “reference”
results to validate the computed results using provided algorithms in the benchmark
suite. The benchmark suite was successfully used in the 2008 SuperQuant Monte
Carlo challenge - the Fifth Grid Plugtest and Contest. Within the context of this
challenge, we developed the ProActive Monte Carlo API (MC API), a simple pro-
gramming framework in a distributed environment based upon the ProActive grid

3www.euronext.com/
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middleware and programming library, that was proved useful for the Grid Plugtest
and Contest participants.

Organization of this thesis

This thesis consists of three major contributions, introduced in the previous section. There
are five chapters and the content of each chapter is briefly described below:

• Chapter 1 Context : In this chapter, firstly in term of computational finance, we
will present the mathematical background of the high dimensional option pricing and
hedging problems. We also discuss the difficulties appearing when performing high
dimensional computations and the adaptable computational methods for such com-
putations such as Monte Carlo based methods. Secondly, we give an overview of
grid computing and discuss why Monte Carlo based methods are suited for parallel
computing in particularly for grid computing. Finally, we will provide an example of
pricing and hedging the high dimensional European options using Monte Carlo meth-
ods. Such example is well suited to a Master/Worker parallel computing approach in
the context of grid environment.

• Chapter 2 PicsouGrid: A Grid Framework for Financial Applications: This chapter
will introduce motivations behind PicsouGrid then, resulting architecture, program-
ming supports, proof of concept implementation. The chapter then continues with
some experiment of results of PicsouGrid in a grid environment. Using an as simpli-
fied as possible option pricing problem, we analyze the performance of PicsouGrid on
it, in term of speedup, load balancing and fault tolerance.

• Chapter 3 Parallel High Dimensional American Option Pricing : Within this chapter,
we will discuss about some American option pricing using Monte Carlo based methods
and associated parallel approaches. We particularly focus on the Classification-Monte
Carlo (CMC) algorithm proposed by Picazo (2002) [94] for pricing high-dimensional
American options. A parallel approach for the CMC algorithm will be provided. Such
approach is then successfully evaluated in a computational grid environment using
PicsouGrid. We also analyze the performance and the accuracy of the CMC algorithm
with several classification algorithms such as AdaBoost, Gradient Boost and Support
Vector Machines in order to figure out its performance-accuracy tradeoffs.

• Chapter 4 Financial Benchmark Suite for Grid Computing : We will detail the
motivations of the SuperQuant Financial Benchmark Suite which we desgined for
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performance evaluation and analysis of grid middleware in the financial engineering
context. We will provide details about how to setuo the values for specific benchmarks,
then how to make effectively use it (through a somple programming framework, named
ProActive Monte Carlo API) and obtain associated scores to mesure the middleware
performance.

• Chapter 5 Conclusions and Perspectives: As each of the above chapters already
concludes and highlights some specific remaining work if any, this chapter gathers our
general conclusions and then discuss about some future perspectives.
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Chapter 1

CONTEXT

1.1 Computational Finance

Computational finance (often also known as financial engineering) is an inter-disciplinary
field that employs the disciplines of scientific computing, mathematical finance and high
performance computing to make financial decisions, as well as facilitating the risk manage-
ment of those decisions. Utilizing various methods, practitioners of computational finance
aim to precisely explore the potential risks that certain financial contracts create. Areas
where computational finance techniques are widely employed include investments in stocks
and bonds, futures trading, and hedging on stock market activity. Among such areas, finan-
cial derivative market plays an important role and occupies a large portion of transaction
flow in the global market. For example, according to the Eurex and International Securities
Exchange (ISE)1 annual report, the average daily trading volume of such derivatives mar-
kets approximates 10.5 million contracts. Totally, the Eurex and ISE closed out 2009 with
a turnover of more than 2.65 billion contracts, compared with 3.17 billion in the record year
2008 due to financial crisis. Similarly, the Chicago Board Options Exchange 2 reported the
average daily trading volume of 4.7 million contracts and reached totally 1.193 billion con-
tract in 2009. A derivative is a financial contract whose value depends on (or derives from)
the value of other variables (called as the underlying assets). Rather than trade or exchange
the underlying asset itself, derivative traders enter into an agreement to exchange cash over
time based on the underlying asset. Very often, the underlying assets are the prices of stock.
A simple example is a future contract: an agreement to exchange the underlying asset at a
future date at a fixed price.

Derivatives are usually broadly categorized by: the relationship between the underlying
and the derivative (e.g. forward, option, swap), the type of underlying (e.g. equity deriva-
tives, foreign exchange derivatives, credit derivatives), the market in which they trade (e.g.
CBOE, Eurex) or OTC (Over The Counter market)3). Contract price must be determined
before the trade, with a price that must satisfy both buyer and seller. As we can see, due

1http://www.eurexchange.com

2www.cboe.com/

3trading directly between two parties
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to the very large daily trading volume mentioned above determining the fair value for all
such derivative contracts with time constraint is really a challenge. We will discuss about
this problem later in this chapter.

Determining the fair value for a derivative contract is called: the pricing problem. Mean-
while within a derivative contract, there always exists some particular risks that the contract
might face up in the future, due to any change of market parameters/conditions. Therefore,
in order to handle and reduce such risks in the contract, hedging activity is a must. A
perfect hedge is one that completely eliminates the market risk. In practice, the hedging
impacts will influent the final decision to determine the contract price.

Of course, mathematical models are required for both the pricing and hedging problems.
In the particular context of option pricing and hedging, the Cox, Ross and Rubinstein
binomial model [37] and the Black-Scholes model [19, 86] are the simplest pricing models
for such problem. In this thesis, we consider only the Monte Carlo based methods for
multi-dimensional option pricing and hedging which allows us to deal with a wide variety of
stochastic model for the underlying asset. A simple but useful model, the multi-dimensional
Black-Scholes model therefore has been addressed in this context. Further details of such
model will be described in the following section.

1.1.1 Option Pricing and Hedging

An option, one of the main contract used for market risk management, is a contract between
a buyer and a seller that gives the buyer the right but not the obligation to purchase (call
option) or to sell (put option) a specified amount of a particular underlying asset at a future
day at an agreed price. Call and put options both have an exercise price (or strike) K, which
is the trading price of the underlying asset fixed by the contract. The option vanishes after
a maturity date T . Option contracts are characterized by their time exercise rule and also
their payoff type.

We denote Ψ(ST , T ) a general payoff function at time T . As an example, consider an
option contract derived from a price S of a stock with maturity date T . A call option has
a payoff Ψ(ST , T ) = max(ST −K, 0). The zero part corresponds to the scenario where the
option holder does not exercise the right to buy. In contrast, a put option with the same K
has payoff Ψ(ST , T ) = max(K − ST , 0).

Based on the option exercise rule, we can separate options into 3 major categories as
follows: An European option can be exercised only at the maturity date T . An American
option can be exercised at any time t ≤ T . A discretized American option is a Bermudan
option which can be exercised at a finite set of date tm ≤ T,m = 1, . . . , N .

On the other hand, based on payoff type, we have:



8

• Vanilla option : a standard call or put option with Ψ(ST , T ) = max(ST −K, 0) and
max(K − ST , 0) respectively.

• Barrier option : an option that is either activated or canceled based on the under-
lying asset price hitting a certain barrier B. For example, a barrier put option has
Ψ(ST , T ) = max(K − ST , 0) ll ( min

0≤t≤T
(St) ≤ B

) will be activated once the asset price

hits the barrier B.

• Basket option : an option that bases on a basket of underlying assets. For example, a
basket put option has Ψ(ST , T ) = max(K−ST , 0) where S = {S1, . . . , Sd} is a basket
of d assets price.

• Asian option : an option whose payoff is based on the average of the underlying
over some period of time {tm,m = 1, . . . , N}. For example, a Asian put option has

Ψ(ST , T ) = max(K −AT , 0) where AT =
∑NT

m=1 Stm

N
.

Options whose payoff is calculated differently than vanilla are called “exotic” option. Exotic
options can pose challenging problems in pricing and hedging problems because of their
complex structures, see Hull (2008) [61].

In the early 1970s, Fischer Black, Myron Scholes and Robert Merton presented their
breakthrough model for stock option pricing and it is commonly known as the Black-Scholes
(BS) model [19, 86]. The model assumes that the price of an asset follows a geometric
Brownian Motion (1.1), Samuelson (1965) [101], with constant drift and volatility.

St = S0 +
∫ t

0
µSsds +

∫ t

0
σSsdWs (1.1)

here t is the time of observation, µ is the mean rate of return (in percentage) of asset, σ
is the volatility rate (in percentage) of the asset and Wt is a one-dimensional Brownian
motion. The BS model also makes the following explicit assumptions:

• There is no arbitrage opportunity. For example in a stock market, an arbitrage op-
portunity can be simply seen as an opportunity to buy a stock share at a low price
then immediately selling it for a higher price on a different market, thus making a
risk-free profit.

• St is a continuous process in time t.

• The interest rate is constant at any time.
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• There are no transaction costs.

• In case of stock, it does not pay a dividend.

• There are no restrictions on short selling, where short selling involves selling a stock
that is not owned.

The BS model has had a huge influence in financial markets in general and particularly the
derivative market. The multi-dimensional Black-Scholes model is an extension of the BS
model for multi-dimensional option pricing problems. For example, consider a basket of d
underlying asset that is described using the multi-dimensional Black-Scholes model in (1.2).
Such a multi-dimensional model is a simple model to describe the evolution of a basket of
d underlying assets price through a system of stochastic differential equations (SDEs) [71],

dSi
t = Si

t(r − δi)dt+ Si
tσidB

i
t, i = 1, . . . , d, where (1.2)

• S = {S1, . . . , Sd} is a basket of d assets price.

• r is the constant interest rate for every maturity date and at any time.

• δ = {δ1, . . . , δd} is a constant dividend vector.

• B = {B1, . . . , Bd} is a correlated d-dimensional Brownian Motion (BM).

• σ = {σ1, . . . , σd} is a constant volatility vector.

Fundamentally, the option pricing relies on the arbitrage pricing under risk-neutrality.
Within a market without arbitrage opportunity, if two contracts have the same payoffs,
they must have the same market price: the arbitrage price. Moreover, the risk neutrality is
the position of an agent that expects the same return from the risky assets S∗t and a risk-
free bond B∗t for the same initial investment. We denote Bt, the bond value, continuously
compounded then B∗t = ert in the BS model for instance, where r is the constant interest
rate. On a given market (S∗t , B

∗
t ), for a given risk-neutral probability P∗ on this market,

the option pricing theory [71, 61] states that the fair price at time zero of an option is the
expected value, under P∗, of its discounted payoff. Hence, the fair price V for an European
option contract is given by the following expression

V (S0, 0) = E
[
e−rT Ψ(St, t ∈ [0, T ])

]
. (1.3)
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In case of American option pricing, an American option price must at least equal its
payoff value otherwise there would be an arbitrage opportunity. For example, assume an
American option on an underlying asset S has a price less than its payoff value, V (St, t) <
(K−St). One can buy such put contract for V and also buy the underlying asset for S, then
immediately exercise the put contract for K, thus made a risk-free profit K − S − V > 0.
In order to avoid such arbitrage opportunity, we have:

V (St, t) ≥ Ψ(St, t) (1.4)

At any time, the underlying asset price where we should exercise the American option
is called the optimal exercise point. During the option life T , these optimal points will
form a continuous boundary which depends on time, called the optimal exercise boundary
b∗(t) = {x;V (x, t) = Ψ(x, t)}. Such boundary divides the space of an American option into
two regions:

• the continuation region, C(t) = {x;V (xt) > Ψ(xt)}, where one should hold the option
contract rather than exercise it early.

• the stopping region, S(t) = {x;V (x, t) ≤ Ψ(x, t)}, where one should exercise the
option immediately.

There are several ways to formulate the American option pricing problem [126]. A common
way is the optimal stopping formulation where the fair price at time zero of an American
option can be written as,

V (S0, 0) = sup
τ

E
[
e−rτΨ(Sτ , τ ∈ [0, T ])

]
. (1.5)

where the maximum is taken over all stopping time τ ∈ [0, T ]. This supremum is achieved
by an optimal stopping time τ∗ under the form

τ∗ = inf{t ≥ 0 : St ∈ S} (1.6)

Though we address the simulation methods for American option pricing, we restrict our-
selves to American options that only can be exercised at a finite set of opportunity dates
Θ = {tm,m = 1, . . . , N}, then in this case such options become Bermudan options. Of
course, one would like to approximate the American price by letting m increase to infin-
ity. Future references to American options imply both American and Bermudan options.
Then the American option price at any time tm can be approximated on a discrete set of



11

opportunity date as follow,

V (Stm , tm) = sup
τ∈Θ

E
[
e−rτΨ(Sτ , τ)|Stm

]
. (1.7)

The notation E(Y |X) means the expectation of Y knowing X. To get the option price
at time zero V (S0, 0), Equation (1.7) can be rewritten under the dynamic programming
representation as follows:

V (StN , tN ) = Ψ(StN , tN )

V (Stm , tm) = max
(
Ψ(Stm , tm),E

[
e−r(tm+1−tm)V (Stm+1 , tm+1)|Stm

] (1.8)

Equation (1.8) shows that at time tm the option holder should exercise the option
whenever Ψ(Stm , tm) > E

[
e−r(tm+1−tm)V (Stm+1 , tm+1)|Stm

]
and to hold it otherwise. We

define the term Ψ(Stm , tm) as the exercise value (also called intrinsic value) of the option
and the other term E

[
e−r(tm+1−tm)V (Stm+1 , tm+1)|Stm

]
as the continuation value.

Many methods for American option pricing rely on the dynamic programming represen-
tation in Equation (1.8). The main difficulty is the estimation of the conditional expectation
in Equation (1.8). Such methods will be introduced later in this section.

As mentioned earlier, along with option pricing, option hedging (also called Greek hedg-
ing) is a very important activity. The Greeks represent sensitivities of option price with
respect to the change of market parameters like asset price, time remaining to maturity,
volatility, or interest rate. As an example, the Greek delta (∆t) is the first derivative of the
option price V with respect to the change of asset price S, which is defined as:

∆t =
∂V (St, t)
∂St

(1.9)

Normally, Greeks are not observed in the real time market but, provides information that
needs to be computed with accuracy for determining the hedge of any derivative contract.
There are several common used Greeks such as Gamma (Γ), Rho (ρ) and Theta (θ). We
refer to [127, 61] for complete explanations of these Greeks.

In practice, usually Greeks are derivatives of first or second order that can be computed
using finite difference methods [52]. First and second order derivative are approximated
respectively as follows:

Greek(1)(x) ' V (S0, 0)|x+εx − V (S0, 0)|x−εx

2xεx

Greek(2)(x) ' V (S0, 0)|x+εx − 2V (S0, 0) + V (S0, 0)|x−εx

(xεx)2



12

where x is one parameter among the market parameters mentioned above. The value
V (S0, 0)|x±εx the option prices with respect to the change of parameter x, with a small
εx value.

In this paragraph, we are going to discuss about the approximation methods for option
pricing and hedging. To date, many approaches have been used to address these problems,
see [127, 52, 61]

Explicit Formulas: When the model is simple (e.g. one dimension; the volatility
rate is constant; stock without paying dividend), we can obtain the explicit formula to
calculate the derivative price. For example, in Black and Scholes (1973) [19] and Merton
(1973) [86], authors provided a closed form solution for a European option. Rubinstein and
Reiner (1991a) [100] defined an analytical model for the value of European-style barrier
options on stock. It is possible to value perpetual American put option in closed form,
see Merton, (1973) [86] and Wilmott (1998) [127]. The perpetual American option is the
simplest but still interesting example of American option because its optimal exercise rule
is not obvious and can be determined explicitly, see Shreve (2004) [105]. However, when the
model becomes more complex, for example to accommodate multi-dimensional problems,
there has been very limited research into analytic solutions for such multi-dimensional option
pricing. Then numerical methods for approximation and simulation are required (e.g. Monte
Carlo based methods). In fact, for multi-dimensional European option pricing, it is enough
to simulate the underlying asset prices at the maturity date ST to estimate the option
price. Meanwhile, for American options or path dependent options such as barrier ones,
the common background of pricing methods is to simulate the paths of evolution of the
underlying assets {St, t ∈ [0, T ]} and then use these paths to estimate the option price.
Some widely used methods for option pricing and hedging in practice are briefly introduced
in the following list:

• Tree and Lattice Methods : The binomial model was first proposed by Cox,
Ross and Rubinstein (1979) [37]. The idea of the model is to use a “discrete-time
framework” to trace the evolution of the underlying asset price (e.g. stock) via a
binomial tree, for a given number of time steps between valuation date and option
expiration. Once having the entire tree of asset prices at all steps, starting at the final
nodes of the tree, the option price can be obtained by a backward computing on the
tree. These methods can be used for both European and American option pricing.
Notice that in case of American option pricing, before the appearance of the Longstaff
and Schwartz (2001) [77] method, the binomial method was the only solution for this
class of option pricing. However, for European option pricing, the binomial model is
very slow compared with other methods. Moreover, its efficiency with regard to speed
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is strongly dependant upon the option type. For example, regarding the options with
complicated payoff such as barrier, Asian options such methods present a slow and
irregular convergence behaviour, see Korn (2001) [67].

There also exists two other alternative approaches for American option pricing based
on the trees methods. The first one is the Stochastic Tree Methods. Broadie and
Glasserman (1997a) [25] suggest using a bushy tree to estimate an American option
price. However, the algorithm complexity grows exponentially with the number of
exercise opportunities, so such a method is applicable only when the number of exercise
opportunities is small (e.g. smaller than 5, see Glasserman (2004) [52]). Recently
Tomek (2006) [118] modified this approach to limit the computational burden.

The second one is the Stochastic Mesh Methods. The stochastic mesh method
proposed by Broadie and Glasserman (2004) [26] for American option pricing can be
thought of as a recombining stochastic tree. The idea is to produce a mesh rather
than a tree. That keeps the number of nodes at each exercise opportunity fixed, hence
avoiding the exponential complexity growth of a tree.

This method is effective for solving high dimensional problem with many exercise
opportunity dates. However, the computational complexity is O(b2) where b is the
number of simulated paths from the seed of the tree.

• Partial Differential Equation (PDE) : The method was first applied to option
pricing by Schwartz (1977) [104]. Such PDE method obtains the option price by
solving the partial differential equation that the option price is a solution using finite
difference methods (FD). Mathematically, the American option pricing problem forms
a free boundary problem of the Black-Scholes equation, for which the free boundary
corresponds to the optimal exercise boundary. Consider the option price V (St, t)
solves the Black-Scholes equation:

∂V

∂t
+ rS

∂V

∂S
+

1
2
σ2S2∂

2B

∂S2
− rV = 0 (1.10)

with boundary conditions

V (x, T ) = Ψ(x, T ) (1.11)

V (x, t) = Ψ(x, t) > 0, ∀x ∈ b∗(t) (1.12)
∂V

∂S
(x, t) = 1, ∀x ∈ b∗(t) (1.13)
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Then b∗(t) represents the optimal exercise boundary at time t, called optimal exercise
boundary

b∗(t) = {x : V (x, t) = Ψ(x, t)} (1.14)

The FD methods work on a grid whose horizontal axis represents time and vertical
axis represent the underlying asset price. The FD methods are very efficient for
option pricing with up to 3 underlying assets, they offer fast convergence and easy
computation of the sensitivities (Greek hedging). But for multi-dimensional problems,
this method is often prohibitively computationally demanding and suffers from the
“curse of dimensionality ”: standard discretization of the PDE leads to systems that
grow exponentially with the dimension of the problem.

Recently some techniques for FD methods have been proposed to handle such multi-
dimensional problems. For example, the sparse grid method is proposed by Reisinger
(2004) [97] for both European and American option pricing. This method divided
the main problem on several sparse grids, then solves these sub-problems which have
the same spatial dimensionality as the original problem but coarser discretization, and
finally properly combines the partial solutions to get the final one. Another advantage
of the sparse grids method is that it builds up a hierarchy of grids that can be solved
in parallel. However, such method is only useful in with a medium dimension d
(4 ≤ d ≤ 10) see Achdou and Pironneau (2005) [2].

• Quantization Method : A method proposed by Bally and Pagès (2005) [14] that
uses a finite-state dynamic program to approximate the price of an American option.
While the dynamic program in random tree based methods is based on randomly
sample states, in quantization method, such states are defined in advance based on
the partitioning of the state space of the Markov chain. Bally and Pagès (2005) [14]
discussed how to select an optimal state space partition and also proposed simulation
based procedures for such partitions. However, these simulated partitions above are
not well suited to high dimensional state space (e.g. with a large number of underlying
assets). This method is insensitive to the number of opportunity dates but it is
inapplicable to high dimensional problems.

• Monte Carlo Based Methods (MC) : While almost all numerical methods for
multi-dimensional pricing problems are limited in terms of the number of dimensions,
MC methods for option pricing are usually preferred because it can naturally handle
such problems. Another advantages of MC based methods are that they easily ac-
commodate options with complex payoff functions (e.g. Asian options and lookback
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options are two typical examples of path dependent options) and are well suited with
parallel computing. Most of common MC based methods for American option pricing
are detailed in Glasserman (2004) [52] and Tavella (2002) [113]. A comparison of some
widely used MC based methods for American option pricing was made in Fu and al.
(2001) [49]. In term of Greeks hedging, Monter and Kohatsu-Higa (2003) [89] pro-
posed the use of Malliavin calculus to estimate the Greeks using Monte Carlo method.
We can also use the FD methods with the MC simulations for Greeks hedging. The
main limitation of MC methods is the slow rate of convergence which is O(1/

√
n),

where n is the number of MC simulations. However, this limitation can be overcome
by applying the parallel computing techniques. This is one of the main research issues
in this thesis.

• Quasi Monte Carlo Methods (QMC) : QMC methods have been shown to be
very useful in finance. Chaudhary (2005) [32] and Lemieux (2004) [76] have applied
sequences of quasi-random numbers to the valuation of American options. However,
the effectiveness of QMC methods in high dimensional pricing problems is not steady.
In fact, QMC methods have the convergence rate ranging from the O((log n)d/n)
(where n is the number of quasi-random points and d is the number of dimensions)
to nearly the O(1/n) rate. With the O((log n)d/n) rate, for d small the rate of
convergence of QMC is faster than MC O(1/

√
n) but not for a large d. Bratley and

al. (1992) [23] performed some tests on certain mathematical problems and concluded
that in high dimensional problem, say d > 12, QMC seems to offer no practical
advantages over Monte Carlo methods. Thus, in finance, it was known that QMC
should not be used for high dimensional problems, see discussions in Glasserman
(2004) [52], Jackel (2002) [64] and Tavella and Randall (2000) [114] for more details.

Based on this brief overview of numerical methods for option pricing and hedging above,
it is clear that when the number of dimensions in the problem is large, most of numerical
methods become intractable, and in these cases Monte Carlo methods often give better
results. In the next paragraphs, we are going to introduce the use of Monte Carlo methods
for high dimensional pricing and hedging problems. However, within the context of this
chapter, we only illustrate such problem though an example of basket European option
pricing and hedging. Not like an European option, an American option on the other hand
may be exercised at any time before the expiry date that make pricing and hedging an
American option more complicated and difficult. Therefore, further discussions about the
problem formulation and pricing algorithms (e.g. Monte Carlo based algorithms) for high
dimensional American will be discussed carefully in Chapter 3.
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1.1.2 European Option Pricing using Monte Carlo Methods

In order to approximate the expectation in (1.3), the Monte Carlo method consists in
computing the arithmetic mean of nbMC independent pseudo random simulations of the
option payoff Ψ

(
f(St, t

)
, according to the stochastic model (1.2). We have such that

V (S0, 0) ' 1
nbMC

nbMC∑
s=1

e−rT Ψ
(
f(S(s)

t , t ∈ [0, T ])
)

(1.15)

where S(s)
t are independent trajectories of the solution of (1.2) and nbMC is the number of

Monte Carlo simulations. Regarding the BS model described in (1.2), in order to simulate
S

(s)
t , we complete the model description with the correlation matrix

(
ρij , i, j = 1, . . . , d

)
of the Brownian Motion B, such that ρij = E(Bi

t,B
j
t )

t so Covariance(Bi
t, B

j
t ) = ρijt. The

calibration of ρij will be discussed later in Chapter 4. We define the d×d covariance matrix
Cov by,

Covij = σiσjρij . (1.16)

We aim to rewrite equation (1.2) by the following equation (1.17),

dSi
t = Si

trdt+ Si
t

d∑
k=1

aikdW
k
t (1.17)

where
(
aik, i, k = 1, . . . , d

)
= A, such that AAt = Cov, thus

Covij =
d∑

k=1

aikajk, i, j = 1, . . . , d (1.18)

and W =
(
W 1, . . . ,W d

)
is a standard d-dimensional Brownian Motion, where each W i is

independent to each other. Note that A exists, as Cov is always a positive–definite matrix.
By applying Itô Lemma [71] for (1.17), we have

Si
t = Si

0 exp
(
(r − 1

2
σ2

i )t+
d∑

k=1

aikdW
k
t )

A trajectory realization of asset prices at discrete opportunities in Θ set is obtained by
setting

Si
tm+1

= Si
tm exp

(
(r − 1

2
σ2

i )(tm+1 − tm) +
√

(tm+1 − tm)
d∑

k=1

aikZ
k
tm+1

)
(1.19)
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where
(
Zm =

(
Z1

m, . . . , Z
d
m

))
is a family of independent Gaussian variables of law N (0, Id).

To illustrate an option pricing application using MC methods, we provide the following
pseudo–code for pricing a call Geometric Average (GA) European option of d independent

assets in Algorithm 1. The GA option has payoff Ψ(f(St), t) with f(x) =
∏d

i=1 x
1
d
i . The

European type options only consider the payoff at maturity date T , Ψ(f(ST ), T ). And since
the assets are independent (there are no correlation between assets), we can simplify the
trajectory realization of asset prices in Equation (1.20) as follows:

Si
T = Si

0 exp
(
(r − 1

2
σ2

i )T +
√
TσiZ

i
T

)
(1.20)

We simulate Z(s)
T = {(Z1,(s)

T , . . . , Z
d,(s)
T ), s = 1, . . . , nbMC}, a sequence of independent Gaus-

sian N (0, T ) trials. We can transform the uniform random trials generated by a pseudo-
random number generator (PRNG) to normal distributed ones by using the common Box-
Muller method (1958) [20].

In fact, the Monte Carlo method relies on the use of a sequence of pseudo-random
numbers to produce its simulated results. In fact, a true random number is only generated
by hardware random number generators or a physical process like a dice throw for example.
However, in practice we use algorithms to generate the numbers that approximates the
properties of true random number, called pseudo-random numbers. The sequence of an
ideal PRNG should: be uniformly distributed; not be correlated; have long period; be
reproducible; be fast; be portable; require limited memory and pass tests for randomness.
In fact, a serial PRNG can satisfy most of such qualities. Common used serial PRNGs are
linear congruential generators, lagged Fibonacci generators etc, see [66, 73].

The Law of Large Number of Monte Carlo methods implies that

lim
nbMC→∞

1
nbMC

nbMC∑
j=1

e−rT Ψ
(
f(S(j)

t , t ∈ [0, T ])
)
≡ V (S0, 0) (1.21)

with the probability 1. The Law of Large Numbers explained the convergence of the MC
method. Meanwhile, the Central Limit Theorem gives us the rate of convergence that we
shortly describe here as:

lim
nbMC→∞

√
nbMC

ŝC

(
E[Cj ]− V (S0, 0)

)
= 0, with j = 1, . . . , nbMC. (1.22)
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where the estimator ŝC for the standard deviation of ‘V (S0, 0) is computed as

ŝC =

√√√√( 1
nbMC

nbMC∑
j=1

C2
j

)
−
( 1
nbMC

nbMC∑
j=1

Cj

)2
.

Thus, the option price V (S0, 0) is obtained with a 95% confidence within the following
interval

[
± 1.96 bsC√

nbMC

]
. The rate of convergence is bsC√

nbMC
. Hence, for example to get a

rate of order 103, we need to simulate at least nbMC = 106bs2
C

simulations.

Considering the Greeks hedging for the GA European option pricing in Algorithm 1
above, let us denote V (S0, 0)|Si

0±εS
the option prices with respect to the change of the asset

price Si, V (S0, 0)|r±εr and V (S0, 0)|τ±ετ the option prices with respect to the change of the
interest rate r and of the time remained to maturity τ . Algorithm 2 below presents the
pseudo code for the Greeks hedging by using finite difference methods. The vector of ∆
and the matrix of Γ respectively are the first and second order derivatives of V (S0, 0) with
respect to the change of each asset price among the basket. To simplify the computation, we
only compute the diagonal of the matrix Γ. The two last Greeks ρ and θ are the first order
derivatives of V (S0, 0) with respect to the change of r and τ . As observed in Algorithm 1,
the simulations for Greeks evaluation can use the same random numbers than the ones for
option price evaluation.

Based on the computation of Greeks hedging presented in Algorithm 2, we can observe
that the Greeks values depend on the option prices with or without respect to the change
of any parameter. Obviously, once got these accurate enough option prices, we can achieve
good Greek values respectively. For example, let assume that the εS is in order of 10−2.
Hence in order to obtain the ∆i with the precision 10−2, the option price V (S0, 0)|Si

0±εS

must be obtained with the precision 10−4 which requires 108 number of MC simulations.

Interestingly, the number of simulations grows with the statistical precision seeked for
option pricing and hedging, proportionally to nbMC. For each of the nbMC simulations,
the dimensions of the problem are the time scale of the maturity date (days, months, years),
the time step (from one hour to one day), the dimension d of the underlying assets. More-
over, once considering Greek hedging for options, the entire Monte Carlo simulations must
be performed for each small change in input parameters. That increases the computational
time (especially in case of more complex problems such as high dimensional American op-
tions pricing and hedging). Evidently, this observation of computational time is discussing
in the context of pricing an individual option pricing. As we mentioned earlier in the begin-
ning of this chapter, the daily trading volume of option contracts of the two world largest
financial derivative markets CBOE and Eurex reached to millions. Therefore, getting both
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Algorithm 1 Pricing and hedging a call Geometric Avarage European option of d assets
Require: Si

0, d, r, δi, σi, T , NT and number of simulations nbMC
1: for s = 1 to nbMC do
2: f(ST ) = 1
3: f(S∆

T ) = 1
4: for i = 1 to d do
5: Simulate Zi,(s)

T

6: // for option pricing

7: Si
T = Si

0 exp
((

(r − δi)− σ2
i /2
)
T +
√
TσiZ

i,(s)
T

)
8: f(ST ) = f(ST )× Si

T

9: // prepare for delta hedging

10: Si,∆
T = (Si

0 ± εS) exp
((

(r − δi)− σ2
i /2
)
T +
√
TσiZ

i,(s)
T

)
11: f(S∆

T ) = f(S∆
T )× Si,∆

T

12: Similary compute Si,Γ
T , Si,ρ

T , Si,θ
T

13: end for
14: // for option pricing
15: f(ST ) = d

√
f(ST )

16: Cj = e−rT
(
f(ST )−K

)+
17: // In order to calculate the variance, we also compute Cj

2

18: Cj
2 =

(
e−rT

(
f(ST )−K

)+)2

19: // prepare for delta hedging

20: f(S∆
T ) = d

√
f(S∆

T )

21: C∆
j = e−rT

(
f(S∆

T )−K
)+

22: Similary compute CΓ
j , C

ρ
j , C

θ
j

23: end for
24: // for option pricing

25: return Ĉ =
C1 + · · ·+ CnbMC

nbMC
≡ V (S0, 0)

26: return Ĉ2 =
C2

1 + · · ·+ C2
nbMC

nbMC
27: // prepare for delta hedging

28: return Ĉ∆ =
C∆

1 + · · ·+ C∆
nbMC

nbMC
≡ V (S0, 0))|Si

0±εS

29: return ĈΓ, Ĉρ, Ĉθ
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Algorithm 2 Delta, Gamma, Rho and Theta hedging for a call GA option of d assets
Require: V (S0, 0), V (S0, 0)|Si

0±εS
, V (S0, 0)|r±εr and V (S0, 0)|τ±ετ

Ensure: ∆, Γ, ρ, θ
1: for i = 1 to d do

2: ∆i =
V (S0, 0)|Si

0+εS
− V (S0, 0)|Si

0−εS

2Si
0εS

3: Γii =
V (S0, 0)|Si

0+εS
− 2V (S0, 0) + V (S0, 0)|Si

0−εS

(Si
0εS)2

4: end for

5: ρ =
V (S0, 0)|r+εr − V (S0, 0)|r−εr

2rεr
6: θ =

V (S0, 0)|τ+ετ − V (S0, 0)|τ−ετ

2τετ
7: return ∆, Γ, ρ, θ

the fast pricing time for such a number of contracts and the price precision is really a chal-
lenge in term of critical time constraint. However, the nature of independent Monte Carlo
simulations provides significant opportunities of parallelism. The number of simulation, for
a desired precision, can be divided into many smaller groups of simulations and exercised
concurrently on a parallel computing infrastructure. And this is a clear evidence that the
grid computing power could serve and bring some significant advantages and capacity of
innovation for such pricing and hedging problems such as achieving a required option price
precision and within a short delay.

1.2 Grid Computing

Known as father of grid computing, Ian Foster proposed an innovative vision of networked
computers in 1998 [44] that: “A computational grid is a hardware and software infras-
tructure that proves dependable, consistent, pervasive, and inexpensive access to high-end
computational capabilities”. Hence we can see that, a computing grid is the combination
of computer resources from multiple administrative domains applied to solve a scientific,
technical or business problem that requires a great number of computer processing cycles
and/or the need to process large amounts of data.

One of the main strategies of a grid is to harness the computing power of networked
computing resources relying on software to divide and deploy pieces of a program among
several computers, sometimes up to many thousands. The networked computing resources
can be highly distributed, constituting of compute clusters, as well as network distributed
parallel processing entities (e.g. multi-core CPUs and parallel machines etc.) thus forming
a heterogeneous environment. The size of a grid may vary from a small confined network
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of computer workstations within a corporation, to a large one as the results of public
collaboration across many companies and public institutions.

Grid computing has been around for over a decade now and its advantages are numerous.
Some advantages are quite obvious:

1. It is economic. No need to buy expensive computing servers dedicated for hosting a
single (private) application but relying on sharing instead.

2. Much more efficient use of idle computing resources (e.g. desktops, workstations).
Many of these resources sit idle especially during off business hours.

3. grid environments are much more modular and don’t have single points of failure. If
one of the servers/desktops within the grid fails there are plenty of other resources
able to pick the load. Jobs can more or less automatically restart if a failure occurs.

4. This model scales very well as by nature, the grid is built around a decentralized
architecture. A new computing resource is easy to plug in by installing a grid client.
A resource can be removed just as easily on the fly.

5. Upgrading can be done on the fly without scheduling downtime of the whole infras-
tructure. Since there are so many resources, some can be taken offline while leaving
enough for work to continue.

6. grid environments are extremely well suited to run jobs that can be split into smaller
and independent tasks and run concurrently on many nodes. Hence jobs can be
executed in parallel reducing overall waiting time for results.

In general, a grid application is often constructed with the aid of general-purpose grid
software libraries and middleware. The distributed nature of grid computing should ideally
be kept transparent to the user. When a user submits a job it does not have to think
about which machine the job is going to get executed on. The grid software libraries and
middleware will perform the necessary calculations and decide where to send the job based
on policies.

In contrast, grid computing presents some disadvantages such as the need to have fast
interconnect between computing resources; software licensing across many clusters; the need
of appropriate tools for managing a large heterogeneous environment; security etc.

As an example, the Enabling Grids for E-science (EGEE) is Europe’s leading grid com-
puting project. The main goals of the project aim to contribute recent advances in grid
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technology and provide an available grid infrastructure to scientists across Europe, with
continuous availability. Hence it focuses on expanding and optimizing the grid infrastruc-
ture of EGEE to support academic and public sector research user communities. Currently,
the EGEE project provides a computing support infrastructure for over 10000 researchers
world-wide, from all basic sciences (e.g. high energy physics, earth sciences, life sciences.).
Additionally, several business applications from medicine [53, 88], geophysics (e.g. Geoclus-
ter4) have been deployed on EGEE grid.

In finance, applications such as option pricing and hedging (mentioned above), risk
analysis and portfolio management all process a very large number of computational tasks
to provide results. Grid computing thus can provide the ability to perform thousands of
computations or transactions at once, and in doing so can offer a great opportunity to the
financial industry to improve their performance and, therefore, profitability. Nowadays,
in practice financial institutions are more and more using parallel computing (including
grid computing) for the time critical and large-volume computations with their in-house
large-size high performance computing system (e.g. up to thousands computation cores).

Exploring the relationship between grid computing and business applications, BeInGrid
(Business Experiments in Grid) is another European Union project (starting at June, 2006
- ending December, 2009) whose objective is to understand the requirements for grid use
in commercial environments (e.g. software vendors, IT integrators, service providers and
end-users) and to enable and validate the adoption of grid technologies by business. The
outcomes of the project are numerous success stories from the use of grid solutions by the
businesses parties involved in the project. The use of grid computing in financial applications
includes success stories such as enhancing system performance, computing large data sets,
calculating risks.

Similarly but focusing on solving mathematical finance problems, the ANR French
funded project GCPMF “Grille de Calcul Pour les Mathématiques Financières” was setup in
order to advance research on the use of parallel computing for financial application involving
both technology companies and research institutions. In particular, the project focused on
studying the suitability for finance of high performance hardware architecture (e.g. Graph-
ics Processing Units (GPUs), clusters, grid etc), grid middleware (e.g. ProActive [29]),
grid-enabled software (e.g parallel NSP/Premia [31], PriceIt5) and revised on new parallel
algorithms [80, 42] for mathematical finance problems. This research work happened in this
context.

4http://www.cggveritas.com

5http://www.pricingpartners.com/
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1.2.1 Master/Worker Pattern

In grid computing, the Master/Worker pattern is also one of the core patterns for paral-
lelizing work in grid computing. It is well suited with grid technologies and has been widely
used in grid-enabled applications. In this section, we will explain the characteristics of such
pattern and also discuss about some possible implementation strategies.

As mentioned above, the Master/Worker pattern is a good approach for resolving many
parallel problems. This pattern is summarized in Figure 1.1. The solution relies on two or
more logical elements: a master and one or more instances of a worker. The master initiates
the computation and sets up the problem. It then creates tasks. A task can be distributed
to workers based on a static uniform distribution (each worker only receives one task) in
the case of a homogeneous environment. In the case of a heterogeneous environment, the
master should consider a dynamic distribution mechanism where each worker grabs a given
number of tasks, carries out the work, and then goes back to grab more tasks. Such dynamic
distribution has an advantage that the fastest processors can serve the most, but requiring
a worker performance analysis mechanism which is very difficult and complicated in grid
environment to accurately estimate task size as well as task numbers. In term of task
collection, the master then waits until all tasks are done, merges the results, and then shuts
down the computation.

In some particular cases, the master needs to run at least a fixed number of simulations
(e.g. Monte Carlo simulations) to achieve the required results. Instead of distributing such
fixed number of simulations uniformly, we can create a large number of tasks (each includes
a very few number of simulations). Then a solution, we call aggressive distribution, consists
in sending such tasks to workers until the master has collected enough simulation results
(not just until all tasks have been sent to the workers). Then, useless tasks which are still
running on workers can be cancelled. Such a distribution has an advantage that the fastest
processors can serve the most, without requiring performance analysis like the dynamic
distribution.

In the next section, we are going to present a simple may be naive example to illus-
trate that Monte Carlo principles are well adapted to a parallel environment relying on a
Master/Worker pattern.

1.2.2 Monte Carlo Based Methods for Parallel Computing

We consider the estimation of Π using Monte Carlo method, a trivial example just to
illustrate that Monte Carlo principles are well adapted to a parallel environment relying on
a Master/Worker pattern. Here are some useful facts:
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Figure 1.1: Master/Worker Pattern
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• The area of a circle is equal to Π times the square of the radius.

• The area of a square is equal to the square of the length of the side.

Imagine a quadrant of circle inscribed inside a unit square. Thus the radius of the circle is

R = 1 and the quadrant of circle area is
1
4
ΠR2 =

Π
4

. The square’s area is R2 = 1. Therefore

the ratio of the area of the circle to the area of the square is
Π
4

. Using a random number
generator, we can fulfil standard uniform random numbers U(0,1) at the square. The ratio
between the number of points that fall inside the circle and the total number of points that

fall inside the square is an approximation to the value of
Π
4

as follows

Π
4

=
∫ 1

0

∫ 1

0
g(x, y)f(x, y)dxdy (1.23)

where {x, y} are random points coordinates in the range [0, 1] and

f(x, y) = 1 because the area of the unit square = 1 and

g(x, y) =

1, when x2 + y2 ≤ 1, considering a point given by {x, y} is inside the quadrant

0, when x2 + y2 > 1, otherwise.

The integration in (1.23) can be estimated through

GN =
1
N

N∑
i=1

g(Xi, Yi) =
Π
4

(1.24)

Algorithm 3 illustrates the serial pseudo-code for the Π estimation using Monte Carlo sim-
ulations. The number of random points inside the unit circle allow us to calculate the value
of Π with an arbitrary precision. The more points generated the better the accuracy for Π.
Evidently, such Monte Carlo algorithm in Algorithm 3 is readily adaptable to a parallel en-
vironment relying on a Master/Worker pattern with any of the task distribution mechanisms
mentioned in the previous section. However, to simplify the example, the static uniform
distribution will be considered here. Giving P parallel workers (excluding the master), each

worker will receive a task of
nbMC

P
random simulations to compute its own partial mean.

Once finished, these workers can send their results to a leader processor for merging them
and computing the final result.

According to Amdahl’s Law, we have

• T1 = execution time for a single worker for all tasks
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Algorithm 3 Serial Monte Carlo Simulations for Pi estimation
Require: number of Monte Carlo simulations nbMC
Ensure: Π
1: SumG = 0
2: for i = 1 to nbMC do
3: Get two random numbers xi and yi ∈ [0, 1[
4: if (x2

i + y2
i ) ≤ 1 then

5: SumG = SumG+ 1
6: end if
7: end for
8: Π ' 4× SumG

nbMC

• T = execution time for P workers in parallel for all tasks

• T0 = time for communications (e.g. initialization, task distribution and results collec-
tion time, etc)

then the speedup is defined as:

Speedup =
T1

T + T0
(1.25)

By considering T is approximately T1/P which is true for distributed MC applications,
there is another important factor which has to be considered, the efficiency. Efficiency is
the speedup, divided by the number of workers used and is defined as follow:

Efficiency =
Speedup

P
(1.26)

1.2.3 Parallel Random Number Generation

Through the overview of numerical methods for computational finance in first section of
this chapter, it is clear that Monte Carlo based methods are the most versatile, widely used
numerical methods for solving multidimensional problems. However, the convergence rate
of Monte Carlo based methods can be very slow compared with other methods. That is
why much of the effort in the development of Monte Carlo methods is to speed up the
convergence and parallel computing is a promising solution to accelerate the MC simulation
speed.

However, a problem in performing MC simulation in parallel computing is the generation
of random numbers on parallel processors. Unfortunately, this generation is usually worse
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than in the serial case. In MC simulation, we need a random number sequence which is
independent and without any correlation between numbers. However, in parallel computing
each machine has to generate itself a sequence of random numbers and it might be that
these sequences could be not independent and correlated to each others (e.g. inter-processor
correlation). Such a situation would not appear in the serial case. A good parallel pseudo-
random number generator (parallel PRNG) must be able to generate multi sequences of
pseudo-random numbers that have the same qualities as serial PRNG; no inter-processor
correlation between sequences and those will work for any number of processors. However
that still is a difficult problem and is an open research topic. Of course, a bad parallel PRNG
is detrimental to MC simulations so choosing a good one is very important. Some researches
on parallel PRNGs can be found in Mascagni (1999, 2000) [82, 83] and Coddington and
Newell (2004) [35].

In this section, we will present some techniques related to the generation of random
numbers on parallel processors. There exists several different techniques to create a parallel
PRNG based upon a serial PRNG [82]. We only address here a common technique, the
Sequence Splitting. Such technique is implemented in PicsouGrid using SSJ package. further
details about the SSJ package can be found in Chapter 2.

• Sequence splitting: In this case, the original random number stream is split into blocks
and distributed to each processor. Denote the period of the generator is ρ, the number
of processors by P and the block length by L = ρ

P , we have

xi = xpL+i, p = 1, . . . , P. (1.27)

Then the original stream

x1, . . . , xL−1, xL, xL+1, . . . , x2L−1, x2L, x2L+1, . . . (1.28)

is distributed as follows to processor 1, 2, 3, . . .

〈x1, . . . , xL〉, 〈xL+1, . . . , x2L−1, x2L〉, 〈x2L+1, . . . , x3L〉, . . . (1.29)

1.3 High Dimensional European Option Pricing and Hedging Validation

It is well known in BS model that there only exists analytical solution for European option
pricing in the case of one dimension otherwise for multi-dimension we have to use other
approximation approaches such as MC methods. Though the approximated option pricing
using MC methods are obtained with a 95% confidence, it is still necessary to find a way to
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compare them with the analytical results.

In fact, we observed that in some very specific cases we can analytically reduce a basket
of assets into a one-dimensional “reduced” asset. The analytical (exact) option price on this
“reduced” asset can be computed by using BS formula [19]. Thus in such particular cases,
we can validate the approximated results based on the relative error with these analytical
results. We will consider both option pricing and hedging problems. Since the reduction
of dimension problem has been mentioned in many text books of computational finance
but without the details of mathematical proofs, we will present these in the next sections.
This problem of dimension reduction will also be used to validate the benchmark suite for
evaluation of grid middleware performance in Chapter 4.

1.3.1 Reduction of the dimension in basket option pricing

Consider a probability space (Ω,F , (Ft, t > 0),P), equipped with a d–dimensional standard
Brownian Motion Wt = (W 1

t , ...,W
d
t ). Consider a free risk asset S0

t = ert, with fixed interest
rate r, and a basket of d assets St = (S1

t , ..., S
d
t ), solution of the SDEs (1.17)

1.3.1.1 Payoff function as product of assets

We consider a European option on a basket of d assets St, with a payoff function Φ(Σt)
depending only on the “reduced” variable Σt = f(St), where

f(x) =
d∏

i=1

xαi
i ,∀x = (x1, ..., xd) (1.30)

with a given set
(
α1, ..., αd

)
∈ R+. We aim to find the SDE satisfied by the “reduced” asset

Σt in dimension one. To do so, we apply the multi–dimensional Ito Lemma to f(St), we get

df(St) =
d∑

i=1

∂f

∂si
(St)dSi

t +
1
2

d∑
i,j=1

∂2f

∂si∂sj
(St)Si

tS
j
t

d∑
k=1

aikajkdt (1.31)

With f(·) defined in (1.30), we compute the first term of (1.31),

d∑
i=1

∂f

∂si
(St)dSi

t =
d∏

i=1

(Si
t)

αi

d∑
i=1

αi

Si
t

dSi
t
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by using the definition of dSi
t in (1.17), we have

d∑
i=1

∂f

∂si
(St)dSi

t =
d∏

i=1

(Si
t)

αi

d∑
i=1

αi

Si
t

Si
t

(
rdt+

d∑
k=1

aikdW
k
t

)

=
d∏

i=1

(Si
t)

αi

d∑
i=1

αi(rdt+
d∑

k=1

aikdW
k
t )

We compute the second term of (1.31), we get

d∏
i=1

(Si
t)

αi

d∑
i,j=1

[((αiαj

Si
tS

j
t

)
i6=j

+
(αi(αi − 1

Si
tS

j
t

)
)
i=j

)
Si

tS
j
t

d∑
k=1

aikajk

]
dt

Hence, by identifying Σt = f(St) =
∏d

i=1(S
i
t)

αi then Equation (1.31) becomes:

dΣt

Σt
=

(
d∑

i=1

αir +
1
2

d∑
i,j=1

((
αiαj

)
i6=j

+
(
αi(αi − 1)

)
i=j

) d∑
k=1

aikajk

)
dt

+
d∑

i,k=1

αiaikdW
k
t

(1.32)

Considering the process Xt defined by Xt =
∑d

i,k=1 αiaikW
k
t , then Equation (1.32) reduces

to
dΣt

Σt
= (r − δ̂)︸ ︷︷ ︸bµ

dt+ dXt (1.33)

where

δ̂ = r −

(
d∑

i=1

αir +
1
2

d∑
i,j=1

((
αiαj

)
i6=j

+
(
αi(αi − 1)

)
i=j

) q∑
k=1

aikajk

)
could be viewed as the dividend yield by the “reduced” asset Σ.

1.3.1.2 The particular case of Geometric Average of d assets

We consider the particular case αi =
1
d
, i = 1, . . . , d and Si, i = 1, . . . , d are independent

assets. This means that aik = 0, for i 6= j and for a given σ > 0 we set aii = σ, ∀i = 1, . . . d.
Now we get

f(x) =
d∏

i=1

x
1
d
i (1.34)
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Start from (1.33)
dΣt

Σt
= (r − δ̂)︸ ︷︷ ︸bµ

dt+ dXt

with now

δ̂ =
(σ2

2
− σ2

2d
)

and

Xt =
d∑

i=1

d∑
k=1

αiaikW
k
t =

d∑
i=1

1
d
aiiW

i
t =

1
d
σ

d∑
i=1

W i
t .

Define Zt = 1√
d

d∑
i=1

W i
t . Then standard computations show that E

[
ZtZs

]
= t ∧ s which

implies Zt as a standard BM on the probability space (Ω,F , (Ft, t > 0),P). Finally, the
equation (1.3.1.2) becomes,

dΣt

Σt
=

(
r +

σ2

2d
− σ2

2

)
dt+

σ√
d
dZt (1.35)

The asset Σt is said to follow a geometric Brownian Motion. By applying the Ito Lemma
for the function F (Σt) = log(Σt) and assuming that Σt > 0,∀t, we have

d log Σt =

(
r +

σ2

2d
− σ2

2︸ ︷︷ ︸eµ
− σ2

2d︸︷︷︸
1
2

eσ2

)
dt+

σ√
d︸︷︷︸eσ
dBt

log Σt = log Σ0 +
(
µ̃− σ̃2

2
)
t+ σ̃Bt

which leads to the explicit solution

ΣΣt,t
T = Σt exp

((
µ̃− σ̃2

2
)
(T − t) + σ̃BT

)
,∀t ∈ [0, T ]. (1.36)

1.3.2 Option price formula for one-dimensional BS European option

We recall shortly some basic explicit formulas of financial engineering. Consider a call
European option on the asset Σt modelled by Equation (1.36). We can compute such
option value by using the Black-Scholes formula [19, 86]. The call option value at time t is,

Ṽ (Σt, t) = E
[
Φ(ΣΣt,t

T )
]
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with Φ(x) = (x−K)+. Then a simple computation leads to

Ṽ (Σt, t) = ΣtN(d1)−K exp(−r(T − t))N(d2) (1.37)

where d1 =
log
(

Σt
K

)
+ (µ̃+ 1

2 σ̃
2)(T − t)

σ̃
√

(T − t)
, d2 = d1 − σ̃

√
(T − t) and N(·) is the cumulative

distribution function of the Gaussian law N(0,1),

N(d1) =
∫ d1

−∞

1√
2π
e−

u2

2 du

• The delta ∆̃t of the option price Ṽ is defined by

∆̃t =
∂Ṽ (Σt, t)
∂Σt

= N(d1) (1.38)

• The gamma Γ̃t of the option price Ṽ is defined by

Γ̃t =
d2Ṽ (Σt, t)

∂Σ2
t

=
∂∆̃
dΣt

(1.39)

• Denote τ = T − t time to maturity. The theta Θ̃t of the option price Ṽ is defined by

Θ̃t = −∂Ṽ (Σt, t)
∂τ

= −Σt
σ

2
√
π
N(d1)− rKe−rτN(d2) (1.40)

• The rho ρ̃t of the option price Ṽ is defined by

ρ̃t =
∂Ṽ (Σt, t)

∂r
= (T − t)Ke−r(T−t)N(d2) (1.41)

1.3.3 Option price formula for basket option based on the reduction technique

We aim to compute the price V (S0, 0) of a call European Geometric Average option on the
basket of d assets, where S0 implies the basket of assets price at initial time of the contract.
The pseudo–code of such option pricing using MC methods was described in Algorithm 1.
However, this call option price V (S0, 0) with payoff function Φ(x) = (x−K)+ is also given
by Ṽ in (1.37), where Σt = f(St) =

∏d
i=1 S

i
t

1
d .

• The vector of Deltas
(
∆i

t, i = 1, . . . , d
)

is the first order derivative with respect to the
change of the underlying asset prices

(
S1

t , . . . , S
d
t

)
of the basket option price V (S0, 0)
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is computed as follows,

∆i
t =

∂

∂Si
t

(
V (S0, 0)

)
=

∂

∂Si
t

(
Ṽ (Σt, t)

)
=

∂

∂Si
t

Σt ×
∂

∂Σt
Ṽ (Σt, t) =

∂

∂Si
t

f(St)× ∆̃t

(1.42)

where ∆̃t is given in (1.38). By replacing f(St) in (1.34) we get

d∏
i=1

∆i =
(1
d
∆̃
)d 1

d∏
i=1

Si
t

(
d

√√√√ d∏
i=1

Si
t

)d

=
(1
d
∆̃
)d
.

(1.43)

• Gamma is the second derivative with respect to the change in the underlying prices(
S1

t , . . . , S
d
t

)
of the basket option price V (S0, 0). Therefore the matrix of Gamma(

Γij
t , i, j = 1, . . . , d

)
is computed as follows :

Γij
t =

∂2

∂Si
tS

j
t

(
V (S0, 0)

)
, i, j = 1, . . . , d

=
∂2

∂Si
tS

j
t

Σt∆̃t +
∂

∂Si
t

Σt
∂

∂Sj
t

ΣtΓ̃t

(1.44)

where ∆̃t and Γ̃t are given respectively in (1.38) and (1.39).

• Theta Θ hedging for the option price V

Θt =
∂

∂τ

(
V (S0, 0)

)
=

∂

∂τ
Ṽ (Σt, t) = Θ̃t, given in (1.40) (1.45)

• Rho ρ hedging for the option price V

ρt =
∂

∂r

(
V (S0, 0)

)
=

∂

∂r
Ṽ (Σt, t) = ρ̃t, given in (1.41) (1.46)

1.4 Conclusions

In the modern derivative market, option contracts have been particularly very actively
traded products with very large trading volume. In the current financial crisis, in order
to adapt with more and more complex demands from the derivative market, many sophis-
ticated option contracts (e.g. with portfolios of thousand of underlying assets) have been
issued hence bringing about complicated models and computing methods. Therefore the
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mathematical models and numerical methods of option pricing and hedging have been devel-
oped for more or less 30 years, thus their evolution is not over due to the endless demanding
of the market. Moreover, within a time critical market, these contracts usually have to be
priced and traded within a short delay and often are at the upper limit of the available
computing resources. Obviously, that requires more addition of manpower and computing
power to handle all the models and methods before being able to obtain the results. There-
fore applying parallel computing (aka. high performance computing) becomes a must to
address these time constraints.

It is well-known that the power of parallel computing reduced computational time for
large problems by splitting them into smaller ones and solving them concurrently. Recently,
as a sub-domain of parallel computing, grid computing, which has been developed for the
last decade, is a promising solution for such challenges in finance. Although grid computing
includes many advantages, mentioned in this section, it also has some difficulties due to
its heterogeneity, distributed implementation, application deployment, etc. Hence to profit
from grid computing, especially the finance industry, one needs a grid-enabled framework
that should be able to abstract the financial “users” from the underlying resources, thus
providing a uniform, scalable, and robust computing environment. The “users” here include
the common users who want to run their applications faster on a grid and also the financial
software engineers who want to focus on the pricing algorithm and not worry much about
grid technical issues. In the next Chapter, we are going to introduce such a framework,
named PicsouGrid, which was created to address these issues.
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Chapter 2

PICSOUGRID : A GRID FRAMEWORK FOR FINANCIAL
DERIVATIVE PRICING APPLICATIONS

This chapter introduces the design and implementation of a grid framework for financial
derivative pricing applications, named PicsouGrid. PicsouGrid was first presented in the

2nd e-Science and Grid Computing conference in 2006, see [18] and later in the 2007
International Symposium on Grid Computing, see [110]. This material is also part of the

“Risk 1 sub-project” of the ANR GCPMF project 1

1http://www.pricingpartners.com/anr-cigc-gcpmf/
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2.1 Introduction

We introduce an open source distributed computing framework in this financial context
which specially targets derivative pricing with the capability to provide fault tolerance,
load balancing, dynamic task distribution and deployment in a heterogeneous environment
(e.g. grid computing). Such a framework should be able to abstract the user and application
interface from the underlying resources, so as to provide a uniform, scalable, and robust
computing environment. This framework should have the capability to help the application
developers who want to focus on the pricing algorithm and not worry about grid technical
issues or the complexity of coordinating multi-threaded, distributed and parallel programs.
In addition to serving the practical goal of harnessing idle processor time in a grid envi-
ronment, such a framework proved to be a valuable experimental workbench for studying
computational finance particularly in high dimensional problems.

2.2 Related Work

2.2.1 General Purposes Grid Programming Frameworks

In Zenios 1999 [128], the author mentioned the use of high performance computing in finance
for the last ten years of the 20th century and discussed future needs. The research work
presented in [128] focused upon three major sections that relate respectively to derivative
instruments pricing (i.e. option pricing), integrated financial product management and
financial innovation. For each field, the author briefly described some basic model, the
computational issues and pointed out the extensions of the models that were facilitated
through the use of high performance computing. However, the paper only addressed in
details the technologies of how to apply high performance computing to each individual
field.

There also exist many distributed frameworks based on a Master/Worker architecture
which aim to be general purpose, either in a global computing or peer-to-peer environment
[7, 6] or in a grid context [8, 33, 122]. For example, OurGrid [8] including MyGrid [33] is
a complete solution for running Bag-of-Tasks (BoT) applications on computational grids.
In fact, BoT applications are the parallel applications whose tasks are independent of each
other and do not require any synchronization between them. Such applications can easily be
distributed through a Master/Worker underlying architecture. Meanwhile, the Satin [122] is
a system which has been introduced for running divide and conquer programs on distributed
memory systems. Divide and conquer is an important algorithm design paradigm based on
multi-branched recursion. A divide and conquer algorithm works by recursively breaking
down a problem into two or more sub-problems of the same (or related) type, until these
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become simple enough to be solved directly. The solutions to the sub-problems are then
combined to give a solution to the original problem. Further details of these approaches
will be discussed in the following sections.

OurGrid project OurGrid [8] relies upon a peer-to-peer network of resources owned by
a community of grid users. It works based on assumptions that it does not need quality
of service guarantees and that there are at least two peers in the system willing to share
their resource in order to have access to more resources. Hence by adding resources to the
peer-to-peer network and sharing them with the community, a user gains access to all the
available resources on it. All the resources are shared respecting each provider’s policies
and OurGrid strives to promote equity in this sharing. The OurGrid middleware is written
in Java, hence easy allowing any application capable of running a JVM to be utilized on a
grid. The goal of OurGrid is to be fast, simple, scalable and secure. In order to archive such
goals and avoid others shortcomings, OurGrid reduced its scope to support only BoT based
applications. In this particular scope, OurGrid [8] delivered a fast execution of applications
without demanding any quality of service (QoS) guarantees from the infrastructure. It also
provides a secure environment. Finally, OurGrid provides a fault tolerance mechanism by
which it will replicate tasks in multiple resources or re-submit tasks that recently failed.

A series of success stories of using OurGrid in e-sciences provides insights on how Our-
Grid is helping people to complete their computations. For example, OurGrid has been
used to provide a computational grid infrastructure for a system that supports sustainable
water resources management. However, OurGrid has not been applied yet to the financial
domain.

As part of the OurGrid project, MyGrid [33] is the scheduling component of the Our-
Grid solution. MyGrid focuses on the complexities involved in using grid technology and
the slow deployment of existing grid infrastructure that can potentially bring to bear for
use of grid for BoT applications. Hence MyGrid aims to easily enable the execution of
BoT application on whatever available resources. Its goal is to provide a global execution
environment composed of all processors that the user has access to. Hence, the least user
gets involved into grid aspects, the better it is. Towards this goal, MyGrid worked on mini-
mizing the installation effort by provioing two interfaces : the GridMachine (GuM) and the
GridMachineProvider (GuMP) interfaces. The MyGrid scheduler, which is responsible for
starting and monitoring the tasks, uses GuM as an abstraction for a processor and GuMP
as an abstraction for a set of processors. The first interface contains the minimal set of
services that must be available in a processor (to allow its use as part of a grid) including
remote execution, tasks cancellation, file transfer mechanism and connectivity check. That
set helps MyGrid work without knowing details about the grid processors. This also eases
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the addition of new resources to MyGrid, since implementing the interface is all that is
needed. Using GuM interface, user will be provided with methods to communicate with
grid machines. MyGrid has three native implementations of GuM: (i) UserAgent, (ii) Grid-
Script, and (iii) GlobusGridMachine. UserAgent (UA) is simple Java-based implementation
of GuM designed for the situation on which it is easy for the user to install software on
the grid machines. UA is extended to implement other methods such as instrumentation
and fault tolerance. The communication between MyGrid and UA is made using Remote
Method Invocation (RMI). GridScript (GS) provided the same role as UA but using scripts
instead of using a Java process. The last one, GlobusGridMachine (GGM) aims to inter-
operate with Globus 3.02. The second interface, GuMP, is used in case of using MyGrid
for parallel supercomputing, therefore it will not be discussed here. MyGrid is designed
to make grid computing easier for the users of Bag-of-Tasks typed e-science applications.
It was successfully used for applications developed to support scientific problem, however
none of them was specified in financial sector.

Satin project : More recently, Satin [122] is a divide and conquer system based on
Java and has been designed for distributed memory machines. The goal of Satin is to
support the execution of distributed applications on hierarchical wide-area clusters (e.g.,
the DAS [13]). The reason is that the divide and conquer model will map efficiently on such
systems, as the model is also hierarchical. Satin is designed as a compiler-based system
in order to achieve high performance. Satin is based on the Manta [79] native compiler,
which supports highly efficient serialization and communication. Satin project provides
a programming model which is an extension of the single threaded Java model to ease
the application development. In Satin’s programming model, the authors introduce three
new keywords to Java language, spawn, sync and satin. The spawn keyword is used in
front of a method invocation. The parallelism is achieved in Satin by running different
spawned method invocations on different machines. When spawn is placed in front of a
method invocation, conceptually a new thread is started which will run the method. (The
implementation of Satin, however, eliminates thread creation altogether.) The spawned
method will run concurrently with the method that executed the spawn. In Satin, spawned
methods always run to completion. The sync operation waits until all spawned calls in
this method invocation are finished. The return values of spawned method invocations are
undefined until a sync is reached. The satin modifier must be placed in front of a method
declaration, if this method is ever to be spawned.

Through such frameworks, users are able to manage grid resources and deploy, customize

2www.globus.org/
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or develop their own grid-enabled applications on grid. As we briefly highlighted above,
OurGrid [8], MyGrid [33] and Satin [122] projects provided complete solutions for running
applications on computational grids. While OurGrid and MyGrid addressed the scope of
Batch-Of-Task applications which is well suited with grid environment, the Satin project is
a system for running divide and conquer program for distributed memory machines.

Each project has been followed by a series of success stories in e-science applications
however pricing financial applications (e.g. option pricing) have not been addressed. In the
next section, we are going to introduce grid solutions which are dedicated to financial and
business problems.

2.2.2 Use of High Performance Computing in Finance

2.2.2.1 Academic Centric Project

There have been several research projects that address HPC for finance and computational
economies such as [93, 125, 59]. Recently, the AURORA “Advanced Models, Applications
and Software Systems for High Performance Computing” 3 funded by the Austrian Science
Fund (FWF), focused on high level software for HPC systems, with related research issues
ranging from models, applications and algorithms to languages, compilers and programming
environments. During the last few years, the AURORA projects research work has shifted
to grid computing. Thus, the core of the AURORA project is actively involved in various
grid projects and provides an ideal infrastructure for application groups to grid-enable
applications. It is being able to instantiate large real-world models and solves problems of
unprecedented size and complexity.

The AURORA sub-project High Performance Computing in Finance (AURORA Finan-
cial Management System (FMS)) [93] is a part of the AURORA project. The AURORA
FMS addressed the area of computational finance, especially in modelling and optimization
of large stochastic financial management models and in pricing financial products. The AU-
RORA FMS provided a modular decision support tool for portfolio and asset management.
It is presented as a component-based computational financial management system to solve
large scale investment problems. The core of the system is a linear or convex program,
which due to its size and structure is well suited for parallel optimization methods. The
system also contains pricing models for finance such as future, option contracts etc. How-
ever, the goal of the AURORA FMS is only to ease the development of high performance
applications for finance and to provide the development software tools to support it. It does
not support the execution of these the applications on the grid. In order to cover this lack of

3http://www.univie.ac.at/sor/aurora6/
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grid technology supports, further works [125, 59] have provided a distributed environment
and execution tools for the AURORA FMS.

In [125] the authors present a complex problem modelling and solving environment for
large scale computational finance modelling systems which grew out of the extension of
the AURORA Financial Management System. The implementation of the system follows
the Open Grid Service Environment (OGSE) Service Stack. This environment has been
used to model large-scale computational finance problems as abstract workflows with meta-
components and instantiate such workflows with different components based on semantic
matching. The authors outline the nature of large-scale financial problems in general and
give an example for a typical problem in this area (for example a computationally demanding
task such as end of day settlement processing). Furthermore, they used this example to show
how to use a grid environment to enhance performance by exploiting intra-component and
workflow parallelisms.

Work in [59] continues to present some examples from the field of computational finance,
which substantiate the need for grid technologies and take a closer look at the implementa-
tion issues, applying the concepts of enterprise service business for parallel process orchestra-
tion including portfolio management and multi stage stochastic asset liability management.
The first example was introduced in the early 1950s by Markowitz [81] which requires solving
a complex iterative process involving the execution of many “heterogeneous” algorithms.
Such algorithms can be spread over cluster or other similar architectures (e.g. multi-core
processors). The second example consists of valuation a single pension fund contract for
insurance companies. If the company is aiming at solving and optimizing an enterprise-wide
investment strategy, every contract has to be calculated. For a large insurance company,
tens of thousands of contracts have to be optimized (many “heterogeneous” scenarios), while
communication is still necessary in order to summarize the results for generating the overall
investment strategy. These contracts calculations can be conducted in parallel to a large
extent. For both examples, the implementation applying the Parallel Process Workflow
Variation pattern [121] is quite suitable from a computer science point of view.

More recently, BeInGrid, an European funded research project, showed a numerous of
success stories from the use of grid solutions by the businesses parties involved in the project.
The use of grid computing in financial applications is part of such series of success stories.
Each story is a specific case study in financial sector that is parameterized in order to be
adapted within the grid environment including enhancing the system performance, man-
aging application services, computing large data sets, calculating risks, etc. The solutions
include:

• using commercial HPC technology for financial needs (e.g. Shinhan Bank used Oracle
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10g to build a robust, secure platform for its critical business system, UniCredit Group
employed DataSynapse GridServer application virtualization software that enabled
application services to be distributed and executed across a shared, heterogeneous
infrastructure.);

• building a dedicated grid infrastructure for finance (e.g. Merrill Lynch has developed
an enterprise computing grid that allows it to run simulations and risk analysis for
high value derivatives trades faster);

• parallelizing the computational algorithms (e.g. Axa Life Europe Hedging Services
Ltd used some parallel pricing algorithm to determine the price of the guarantee [92])

BeInGrid is an evident example proving the successful collaboration between academic
institutions and financial partners in the domain of grid computing for finance. Many
successful case studies of partners involved in the project have been presented though its
series of success stories. Each partner proposed his own particular case study and then
finding a specific grid solution to solve its problems. It is the fact that the goal of this
project is not to provide a generic methodology for the use of grid computing in finance.
That can be easy to understand due to a very large number and the heterogeneity of
scenarios in financial domain and therefore it is difficult to figure out a common solution
that may cover even some of such scenarios.

During the last recent years, the interest and the strong involvement of academic schol-
ars in the domain of grid computing for finance have arisen. Many workshops whose scope
addressed the HPC for finance domain have been organized (e.g. workshops in conjunction
with IPDPS4, Supercomputing5 conferences). The main goal of the workshops was to bring
together financial institutions, banking practitioners and researchers from the complemen-
tary fields of high performance computing and computational finance.

2.2.2.2 Financial Industry Solutions

In contrast with the academic sector, as an article in grid Today [57] argued that the fi-
nancial services sector will be a driving force in the application of grid technologies and the
competition between HPC technology companies in financial market is very effervescent.
Especially the recent additional set of regulatory constraints for the financial industry, like

4http://www.cs.umanitoba.ca/ pdcof/

5http://research.ihost.com/whpcf/
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Basle II, forces large financial companies, like BNP Paribas, to create their own grid ap-
plications. Therefore the leading technology companies in providing HPC solutions using
multi-core or grid computing for general purposes such as Datasynapse 6, Platform Com-
puting 7, Digipede 8, etc; have been constantly concerned with financial services for the last
few years.

As an example, DataSynapse [111] a leading company in dynamic application service
management software for data centre has built a grid platform named GridServer. GridSever
is application infrastructure software for general purposes that virtualizes and distributes ap-
plication services and executes them in a guaranteed, scalable manner over existing comput-
ing resources. Client applications submit requests to the grid environment and GridServer
dynamically provisions services to respond to the request. Multiple client applications can
submit multiple requests in parallel and GridServer can dynamically create multiple service
instances to handle requests in parallel on different grid nodes. GridServer is best suited to
applications that can be divided into independent tasks (e.g. BoT applications). Most of
such applications consist of overnight batches applications which exhibit a large volume of
trading transactions. Although having the name related with grid computing, GridServer
has been preferably installed on multi-core processors platform (e.g. BNP Paribas London
has deployed GridServer across Hewlett Packard blades).

Another example is Platform Computing [36] which provides a distributed computing
framework, named Platform Symphony, that makes it practical to develop and manage
distributed computing services in a coherent way. The Platform Symphony architecture
has three distinct components including a software development kit (SDK) for applica-
tion development, workload management, a computing resource management module and a
management console for virtual control. Application developers have to adapt their business
application to Platform Symphony through the given SDK at client side. Then at service
side, they have to create a service container which has the responsibility to perform the
tasks triggered by the client side. Once such services have been created, developers can
deploy them in a grid environment by using the computing resource management module
then the system itself will take care of the rest.

As similar as Platform Computing, Digipede [115] provides both a platform for dis-
tributed computing and a framework for distributed programming. The Digipede network
platform has 4 components including an agent component which manage each of individual
desktop, server, cluster nodes and tasks that run on such resource; a server component

6www.datasynapse.com

7www.platform.com

8www.digipede.net
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manages the workflow through the system; a workbench component lets users define and
run jobs; and a control component provides a browser based tool for system administration.

Rapidmind [90] and ClearSpeed [55] are the technology companies focusing on multi-core
processors architecture. They provide software development tools for software parallelism
and performance for general purposes. Parallelizing financial applications is only a part of
their case studies.

Due to the common large scope that the research projects and technology companies
have targeted in the domain of general purpose high performance computing, none of them
aim to provide a dedicated HPC solution for finance. Those solutions in general try to
focus into managing the flow of work, the workload of the system, the latency or the
capacity of managing as much as possible of computing resources. All of them are well suited
with workflow based applications, with overnight computing applications with a very large
volume of computations which however is easy to be divided into many independent smaller
volumes, or with simulation based applications which require lots of different scenarios (e.g.
Value At Risk (VaR) using Monte Carlo methods) etc. These applications have a common
particular characteristic that they only consist of embarrassingly parallel applications (e.g.
VaR, European option pricing using Monte Carlo methods) which are easy handled by using
the Master/Worker architecture. In case of non-trivial parallel applications (e.g. American
option pricing) which require much more communications and synchronization at different
phases, no further discussion is mentioned.

Moreover, financial applications are only a small part of their cases study. Although
the overall objective is to cover any heterogeneous computing environment, most of the
industrial HPC solutions for finance in fact are preferably installed on a stable multi-core
processors clustered infrastructure rather than on a true grid. The reasons are simply that
grid aspects such as fault tolerance, load balancing, dynamic task distribution and deploy-
ment on a heterogeneous environment still cause lot of challenging research and technical
issues.

In order to handle the combined issues between business demands and grid technolo-
gies needs, we introduce a distributed framework for financial purpose, named PicsouGrid
[18]. At a high level of description, PicsouGrid based on a Master/Worker architecture is
organized as a platform toward to financial user and application developers. Typically, we
assume that financial users are non technical persons. For example, they could be traders
who only wish to purchase computation time in order to perform some computation and
gain some profits from such trade-off. On the other hand, application developers are finan-
cial software engineers who wish to easy implement new financial algorithms that want to
profit the unused, otherwise-wasted processing time on their computational resources. In
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order to satisfy both requirements, PicsouGrid was designed and implemented as an open,
market based computational framework. It provides an automatic mechanism to utilize
idle computational resources in a distributed and heterogeneous environment. It is sup-
posed to support parallelizing concurrent applications such as Monte Carlo simulations as
prototypical applications. To this aim, PicsouGrid provides a dynamic task distribution
mechanism. In order to facilitate the deployment of application on a grid environment,
PicsouGrid has an abstract away interface with the underlying execution platform. On
the application development perspective, starting at the point of building a dedicated dis-
tributed framework for finance, we are interested in investigating the financial application
requirements, some particular computational finance algorithms, specific numerical meth-
ods for finance etc in order to figure out the parallel portions that can benefit from HPC.
Hence PicsouGrid provides a flexible mechanism to develop any distributed computational
finance algorithm (i.e. especially the Monte Carlo based algorithm for derivative pricing)
including the embarrassingly/in-trivial parallel applications. The overall goal is to develop
and deploy any parallel financial application (Monte Carlo based) with as less as possible
of modifications of their serial implementations.

In Secton 2.3, we will introduce the PicsouGrid framework architecture and present in
detail guide lines for application developers.

2.3 PicsouGrid Framework

2.3.1 Motivation

While almost all publications mentioned in section 2.2 cite market time constraints as a
key motivation for the parallelization of Monte Carlo-based option pricing algorithms, none
explores of efficient, dynamic load balancing, fault tolerance, and deployment upon large
systems issues which are key goals we wanted to address through the PicsouGrid framework.

Load Balancing One of the main goals of PicsouGrid framework is to support paral-
lelization the applications (e.g. Monte Carlo based applications). The reason is that many
risk analysis (including option pricing) are based on MC simulations, and need to run at
least a fixed large enough number of simulations nbMC to achieve the desired accuracy. In
a parallel environment this suggests that the simulations are conducted concurrently by the
available parallel workers. In a traditional homogeneous parallel environment there is an
implicit assumption that these simulations all take the same amount of time, so the division
of the simulations is uniform, and typically nbMC total number of simulations are divided
by P available workers at each stage, and each worker handles nbMC

P simulations. This
solution generates the minimum amount of communications, but slows down the overall
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computation when the processors are heterogeneous. In fact, in a grid environment it is not
possible to assume the processors are uniform. Thus once considering heterogeneousness
of the machines and possible failures or slowing down, to achieve these stochastic compu-
tations as fast as possible, another solution consists of sending tasks to workers until the
master collected enough of simulations results then, useless tasks still running on workers
are cancelled. During computation some processors may fail or proceed very slowly, in which
case the remaining processors should be able to adjust their workload appropriately. This
suggests applying a factor F to the number of processors P , such that nbMC simulations
are divided by F × P . In a uniform environment, each processor would handle F packets
of size nbMC

F×P , however in a heterogeneous environment the faster processors would acquire
> F packets, and the slower processors < F , thus providing load balancing. The selection of
packet size has an impact on the waiting time for the last packet to be returned (so smaller
packets would be better) versus the communications overhead of many packets (so larger
packets would be better). Related to this issue of optimal packet size is the degradation in
speed-up when additional processors are added. The strategy of using smaller packets would
take advantage of the fastest machines in the grid, but generates more communications that
may issue a trade-off which is the classic problem of parallel computing, again related to
the CCR: Communications-to-Computation Ratio problem.

Fault Tolerance One of the most attractive features of the grid is the ability for a
client application to be able to send out (potentially computationally expensive) jobs to
resources on the grid, dynamically located at run-time. However, the nature of grid resources
means that many grid applications will be functioning in environments where interaction
faults are more likely to occur between disparate grid resources, whilst the dynamic nature
of the grid, means enter and leave resources at any time, in many cases outside of the
applications control. This means that a grid application must be able to tolerate (and
indeed, expect) resource availability to be fluid. The goal of fault tolerance feature is to allow
applications to continue and finish their works in case of failure concretely for PicsouGrid.
That means to figure out the shutdown worker and replace it by another available one as
soon as possible. In term of application, since we support both coarse-grained concurrent
applications and applications requiring many unrelated and identified tasks, PicsouGrids
fault tolerance support restricts itself to failure detection not trying to re-distribute the
missing tasks as soon as possible and assuring that the master collect enough of tasks.
In case of concurrent application such as an European option pricing using Monte Carlo
methods, its result only considers the total number of simulations. Once a fault happens
for example the application losses nbMC

P simulations, then it is enough to create another
packet of nbMC

P simulations to replace it. However, in case of applications with related
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and identified tasks (e.g. American option pricing). Thus if a task disappears, we need to
identify the index of such missing task in order to re-compute it. We will discuss this issue
further in the next section.

Deployment Deployment of distributed applications on large systems, and especially on
grid infrastructures, can be a complex task. Grid users spend a lot of time to prepare, in-
stall and configure middleware and application binaries on nodes, and eventually start their
applications. The problem is that the deployment process consists of many heterogeneous
tasks that have to be orchestrated in a specific correct order. As a consequence, the au-
tomation of the deployment process is not easy to solve by hand. To address this problem,
we propose PicsouGrid to rely upon the use of a generic deployment mechanism provided
by a given grid middleware which allow to automate the deployment process. PicsouGrid
users only have to describe the configuration to deploy in a simple natural language in-
stead of programming or scripting how the deployment process is executed. For this thesis,
and for the PicsouGrid framework, we choose to rely on the ProActive middleware offered
deployment mechanism.

Figure 2.1 briefly presents the modular architecture of PicsouGrid.

Figure 2.1: PicsouGrid Modular Architecture
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2.4 PicsouGrid Architecture

It is well-known that Master/Worker pattern for parallel computing is the easiest and com-
mon case for handling distributed computations as simply needs to create a master and a
group of workers: tasks have simply to be distributed uniformly to workers and merged later
by the master. When the resources are homogeneous, parallelizing financial computations
relying on MC simulations along the Master/Worker pattern would be the simplest solu-
tion. Basically, MC simulations are independent operations that can naturally be packaged
into independent tasks, further allocated to some workers, the results being merged at the
master level by applying common operators such as mean, variance, etc (which is typical of
European option pricing). So, a Master/Worker based framework dedicated to Monte Carlo
based mathematical finance should constitute a useful tool for end-users. Such a framework
would hide resource allocation, master and worker computation entities deployment, initial-
isation and start, etc. We have contributed to the realisation of such a tool relying upon
the Master/Worker API and framework available in the ProActive Parallel Suite, getting
the so-called ProActive Monte-Carlo API. Details of this API will be discussed further in
Chapter 4 as it has been effectively used to run European option pricing computations.

However, the ProActive Monte-Carlo API, and more generally, any simple “naive”, that
is, single level Master/Worker framework, raises some limitations when used on large-scale
heterogeneous infrastructures as Grids: lack of fault tolerance mechanisms to tolerate the
loss of a worker or the master, communication overhead from and to the master, static
definition of task sizes, and inherent and limited size for the pool of workers (because
of technical limitations due to the limit of sockets number to connect the master to its
workers). These reasons encouraged us to investigate a more sophisticated framework than
the ProActive Monte Carlo API, (e.g. the PicsouGrid framework).

2.4.1 Master, Sub-Master and Worker Hierarchy

Based on the classical Master/Worker architecture, we designed the PicsouGrid framework
so that the master acts as an entry point to the system distributed over its own specific nodes
(typically groups of computing resources within clusters or a grid). To face poor performance
due to the overhead in communication of too many workers and for the extensibility, our
PicsouGrid architecture was designed hierarchically as follows: the master controls a set
of sub-masters which in turn control a large number of workers, see Figure 2.2. The user
accesses the system through the master, which in turn can initiate one or more sub-masters
associated with their own workers. With this approach, the number of sub-masters can be
increased as will when the number of needed workers becomes too large to be handled by
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one master.

To ease the programming of parallel financial algorithms we investigated and compared
two solutions for communications: the first simply consists in relying on message passing to
handle transparently any inter-worker and worker-sub-master communications; the second
relies on a shared memory approach (i.e. a shared space of tuples [51] to handle some of these
communications). Such a space can be instantiated on demand and is suitable at least when
a sub-master and all its workers are deployed on a same cluster with fast communication
network. PicsouGrid has been designed and implemented to include both communication
paradigms, in order to be a generic architecture supporting the implementation of various
parallel algorithms and different programming strategies.

Figure 2.2: Master/Sub-Master/Worker Hierarchy

Figure 2.2 shows the organization of PicsouGrid. The user code is split into classes,
which have to inherit from three PicsouGrid classes (master, sub-master and worker). These
PicsouGrid classes take in charge the grid initialization, the on-demand shared memory man-
agement, the fault tolerance achievement, and the dialog set up with client (i.e. end-user)
application. These Java classes are generics parameterized with the user-defined classes,
which of course can have any name and so PicsouGrid can be specialized to each applica-
tion. This approach is known as skeletal programming, where skeletons provide an overall
architecture, further personalized according to each specific application. Finally, the devel-
opers of a financial application do not need to care about deployment or fault-tolerance. As
long as developers extend the three PicsouGrid classes, PicsouGrid itself deals with those
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issues.

2.4.1.1 Load Balancing

We implemented a two-featured load balancing mechanism in PicsouGrid that somehow
tolerates faults, assuming computing resources can be heterogeneous and unreliable. The
first feature is dynamic load balancing which is mandatory to achieve good performances
in any case. We split each financial computation into a large set of elementary tasks that
are dynamically distributed on the workers: each worker receives an elementary task (either
anonymous or explicitly identified) to process, and asks for a new one when it has finished.
This idea is extended to the hierarchical distribution of a set of tasks from the master to
the sub-masters, thus ensuring dynamic load balancing of parallel computations on a large
number of processors.

This classical strategy has been implemented with both message passing and shared
memory communication paradigms:

• In the case of a shared memory paradigm, some initial data and tasks are put in
the virtual shared memory by a sub-master. Each worker retrieves a task when the
computation starts or when it has finished its previous task, and puts its results in the
shared memory to be collected by the sub-master or read by other workers if required
by the algorithm, If needed, the sub-master or some workers can also provide new
tasks to be processed in the space.

• Implementing dynamic load balancing with message passing paradigm in PicsouGrid
requires to write a little bit more code in the sub-master. The sub-master manages a
group of workers and sends a first task to each worker. Then it waits for the result of
any worker, stores and analyzes this result and sends a new task to the worker.

The second feature of the load balancing mechanism we need to provide is aggressive
task distribution. Many risk analysis are based on Monte Carlo simulations, and need to
run at least a fixed number of simulations nbMC to achieve the required accuracy. To
achieve these stochastic computations as fast as possible, considering heterogeneity of the
machines and possible failures, a solution consists in sending tasks to workers until the
sub-master has collected enough results (not just until having sent enough tasks to the
workers). Then, useless tasks which are still running on workers must be cancelled by the
sub-master. This strategy takes advantage of the fastest machines in the grid, but generates
more communications that may slow down the computation. Another solution consists in
sending big tasks to the P workers of the sub-master: like Q/(P-1) simulations per task.
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On a large number of processors, without failure, the execution is just a little bit longer.
It remains unchanged when one failure appears, and increases only when more than one
processor fail. This solution generates the minimum amount of communications.

2.4.1.2 Fault Recovery

The fault recovery mechanism available in PicsouGrid is an applicative-level one. PicsouGrid
can detect faults in a simple way: the server regularly pings its sub-masters and a sub-master
regularly pings its workers. If the probed element fails to respond in time, it is considered as
faulty. To minimize the amount of results lost by a failure, sub-masters regularly checkpoint
the received results. When a worker disappears, its sub-master first requests a node from
the reserve machines, see Figure 2.2. Next, it restarts a worker on that node and sends
it the task the faulty worker was in charge of. If the reserve pool is empty, the system
runs with less workers. A slightly more complex situation arises when a sub-master fails to
respond. In that case, the master requests a new node from the reserved pool; if the pool
is empty, the master is chosen since it does not perform a lot of computations. A new sub-
master is started and the master sends it the interrupted task, and the last check-pointed
state from the dead sub-master; each worker from the initial group is re-attached to the
new sub-master.

Besides, the applicative-level fault recovery management, it might be the case that the
supporting grid technology also offers some “built-in” fault-tolerance mechanism. For in-
stance, the ProActive grid technology is able to checkpoint objects running on the grid, for
further transparent recovery [11].

2.4.1.3 Deployment Mechanism

One of the objectives of the PicsouGrid framework is to deploy applications anywhere
without changing the source code. Therefore, we see that the creation, registration and
discovery of resources have to be done externally to the application. This key principle is
the capability to abstractly describe an application, or part of it, in terms of its conceptual
activities. In order to abstract away the underlying execution platform, and to allow a
source-independent deployment, PicsouGrid satisfies the following:

• Having an abstract description of the distributed entities of a parallel program.

• Having an external mapping of those entities to real machines, using actual creation,
registry, and lookup protocols.
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In fact, PicsouGrid utilizes two deployment descriptors according to the ProActive deploy-
ment model [11], separating by the different role for a user of a distributed environment:
administrator and application developer. In the distributed environment resources deploy-
ment descriptor, we describe:

• The resources provided by the infrastructure, and

• How to acquire the resources provided by the infrastructure.

In the application deployment descriptor we describe:

• How to launch the application,

• The resources needed by the application, and

• Which resources provider to use.

2.4.1.4 Discussion: Multi-phases Master/Worker Computations and Fault Recovery

Master/Worker classical architecture pattern assumes one single and uniform shot of com-
putation: the master is given a list of tasks and has the duty to make them solved by
its workers. Use of the Master/Worker pattern for option pricing requires more. Indeed,
some option pricing applications such as American option pricing require complex models
proceeding in phases, possibly with convergence iterations, where the results from one stage
must be gathered from all workers, merged, and some updated parameters calculated and
distributed back to each worker. This communication overhead can be a major bottleneck
for parallel algorithm implementations, and the impact increases with the number of par-
allel processors. For example, with the complex algorithms for American option pricing,
described in Chapter 1, the distributed approaches for such pricing algorithms are not
simply embarrassingly parallel. Figure 2.3 introduces a generic algorithm flowchart for
these distributed American option pricings mentioned above. Obviously, it is necessary to
do computations in two different parallel phases. The first phase is usually used to char-
acterize/compute the optimal exercise boundary and then the American option prices will
be computed in the second phase. The first phase requires a backward iterative cycle upon
opportunity dates where all workers must be updated with newly calculated values from the
previous iteration, and its partial tasks also require some small iterative cycles to converge.
The second phase consists of straightforward Monte Carlo simulations.

In this situation, especially in the first phase, it is quite difficult to synchronize and
recover from worker failures at arbitrary points in the overall computation. For example,



51

consider P workers for J different parameterized tasks. At a given iteration i (aka. oppor-
tunity date), the master must receive results from J tasks in order to pass to iteration i-1.
However, due to a very slow worker or a shutdown one, only J-1 tasks have been completed.
The master must wait the missing task results. Trying to apply fault detection and recovery
would result in 1) determining the missing worker, i.e. the master will send a ping message
to all workers and wait for their answers; 2) Once finding the missing worker, the master
would now replace its duties by another worker. During that time, other workers would be
in waiting situation until the master receives the last simulation results. Such delay will
become a major factor reducing the system performance especially in case of more than one
worker missing. Moreover, we can not remove such delay by letting the workers continue
their computation without waiting the missing tasks because the computation at iteration
i-1 strongly depends on the calculated results at the previous iteration.

As we noticed and further exploited as explained next, our flexible load-balancing mech-
anism in PicsouGrid could suffice to resist the occurence of faults, by not trying to detect
and recover faulty computation entities, but able to finish the computations bypassing the
faulty entities. Moreover, the high frequency appearance of new American option pricing
algorthims such as Longstaff and Schwartz (2001) [77], Ibanez and Zapatero (2004) [63] and
Picazo (2002) [94] has pressed us to make PicsouGrid applications be able to adapt any new
algorithm with less of modification.

Thus, we shifted the focus from applicative fault recovery to more autonomy and flexible
distribution of tasks for complex option pricing algorithms. The resulting approach is
presented in the next section.

2.4.2 Combined Master/Worker Hierarchy

As mentioned above, using a standard Master/Worker pattern extended hierarchically to
Master/Sub-Master/Worker would require the need of a synchronization step when workers
return results to sub-masters and from sub-masters to master. In order to offer fault-
resilience while avoiding so strong synchronizations, we investigated an alternative archi-
tecture for the PicsouGrid framework where masters and workers are merged into general
abstract simulators. Still, applications should be designed along the Master/Worker pattern:
workers compute, master distribute work and merge the results.

2.4.2.1 New architecture

We merged both master and worker patterns into an abstract simulator module. Con-
sequently, such simulator module (set of classes) includes the master’s methods such as
merging methods, and also the partial calculation methods of workers. One advantage is



52

Figure 2.3: Generic Flowchart of Monte Carlo Based American Option Pricing Algorithms
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that an object deployed and running on the grid may, during its lifetime, switch from playing
the role of a worker or of a master and vice-versa.

The simulators are managed by a leader, which is called controller and has the re-
sponsibility to control the execution of the pricing application: at various stages it sets up
simulators which include one or several sets of a master plus its workers, to complete the
various steps of the computation.

A master does not orchestrate the computation, it is just a “service” which responds
to requests from the controller and from its workers. The controller does not expect the
results for allocated work through a classical request-reply blocking mechanism. Instead, the
controller polls regularly a flag, under the master(s) responsibility, in order to be informed
when the current Master/Worker round is terminated. Then, the controller knows it can
read the result on master(s), and use it to trigger the next step of the algorithm. For the
next step, the controller can decide how to proceed, either reusing the simulators which
have been created (with some new parameters/setup), or having them drop out of scope
(and be garbage collected). So, in the next step, a simulator is not mandatorily playing
the same role as before, and, in case it is a worker, it may rely on a different master object
previously.

Workers act as independent and asynchronous “agents” who request additional work
from their master as soon as their work queue becomes empty. They go idle when their
master has no work to give them.

The figure below illustrates this approach on a case with only one master.

Figure 2.4: Combined Master/Worker Hierarchy - Case with only one Master-Workers set
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2.4.2.2 Flexibility

Let us come back to the algorithm presented in Figure 2.3 to illustrate that the new archi-
tecture is able to support Master/Worker applications requiring different parallel phases,
phases requiring themselves different task definition. The tasks in the first phase aim to
compute/characterize the exercise boundary. These tasks are treated independently, each
one has one index number j with j = 1, . . . , J . In fact, each task needs to finish some
iterative cycles to converge, thus the computational time for each task is not unique. For
that reason the master always gets the soonest arrival task results, merges them to the
total result. Then the master increases the task index number, distribute this new task
to an idle worker, until it finishes all J tasks. The advantage of this approach is that the
fastest machine is always the most mastered worker. In case of failure, the master may not
care about this crash. However, once the master figures out a missing task by verifying the
completed task index, it will automatically re-generate it then re-distribute it to the idle
worker requiring some work.

The second phase of this kind of algorithm aims to compute the option prices and it
consists of a batch of tasks of Monte Carlo simulations. Therefore the distributed mechanism
in this phase works similarly as a distributed European option pricing. It can be computed
in parallel, typically in blocks of 103 to 104 simulations, and then the statistics gathered to
estimate option prices, but without needing to identify tasks by an index.

2.5 Programming Supports For PicsouGrid

2.5.1 ProActive Programming Model

The PicsouGrid framework has been developed in Java with the ProActive [11] parallel and
distributed computing library. The use of Java allows our framework to be used in a wide
range of computing environments, from standard Windows desktop systems, to large Linux
clusters standalone, or part of a multi-cluster grid. ProActive implements the Active Object
model to enable concurrent, asynchronous object access and guarantees of deterministic
behaviour. Incorporating ProActive into PicsouGrid has minor impact on the framework or
specific algorithm implementations. ProActive imposes a few constraints on the construction
of Objects which will be accessed concurrently, such as empty argument constructors, limited
use of self reference in method call parameters, no checked exceptions, and non-primitive,
non-final return values for methods. In return, ProActive provides a generic object factory
which will dynamically instantiate a “reified” version of any desired object on any available
host, while providing the application with a stub which can be utilised exactly as an instance
of the standard object. The reified object consists of the proxy stub, a wrapper object, a
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message queue, and a wrapped instance of the actual object. Only the proxy stub is on the
local node. The wrapper object is started by ProActive on the remote node (either specified
explicitly as a parameter to the object factory, or selected automatically by ProActive), and
contains a message queue for all public method calls on the object, and finally the wrapped
object itself. PicsouGrid makes heavy use of the Typed Group Communications features
of ProActive[10] to trigger the parallel processing of Monte Carlo simulations on workers,
as well as broadcast and gather of associated parameters for uniform configuration and
interrogation of worker object states. Through the use of ProActive it is possible to run
simulations on a single machine, a desktop grid, a traditional cluster, or on a full grid
environment without any additional configuration effort in the application. The ProActive
deployment mechanism automatically contacts and initiates services and objects on the
remote nodes [11].

2.5.2 The ProActive/GCM Deployment model

grid environment raises a lot of challenges for deploying problem because it consists in
running applications over large-scale heterogeneous resources that evolve dynamically.

The deployment of PicsouGrid applications throughout ProActive runtime deployment
is based on the ProActive/GCM model deployment. The main idea behind this model is
to fully eliminate from the source code the following elements: machine names, creation
protocols and registry/lookup protocols, so that users could deploy applications on different
computing resources, without changes in the source code.

On the application context, the deployment model relies on the notion of Virtual Nodes
(VNs) which can be composed by one or more nodes, each node representing a ProActive
runtime deployed on a physical (or virtual in the case of virtual machines) resource.

The whole deployment process (Fig. 2.5) and environment configuration is defined by
means of XML descriptors which depict the application requirements and deployment pro-
cess. The deployment of ProActive/GCM applications depends on two types of descriptors:

2.5.2.1 GCM Application Descriptors (GCMA) :

The GCMA descriptors define applications-related properties, such as localization of li-
braries, file transfer, application parameters and non-functional services (logging, security
and checkpoint). The resources requirement is also defined, but taking the VNs and nodes
into account. Besides, the GCMA defines one or multiple resource providers.
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2.5.2.2 GCM Deployment Descriptors (GCMD) :

The GCMD descriptors define the operation of the resource providers. This includes the
access protocols to reach the resources (e.g. SSH, RSH, GSISSH, etc.), resource reservation
protocols and tools which are sometimes required to have access to resources (e.g. PBS,
LSF, Sun grid Engine, OAR, etc.), process (e.g. JVM) creation protocols which have a
relation on how to launch processes (e.g. SSH, OAR, gLite, Globus) and communication
protocols (e.g. RMI, HTTP, SOAP, etc).

The need of these two kinds of descriptors enforces a clear separation between application
definition and deployment process. The advantages of this model are clear: on one side
users want to add a new resource provider (e.g. a private cluster, production grid), the
application code does not change and a single line is enough to add the resource provider
to the application descriptor (GCMA). On the other side, the definition of the deployment
process happens just once for each resource and can be reused for different applications.

Application Descriptor (GCMA)

Application/ADL

VN

Application Definition

Application Properties Resources Requirements Resources Providers

Access Protocols

Resource Acquisition 
Protocols

Creation Protocols

Infrastructure Definition

Deployment Descriptor (GCMD)

Access Protocols

Resource Acquisition 
Protocols

Creation Protocols

Infrastructure Definition

Deployment Descriptor (GCMD)

Figure 2.5: GCM Descriptor-based deployment model

2.5.3 SSJ: Stochastic Simulation in Java

SSJ is a Java library for stochastic simulation, developed under the direction of Pierre
L’Ecuyer, in the “Departement d’Informatique et de Recherche Operationnelle” (DIRO)
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[74], at the Université de Montreal. It provides facilities for generating uniform and non-
uniform random variables, computing different measures related to probability distributions,
performing goodness-of-fit tests, applying quasi-Monte Carlo methods, collecting (elemen-
tary) statistics, and programming discrete-event simulations with both events and processes.

SSJ package provides RandomStream as an interface that defines the basic structures to
handle multiple streams of uniform random numbers and convenient tools to move around
within and across these streams. In SSJ package, the actual PRNGs are provided in classes
that implement the RandomStream interface. Each stream of random number is an object
of the class that implements such interface and can be viewed as a virtual random number
generator. For each type of base PRNG, the full period of the generator is cut into adjecent
streams (or segments) of length Z and each of these streams is partitioned into V sub-
streams of length W , where hence Z = VW . The values of V and W depend on the specific
PRNG, but are usually larger than 250. Thus, the distance Z between the starting points
of two successive streams provided by an PRNG usually exceeds 2100. The initial seed of
the PRNG is the starting point of the first stream. It has a default value for each type
of PRNG, but this initial value can be changed by calling setPackageSeed method for the
corresponding class. Each time a new RandomStream is created, its starting point (initial
seed) is computed automatically, Z steps ahead of the starting point of the previously
created stream of the same type, and its current state is set equal to this starting point.

As an example, we consider a generator, that we decided to use in PicsouGrid, the
MRG32k3p generator. The MRG32k3p generator is a combined multiple recursive one,
proposed by L’Ecuyer and Touzin (2000) [75], implemented in 32-bit integer arithmetic.
The generator has a period length of ρ ≈ 2185. The value V,W and Z are 262, 272 and
2134, respectively. For each stream, one can advance by one step and generate one value,
or go ahead to the beginning of the next sub-stream within this stream, or go back to the
beginning of the current sub-stream, or to the beginning of the stream, or jump ahead or
back by an arbitrary number of steps.

2.6 PicsouGrid Implementation and Usage

2.6.1 PicsouGrid Framework Core Description

Figure 2.6 presents the package diagram of PicsouGrid framework. The core of PicsouGrid
is stored in the package core. The package data includes the description of data and data
type description such as underlying asset price, algorithm parameters etc. The packages
util and gui contain the useful tools, graphic user interfaces respectively. Pricing algorithm
classes are stored in pricing package.

In terms of the object hierarchy, there are two parts: one for the grid aspects Pic-
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Figure 2.6: PicsouGrid Package Diagram

souGridInterface and one which captures the algorithmic aspects SimulatorInterface, then
an abstract class which implements several common methods called SimulatorAbs. Con-
crete algorithm simulators then inherit from this, either directly or indirectly (in the case
where more intermediate abstract classes are required for similar classes of algorithms). We
provide an idea of the core object relationships in Figure 2.7.

In order to allow PicsouGrid handling multiple even if successive option pricings per
execution, we define 4 states in PicsouGrid as follow: INIT, READY, RUNNING, DONE.
The INIT state is established whenever PicsouGrid application has been launched. During
this state, the system has the responsibility to create the master, workers and to deploy
them on computing environment. Once workers have been successfully deployed, the system
will pass to the READY state. At this state, workers are ready to receive any job. The
state will be changed to RUNNING whenever the workers receive their first tasks and is
unchangeable during the computation. After the master collected enough simulations to
compute the option price, the state will be set to DONE. The system will complete the rest
of computation by saving the estimated results in an output file or on screen. Then the state
will be now reset to READY in case there exists another coming computing requirement
otherwise it remains in the DONE state.

• The PicsouGridInterface interface provides the helper methods for handling grid as-
pects in PicsouGrid framework. The first one is setWorkers method that has the
responsibility to add a set of workers to a given Simulator. This method can only be
done while Simulator is in INIT state, as all subsequent operations will be cascaded
to workers, if they exist. The entry and exit state are both INIT.
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Figure 2.7: PicsouGrid Core Classes Diagram
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public BooleanWrapper setWorkers(PicsouGridInterface workers);

The second method is getWorkers that returns the set of Simulator sub-workers asso-
ciated with this Simulator. It can be called at any time (i.e. with any type of states)
and may return “null”.

public PicsouGridInterface getWorkers();

The autorun method asks the simulator to run, pulling tasks from simulators and
merging them back as they complete. This method returns “true” when done. This
is a ProActive artifact, since the returned object allows ProActive to hold a future to
synchronize on [11]. The entry and exit state are both not INIT.

public BooleanWrapper autorun(PicsouGridInterface sim);

The last method merge has the responsibility to add the results of another simulator
to the Simulator which acts as a master.

// merging results for option pricing

public void merge(IntWrapper simCount, PriceType result);

// merging results for Greek hedging

public void merge(IntWrapper simCount, GreekType result);

The pre-condition on simulators claims that the states are either RUNNING or DONE.
Meanwhile the pre-conditions on the master Simulator claims that the state is either
READY or RUNNING and satisfying the following expression:

Simulator master = new Simulator();

master.completedSimulations + completedSimulations <= master.totalSimulations

The entry state is either READY or RUNNING while the exit state is either RUN-
NING or DONE.

• The SimulatorInterface interface provides the helper methods to capture the algorith-
mic aspects. The init method helps to set up the Simulator with a pricing algorithm
and basket of assets. The entry state is ANY while the exit state is READY.

public BooleanWrapper init(OptionSet optionSet);

The setup method does initial setup calculations. Both entry and exit states are
READY.
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public BooleanWrapper setup();

The simulate method does a simulation on the basket of assets with the given param-
eters and using all remaining iterationsPerEstimationValuePacket. The entry state is
either READY or RUNNING and the exit state is DONE.

public void simulate();

The simulate method with number of iterations and a stream of random numbers at-
tempts to simulate up to ”iterationsPerEstimationValuePacket”, return actual num-
ber completed. Notice that the simulator will not simulate more than the total it-
erationsPerEstimationValuePacket set by the algorithm. The entry state is either
READY or RUNNING and the exit state is either RUNNING or DONE.

public IntWrapper simulate(IntWrapper iterations, RandomStream rng);

The reset and restart methods will reset the Simulator to initial state and clear the
current results to restart the Simulator with the original algorithm and basket of
assets (including clearing both of performance and numerical results) respectively.
Thus, the reset method gets the entry state as ANY, returns the exit state as INIT
and the restart method gets the entry state as not INIT, returns the exit state as
READY.

public void reset();

public void restart();

The estimateComplexity method uses the configuration details to estimate the com-
plexity of the pricing request with a specific algorithm. The entry state is not INIT
and the exit state is unchanged.

public DoubleWrapper estimateComplexity();

2.6.2 Developer View Point

In this section, we are going to detail the steps that someone willing to implement a new
pricing algorithm has to follow. The combined Master/Worker hierarchy relies strongly on
the group communication mechanism that is built upon the ProActive elementary mech-
anism for asynchronous remote method invocation with automatic future for collecting a
reply. As this last mechanism is implemented using standard Java, the group mechanism is
itself platform independent and must be thought of as a replication of more than one (say
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N ) ProActive remote method invocations towards N active objects. Of course, this mecha-
nism incorporates some optimizations, in such a way as to achieve better performances than
a sequential achievement of N individual ProActive remote method calls. The availability
of such a group communication mechanism in the ProActive library that we are relying
upon, simplifies the programming of applications with similar activities running in parallel.
Indeed, from the programming point of view, using a group of active objects of the same
type, subsequently called a typed group, takes exactly the same form as using only one
active object of this type. This is possible due to the fact that the ProActive library is built
upon reification techniques: the class of an object that we want to make active, and thus
remotely accessible, is reified at the meta level, at runtime. In a transparent way, method
calls towards such an active object are executed through a stub which is type compati-
ble with the original object. The stub’s role is to enable to consider and manage the call
as a first class entity and applies to it the required semantics: if it is a call towards one
single remote active object, then the standard asynchronous remote method invocation of
ProActive is applied; if the call is towards a group of objects, then the semantics of group
communications is applied.

In this section we will illustrate how the use of ProActive active object and group com-
munication is relevant for developing parallel pricing algorithm in PicsouGrid framework.
We will take an example of a high dimensional American option pricing algorithm origi-
nally provided by Ibanez and Zapatero (2004) [63] and parallelized by Muni Toke (2006)
[92]. Notice that all the classes that we present below are stored in picsou.pricing package.
To handle in a sinple way the usage of grid nodes, we can create a class (e.g. BenchWith-
ProActive, see Figure 2.8) mainly in charge of initiating the grid resources acquisition and
deployment of computing entities on them.

Figure 2.8: BenchWithProActive Class

Such class has the responsibility to receive the GCM Deployment Descriptor in order
to acquire grid computing resources remotely accessible through the notion of ProActive
nodes.
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private static Node[] startNodesFromDD(String descriptorUrl) {

Node[] nodes = null;

try {

File descriptor = new File(descriptorUrl);

pad = PADeployment.getProactiveDescriptor(descriptorUrl);

pad.activateMappings();

nodes = pad.getVirtualNodes()[0].getNodes();

} catch (NodeException ex) {

ex.printStackTrace();

} catch (ProActiveException ex) {

ex.printStackTrace();

}

return nodes;

}

Regarding the pricing algorithm aspects, we consider the following steps

1. Controller Creation: This is the very first mission. According to the architecture
presented in Figure 2.4, the controller has the responsibility to control the execution
of option pricing applications. As controller acts as a leader simulator, but still is
a simulator because it has to participate in the orchestration of the parallel pricing
process, it inherits common methods from the abstract SimulatorBasketAbs.

// for an American option pricing application

SimulatorBasketAbs controller = new American();

Node[] paNodes = startNodesFromDD(args[0]);

controller.setNodes(paNodes);

controller.init(optionSet);

controller.simulate();

2. Master/Worker Creation : Under the controller supervision, the programmer has to
define master and worker methods. Regarding the algorithm provided by Ibanez and
Zapatero, we name the class gathering such methods IZBskWorker. This IZBskWorker
class includes both master’s methods such as merging method and the partial calcu-
lation methods of workers. The master is created as a ProActive active object,

// At the controller side we do

master = (IZBskWorker)PAActiveObject.newActive(

IZBskWorker.class.getName(),new Object[] {});

A group of workers will be created by using a static method of ProActive active objects
group mechanism
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workers = (IZBskWorker)

PAGroup.newGroup(IZBskWorker.class.getName(),

new Object[] {}, getNodes());

Workers can be created empty and existing active objects can be added later as de-
scribed below. Non-empty workers can be built at once using two additional param-
eters: a list of parameters required by the constructors of the object members of the
group, and a list of nodes where to map those members. In that case the group
is created and new active objects are constructed using the list parameters and are
immediately included in the group. The nth active object is created with the nth

parameter on the nth node. If the list of parameters is longer than the list of nodes
(i.e. we want to create more active objects than the number of available nodes), active
objects are created and mapped in a round-robin fashion on the available nodes. We
can access the individual members of the group by using the following piece of code,
e.g. :

PiBskWorker worker0 = (IZBskWorker) workers.get(0);

PiBskWorker worker1 = (IZBskWorker) workers.get(1);

3. Tasks Definition and Submission: The specification of tasks to be further allocated to
workers depends on the type of option pricing. According the Ibanez and Zapatero
algorithm, the first phase’s duty is building the exercise boundary function for each
asset using regression at every opportunity dates. At each opportunity date, we have to
compute a finite number of boundary points (J points) called optimal boundary points
to regress the boundary function. Each point computation can be done separately
and independently. Thus normally we have J independent tasks to do in parallel.
Controller will allocate implicitly one task per worker. Once a worker finishes its
computation and sends results back to master, then the master will automatically
assign the next task to this idle worker. For the tasks distribution, we can use a
polling mechanism: the controller must sleep and wait for the master to collect and
merge results, polling (e.g. 5 times per second (200ms sleep)) to check if the stopping
condition is true. Once gathering enough J points, the controller performs a regression
to obtain the boundary function and add it to the boundary set.

Based on a backward dates computing, earlier estimated functions will be used for
later dates, so for each opportunity date the controller needs to fulfil the workers
with current updated functions boundarySet. The computation methods of the first
phase task are implemented within the computeFirstPhaseTasks method. Then tasks
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are submitted to workers through classes by calling this execution method. Regarding
the execution method towards a group of objects, the default behaviour is to broadcast
these tasks to all workers. The following piece of code at the controller side corresponds
to this first phase process (in backward computing)

// START FIRST PHASE

// At the controller side

// Backward steps computing

for (t = TOTAL_NUMBER_OPPORTUNITIES - 1; t > 0; t--) {

for(d = 1; d < TOTAL_NUMBER_ASSETS; d++){

workers.setupWorkers(t, boundarySet);

// Submit implicitly one task per worker.

// Notice to each worker its reference master

// for further merging results.

workers.computeFirstPhaseTasks(getMaster());

while master.getCompletedPoints() < J {

try {

Thread.sleep(200);

} catch (Exception ex) {

ex.printStackTrace();

}

}

// Perform a new boundary function model and add it to the boundary set

boundarySet.add(boundaryRegression(master.getJPoints()));

}

}

// END FIRST PHASE

We detail the computeFirstPhaseTasks() method for the first phase: After finishing
a computation of boundary point, the master (which is represented by the reference
getMaster()) will be asked in order for it to accumulate such computed point, see
below the piece of code running in parallel on each worker:

// At the parallel workers side

// The parent represents the master reference

public BooleanWrapper computeFirstPhaseTasks(PicsouGridInterface parent) {

// get the assigned task index (or point index)

int idx = parent.getNextBoundaryPoint().intValue();

while (idx >= 0){

calcBoundaryPoints();

// Add the computed point to point set.
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parent.merge();

// the merge() method implicitly increases

// the number of computed point by 1.

idx = parent.getNextBoundaryPoint().intValue();

}

return new BooleanWrapper(true);

}

And here is the detail of getNextBoundaryPoint() method:

// Set the next point index

public IntWrapper getNextBoundaryPoint() {

int idx;

if (nextBoundaryPointIdx < J) {

idx = nextBoundaryPointIdx;

nextBoundaryPointIdx += 1;

} else {

idx = -1;

}

return new IntWrapper(idx);

}

and calcBoundaryPoints() method (each point require a number of iterations for con-
verge):

private BooleanWrapper calcBoundaryPoints() {

while (stop == false) {

// estimate the optimal boundary point

simulate();

// if converge reached then

Stop = true;

}

return new BooleanWrapper(true);

}

Once the algorithm finishes the first phase, then it starts the second phase. The second
phase consists of straightforward Monte Carlo simulations (e.g. nbMC is the total
number of simulations), starting at opportunity zero. It is enough for the controller
to fulfil the workers with complete boundary set just before the beginning of the
second phase. In parallel, each worker will execute a partial number of Monte Carlo
simulations (e.g. nbMC/P simulations, where P is the number of workers). Master
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has the responsibility to merge such simulated results. Finally, controller will compute
the final results.

// START SECOND PHASE

// At the controller side

// Starting at t = 0

// fulfil the workers with ‘‘boundarySet’’ variable

workers.setupWorkers(0, boundarySet);

workers.computeSecondPhaseTasks(getMaster());

while (master.getCompletedIterations() < TOTAL_NUMBER_ITERATIONS_SECOND_PHASE)

{

try {

Thread.sleep(200);

} catch (Exception ex) {

ex.printStackTrace();

}

}

// get the final results

totalSumResult = master.getSumResult();

totalSumSquareResult = master.getSumSquareResult();

// compute and display the prices (i.e. a call option)

updatePrice(os.getBasket().getCallPrice(), totalSumResult, totalSumSquareResult);

// END SECOND PHASE

For further details, this piece of code shows the computeSecondPhaseTasks() method
corresponding to the second phase:

// At the parallel workers side:

// The parent represents the master reference

public BooleanWrapper computeSecondPhaseTasks(PicsouGridInterface parent) {

for (t = 1; t < TOTAL_NUMBER_OPPORTUNITIES; t++) {

for(d = 1; d < TOTAL_NUMBER_ASSETS; d++){

simulate(iterations, rng);

}

}

// merging partial simulated results and implicitly and

// increasing the number of completed simulations by ‘‘iterations’’.

parent.merge(iterations);

return new BooleanWrapper(true);

}

4. Resources Releasing: To terminate PicsouGrid, we will first destroy all active objects
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then the JVMs in order to complete the cleanup. For destroying active objects, the
master will first terminate all the workers and then itself by calling the following
method.

PAActiveObject.terminateActiveObject()

Once active objects are destroyed, then JVMs must be killed. Alternatively, one can
focus on killing the JVMs, that will get rid of the active objects too. ProActive gives
the ability to kill all JVMs and Nodes deployed with an XML descriptor with the
method: killall(boolean softly) in class ProActiveDescriptor.

ProActiveDescriptor

pad = PADeployment.getProactiveDescriptor(String xmlFileLocation);

//Kills every jvm deployed through the descriptor

pad.killall(false);

2.7 PicsouGrid Experiments on the Grid

This section has two objectives. The first objective consists in understanding the latencies
and behaviour within the various layers of the grid environment on which PicsouGrid ap-
plications were being run. Meanwhile the second one aims to evaluate the performance,
fault tolerance and tasks distribution of PicsouGrid framework, experimented using basket
European option pricing on a grid environment.

In case of the first goal, it became clear that a common model was necessary in order
to understand the latencies and behaviour of the grid environment. Hence we first define
terms related to our grid process model and present a recursive state machine which has
been used for tracking the life cycle of grid jobs. Then we only focus on establishing a
testcase of parallel simulations on the grid (e.g. parallel European option pricing using
Monte Carlo method), and as such do not focus on parallel speed-up per se. To simplify
the experiments and to highlight the issues introduced by a grid infrastructure and parallel
computing environment used to access grid machines, we have only executed the Monte
Carlo stage of the parallel computation of the vanilla option pricing, and removed the
synchronization at the end of the Monte Carlo stage. In this way, the experimental jobs
appear to be embarrassingly parallel.

In case of the second goal, we will present the good performance results we obtained for
a basket European option pricing implemented using PicsouGrid framework, running on a
single cluster and then on a multi-site grid. The performance results show good speedup.
Other features of PicsouGrid such as tasks distribution and fault tolerance will be also
evaluated.
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2.7.1 Grid Process Model

The Unix process model [109], with its three primary state of READY, RUNNING, and
BLOCKED, provides a common basis for the implementation of POSIX (Portable Operating
System Interface for UniX) operating system kernels, and an understanding of the behaviour
of a process in a pre-emptive multi-tasking operating system. Users and developers have a
clear understanding of the meaning of system time (time spent on kernel method calls), user
time (time spent executing user code), and wait/block time (time spent blocking for other
processes or system input/output). There are analogous requirements in a grid environment
where users, developers, and system administrators need to understand what state and stage
a “grid job” is in at any given time, and from a perspective be able to analyze the full job
life-cycle. The federated nature and automated late-allocation of disperse and heterogeneous
computing resources to the execution of a grid job make it difficult to achieve this.

2.7.1.1 Grid Tasks and Jobs

There is no commonly agreed model for a task in a grid environment. As a result, it is
difficult to discuss and design systems which manage the life-cycle of a program executing
on a grid. This is partially due to the lack of a common definition of a “grid task”, and its
scope. The GGF grid Scheduling Dictionary [98] offers two short definitions which provide
a starting point:

• Job: An application or task performed on High Performance Computing resources.
A Job may be composed of steps/sections as individual schedulable entities.

• Task: A specific piece of work required to be done as part of a job or application.

Besides the ambiguity introduced by suggesting that a job is also a task, these defini-
tions do not provide sufficient semantic clarity for distinguishing between workflows and
parallel executions. We therefore feel it is necessary to augment these terms to contain the
concept of co-scheduling of resources to provide coordinated parallel access, possibly across
geographically disperse resources. We propose the following definitions:

• Basic Task : A specific piece of work required to be done as part of a job, providing
the most basic computational unit of the job, and designed for serial execution on a
single hardware processor. The scheduling and management of a basic task may be
handled by the grid infrastructure, or delegated to a grid job.
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• Grid Job : A task or a set of tasks to be completed by a grid infrastructure, containing
meta-data to facilitate the management of the task both by the user and a specific
grid infrastructure.

• Workflow Job : A grid job containing a set of dependencies on its constituent basic
tasks or other grid jobs and which is responsible for the coordinated execution and
input/output management of those sub-jobs or sub-tasks.

• Parallel Job : A grid job which requires the coordinated parallel execution and
communication of a set of basic tasks.

With this set of definitions we consider a simple parallel Monte Carlo simulation to con-
sist of a parallel job with a set of coordinated basic tasks, such that the grid infrastructure
provides a set of concurrent computing resources on which the simulation can initiate the
parallel computation. A more complex phased Monte Carlo simulation would consist of
a workflow job where each phase of the workflow would consist of a parallel job, execut-
ing that phase’s parallel computation as part of the larger Monte Carlo simulation. The
grid infrastructure is then responsible for the appropriate selection, reservation, and allo-
cation/binding of the grid computing resources to the simulation job (whether simple or
complex), based on the requirements described within the job itself.

2.7.1.2 Recursive Layered State Machine

Figure 2.9 indicates the system layers typically found in a grid environment and through
which a grid job will execute. For a basic grid job, this will consist of one sub-process at
each layer. It is possible that the Site layer will not always be present, with Clusters being
accessed directly by the grid infrastructure. The visibility of a particular Core, in contrast
to the Host in which it exists, also may not be distinguishable. Some clusters may allocate
resources on a “per-host” basis, with all cores available for the executing task, while others
may allocate a number of tasks to a particular host up to the number of physical cores
available, trusting the host operating system to correctly schedule each grid task (executing
as an independent operating-system-level process) to a different core. Finally, the concept
of a VM (virtual machine), whether a user-level VM such as Java or an operating system
level VM such as Xen or VMWare, either may not exist within the grid environment, or
may replace the concept of a core, with one VM allocated to each core within the host, and
the host (or cluster) then scheduling grid tasks on a “one-per-VM” basis.

It should be noted that Figure 2.9 only illustrates system level layers, predominantly
representing the layers of physical hardware and networking. There are also the various



71

Grid

Site

Host

Cluster

Core

VM

process

Figure 2.9: Various layers through which a grid job executes

layers of software, such as the grid framework, the local cluster management system, the
operating system, and any application framework which may simultaneously be in use. In
total, eight levels of nested software scripts and six levels of system infrastructure have been
traversed in order to get from a single grid submit node to the thousands of distributed grid
cores where the parallel compute job is finally executed.

When working in a cluster or grid environment, many of the aspects which can be easily
assumed in a single node environment must be made explicit, and the staging of execution
is managed with possible time delays for synchronization and queuing, and on completion
it is necessary to properly return the collective results. Taking these various factors into
consideration, a five-stage model is proposed which is applied at each layer of the grid
infrastructure. The stages, in order, are defined as follows:

• CREATE prepares a definition of the process to be executed at this layer.

• BIND associates the definition, possibly based on constraints within the definition,
with a particular system at this layer.

• PREPARE stages and data required for execution to the local system which the
definition has been bound to and does any pre-execution configuration of the system.
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• EXECUTE runs the program found in the definition. This may require recursing to
lower layers (and subsequently starting from that layer’s CREATE stage). In a parallel
context, it is at this stage where the transition from serial to parallel execution takes
place, possibly multiple times for the completion of this stage’s execution.

• CLEAR cleans the system and post-processes any results for their return to the caller
(e.g. next higher layer).

The grid infrastructure handles the transition from one stage to the next. To accommo-
date the pipelined and possibly suspended life-cycle of a grid job it is not possible to consider
each stage as being an atomic operation. Rather, it is more practical to add entry and exit
states to each stage. In this manner, three states are possible for each stage: READY, which
is the entry state; ACTIVE, which represents the stage being actively processed; and DONE,
when the stage has been completed and transition to the next stage is possible. A grid
job starts in the CREATE.READY state, which can be seen as a “blank” grid job. Once the
system or user has completed their definition of the actions for that layer (done by entering
CREATE.ACTIVE), the grid job finishes in the CREATE.DONE state. At some later point, the
grid infrastructure is able to bind the job to a resource, and later still prepare the bound
node(s) for execution. When the node(s) are ready the grid job can execute, and finally,
once the execution is complete, the grid job can be cleared.

We have developed this model to be applied recursively at the various layers shown in
Figure 2.9. The layering also includes the software systems, and is arbitrary to a particular
grid environment. For example, a grid job could be in the state “CLUSTER/BIND.READY”,
indicating that a cluster-level job description has been prepared, and now the grid job
(or this portion of it) is waiting for the cluster layer of the grid infrastructure to make a
binding decision to submit the job to a particular queue. The queue, in turn, would have
to allocate the job to a particular host, and so on. While this model has been developed
with the intention to incorporate it into a larger grid workload management system, the
current model is only used for logging, time stamping, a monitoring. In many cases (e.g.
Grid’5000 and EGEE) we do not have access to the internals of the grid infrastructure and
either do not have visibility of some of the state transitions or are only able to identify state
transitions and time stamps during post-processing of grid job logs made available once the
job is complete.

This model has allowed us to gather behaviour and performance details for a consistent
comparison between three key aspects of any parallel grid application: the grid infrastruc-
ture impact; the parallelization framework; and the core application code. It is the basis
for all the monitoring and timing information which is provided in the results presented
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Figure 2.10: A simple example of a parallel grid job state snapshot on Grid’5000. Nodes
without an explicit state are implicitly in the state EXE.ACTIVE, which is the only valid state
for entering into a lower layer.

in Section 2.7.2. We finish this overview with Figure 2.10 which is a simplified grid net-
work snapshot showing the state of various entities contributing to a fictitious small parallel
computation. It shows two sites, each with two clusters. Three of the clusters have started
executing the grid job on their worker nodes, and those six workers are in different states,
while one cluster is making binding decisions regarding which workers to execute on.

2.7.1.3 Grid Efficiency Metrics Definition

We are going to define the metrics relevant to the experiment of a vanilla option pricing
which appear to be embarrassingly parallel.

1. Time window unit-job through put : This metric counts the number of “unit
jobs” executed by the grid infrastructure in a fixed time window. Typically the time
window is taken from the start of the earliest computation to the end of the last
computation, although this can be “time shifted” to align each cluster start-time as
t = 0. If the number of grid nodes (processors/cores) is somehow fixed, this gives a
comparative performance measure of the grid.

2. Speed-up efficiency limit : With some reference system serial calculation time for
a unit job, the speed-up efficiency is defined as the time taken for the reference system
to process N unit-jobs divided by the total occupancy time at a particular grid layer
required to compute the same N unit-jobs. The metric assumes zero communication
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time for parallel jobs. In this case the speed-up limit would always be N and the
speed-up efficiency limit 1. Equation 2.1 defines this metric, where nunitJob is the
total number of unit jobs completed by the grid system, nprocs is the number of
processors contributing to the total computation time, and ti represents the wall time
of the occupancy of that layer of the grid.

nunitJob × tref∑nprocs

i=1 ti
(2.1)

3. Occupancy efficiency : This measures what fraction of the total time available
for computation was actually used by the application, measured at the various layers
within the grid. This is defined by Equation 2.2, where ncompUnits indicate the number
of computational units (e.g. hosts, cores, VMs, threads, processes) available at that
layer.

∑ncompUnits

i=1 ti
ncompUnits × treservation

(2.2)

2.7.2 Experiment Analysis

2.7.2.1 Latency and Behaviour of the grid

The work presented here focuses on the capabilities and characteristics of the underlying
grid infrastructure to provide for such application-level parallelism.

As mentioned earlier, to simplify the experiments and to highlight the issues introduced
by the grid infrastructure and parallel computing environment, we only consider the par-
allel paths generation using Monte Carlo methods for vanilla option pricing, and removed
the synchronization at the end. In this way, the experiments appear to be embarrassingly
parallel. The starting point for discussing parallel Monte Carlo simulations on the grid is to
understand an ideal situation. Ideally all available computing resources would be used at
100% of capacity for the duration of their reservation performing exclusively Monte Carlo
simulations. The time to merge results would be zero, and there would be no communica-
tions overhead, latencies, or blocking due to synchronisation or bottlenecks.

In reality, as discussed in Section 2.7.1.3, there are many parameters which have an
impact on the actual performance of a parallel Monte Carlo simulation. As the following
results will show, predictable coordinated access to resources within a single cluster can be
difficult, and synchronization of resources between clusters or sites even harder. Due to this
observation, the work here focused on identifying the issues which lead to poor resource
synchronization, and to facilitate evaluation of resource capability. In order to do this, the
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following results eliminate coordinated simulation and merging of results, and only initiate
independent partial Monte Carlo simulations. All the following experiments were performed
in early March 2007 on Grid’5000, using all available sites, clusters, and nodes. The figure
headings show the statistics for the time spent in the states NODE.EXECUTE.ACTIVE and
SIMULATOR.EXECUTE.ACTIVE in the form node = (M,S)s and sim = (M,S)s where M is
the mean time in seconds and S is the standard deviation. nodeeff is the node occupancy
efficiency, and simeff the simulator occupancy efficiency, as defined in Equation 2.2. The
“simulator” is the part of the application where the Monte Carlo simulation is executed,
excluding any software startup (e.g. JVM initiation), configuration etc.
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Figure 2.11: Realistic optimal parallel Monte Carlo simulation, with 92.7% occupancy effi-
ciency.

Figure 2.11 shows an almost ideal situation where 60 cores running on 30 hosts from
the same cluster all start processing within a second of each other, run their allocated
simulations for the same duration (around 90 seconds, shown by the black “life line”), and
complete in a time window of a few seconds. This provides a simulation efficiency of 92.7%,
and we take this to be our “cluster-internal” efficiency standard.

By contrast, some clusters showed node (host) and core start and finish windows of
several minutes, as seen in Figure 2.12. This particular example consists of 240 dual-CPU
nodes, representing 480 cores. A simulation efficiency of only 43.1% was achieved, indicating
that the resources were idle for the majority of the reservation time (the time outside of the
black life-lines). Furthermore, the majority of this idle time was in the finishing window,
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Figure 2.12: Cluster exhibiting significant variation in node start and finish times, resulting
in an occupancy efficiency of < 50%.

where only a few inexplicably slow nodes delayed completion of the computation on the node
block within the cluster. The space prior to the start of the simulator life-line is due to grid
infrastructure delays in launching the node- or core-level process (e.g. due to delays in the
CLUSTER.PREPARE stage) – again, wasted computing time when the job held a reservation
for the node and core, but failed to utilize it.

Now, we return to the question of coordinated multi-cluster (and multi-site) parallel
computing. Besides inherent technical issues present when attempting regular communica-
tions across long network segments, it is difficult to satisfy on demand requests for grid-wide
multi-node reservations. There is the initial challenge of immediate availability, and then
the subsequent challenge of promptly completing and confirming the distributed node reser-
vations and the requisite site, node, or cluster preparation (pre-execution configuration).
Figure 2.13 shows an example of such a situation for a 1270-core multi-cluster job, where a
request for approximately 80% of the reported available nodes from each cluster was made
at a fixed point in time, and most clusters took over an hour before this request could be
fulfilled. One cluster took two and a half days (not shown in figure due to effect on time
scale). This is not a surprising result given the nature of Grid’5000 and the style of com-
putations which are done on it, namely experimental (therefore usually less than one hour)
parallel and distributed computing. At any given time it is expected that the clusters will
be full with jobs which require blocks of nodes, and for the queue to contain multi-node jobs
as well, therefore newly submitted jobs would expect to wait at least several hours to both
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make it to the front of the queue and for the requisite block of nodes to be available. While
Grid’5000 provides simultaneous submission of jobs, it does not coordinate reservations and
queues, so the individual clusters became available at different times. Using normalized
cluster start-times, all the unit-job computations took place in a 274.2 second time window,
for a total execute stage time block of 1270 cores × 274.2 seconds = 348234 core·seconds
= 96.7 core·hours. Compared with a reference unit-job execution time of 67.3 seconds, the
speed-up efficiency limit, as given in Equation 2.1, is (1270 cores × 67.3 seconds)/ 96.7
core·hours = 25.5%.
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Figure 2.13: Light grey boxes indicate queuing or clearing time, dark grey boxes indicate
execution time. This graph illustrates the difficulty in coordinated cross-site on-demand
parallel computing.

Figure 2.14 shows the start-time aligned execution phase for each cluster. An obvious
conclusion from this is the need to partition the computational load in such a way that the
faster nodes are given more work, rather than remain idle while the grid job waits for the
slowest nodes to complete.

A more realistic multi-cluster parallel grid job uses explicit cluster and node reservation.
Figure 2.15 shows the results of a multi-cluster reservation for a large block of nodes per
cluster at a fixed time of 6:05 AM CET (5:05 UTC), approximately 18 hours after the
reservation was made. It was manually confirmed in advance that the requested resources
should be available on all clusters, and a reduction in the number of nodes was made to
provide for a margin of unexpectedly failed nodes. The 5 minute offset from the hour was
to provide the grid and cluster infrastructures with time to clean and restart the nodes
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Figure 2.14: Cluster start-time aligned execution phase, showing overall (time-shifted)
“Grid” time window for grid job execution. This shows wasted computing power as fast
nodes sit idle waiting for slow nodes to complete.
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after previous reservations ending at 6 AM were completed. In fact, this result does not
include clusters which completely failed to respect the reservation or failed to initiate the
job, and also three clusters with abnormal behaviour: two where the leader node failed
to initiate the task on the workers, and one where the task commenced three hours late.
It can be seen that only five clusters, consisting of approximately half of the 800 cores,
were able to start the computation within a minute of the reservation. This poses serious
problems for coordinated, pre-scheduled, pre-planned multi-cluster parallel computations,
since it suggests it is difficult to have disparate clusters available during the same time
window. The Lille cluster shows grey box for waiting time after execution, due to problems
with synchronizing data from worker nodes back to leader node and user home directory.
Other nodes also have this stage, but it takes < 1s so is not visible at this scale (see
paravent-dev.inisa.fr).

These studies have quantitatively revealed the difficulties with executing coordinated
multi-cluster and multi-site parallel computational tasks. The layered state machine model
from Section 2.7.1.2 for grid jobs has facilitated detailed tracking of state transitions through
the various layers of the grid, and been a part of identifying mis-configured clusters and
nodes. The metrics defined in Section 2.7.1.3 provide measures which suggest a 90− 95%
occupancy efficiency at the cluster level is reasonable if the clusters are correctly configured
and operating normally. Regarding parallel computing at the cluster level, it is clear that
heterogeneity is irregular, even when a cluster claims it is composed of identical machines.
Obviously, the heterogeneity is the essence of grid computing and it causes many challenges
for the use of parallel computing on the grid.

2.7.2.2 Speedup, Load Balancing and Fault Tolerance

We have chosen an European option pricing using Monte Carlo methods to demonstrate the
performance of a high performance computing system for financial computations. Because
due to the “embarrassingly parallel” property of such pricing problem and the fact that,
the simulated price can be verified through the Black-Scholes formula.

We developed a distributed pricing algorithm for the general high–dimension European
option which is detailed in [18]. We describe the architecture and algorithmic principles, in
the case of an European option on a basket of d assets, the other cases having a very similar
architecture. When d is large (d = 40 in our experiment), basket option is particularly
the most time consuming among European option types. The underlying prices is a vector
(Si, i = 1, . . . , d). One basket trajectory simulation consists in the simulation of the d prices
(Si) . Because of the correlation in the model, the trajectory simulation of the prices must
be synchronized. A task sent to a worker (aka. processor) consists in asking it to simulate
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a number of simulations. The main problem regarding load balancing will be to fix the
optimal value of package size according to the total number of simulations nbMC and the
dynamic load of the processors of the grid.

We have evaluated PicsouGrid with a one year maturity European put option on a basket
of 40 correlated assets computed on the basis of 106 Monte Carlo trajectories (multidimen-
sional Black-Sholes model with one step a day, 25% volatility per asset, 0.5% correlation,
the precision is about 103). Experiments were run on Grid’5000 without introducing failure.

Figure 2.16: Speedup on a 1-site grid

According to the PicsouGrid architecture in Figure 2.2, it is relevant to adapt the
number of sub-masters to the size of the grid, see Figure 2.16. In our experiment on one
site, one sub-master is enough to manage up to 40 processors, then 2 sub-masters are better
to manage around 70 processors, and then 4 sub-masters are desirable to manage more
processors. Identifying the best configuration is strategic. Performances are better up to
approximately 130 workers, and decrease beyond, see Figure 2.16.

We have deployed PicsouGrid on 4 sites using Proactive, with 1 sub-master and up to
23 workers per site. Performance results are presented in Figure 2.17. Compared to the
best configurations on one site a significant slow down appears for 80 processors, where the
speedup slows down from 55 to 47. Such issue is easy to understand because several sites
offer more easily a large amount of processors, but communications take longer and limit
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Figure 2.17: Speedup on a 4-site grid

the speedup.

We also performed PicsouGrid in case of failures and aggressive load balancing. As
next performance results illustrate, when distributing independent Monte Carlo simulations,
the heterogeneity and volatility of grid machines can be addressed by the aggressive task
distribution introduced in Section 2.4, and defining an adequate trade-off for the task size.

Figure 2.18 shows the execution times of a basket pricing (nbMC = 106), function of
the task size on a nominal grid of 144 processors (nb−proc = 144) and on the same grid on
which we shutdowned 1 processor (a faulty grid of 143 processors). As no reserve processor
is considered, the fault-resilience has to be entirely supported by the dynamic load balancing
and the aggressive task distribution strategies. Small task size is adapted for highly volatile
and heterogeneous grids as we can observe that in Figure 2.18. The failure impact is very
limited for small task size, even if their numerous communications slow down computation.
Optimal task size (nbMC/144 = 6945) on a sound grid leads to minimal execution times,
but to double time on our faulty grid because all processors run one task and one processor
has to run a second task to achieve the required amount of simulations. Little bit greater
task size, like 7000 is adapted to homogeneous and lightly volatile Grids: more simulations
than required are computed on the sound grid with limited overhead, and the required
amount is still achieved in the same time on the grid with one faulty processor.

As a summary, we evaluated the performance of PicsouGrid by using a basket European
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Figure 2.18: Impact of the task granularity

option pricing application. Such application is particularly the most time consuming among
European option types which may require hours of computation on a single machine. Ac-
cording to the architecture in Figure 2.2, we varied the number of sub-masters to figure
out the best configuration for PicsouGrid. It is shown that on a 1-site grid, one sub-master
is enough to manage up to 40 processors, then 2 sub-masters for 70 processors and so on.
We also experimented PicsouGrid on a multi-site grid (e.g. up to 4 sites) to figure out
the slow down of speedup due to the communication overhead between sites. Overall we
achieved good performances for basket European option pricing application on both one
and multi-site grid. In term of task distribution, by creating a faulty grid, we observed that
aggressive task distribution achieves good performances on sound and faulty Grids when
computing independent Monte Carlo simulations.

2.8 Conclusion

In this chapter, we presented PicsouGrid a distributed computing framework in our financial
context which consists of financial option pricing applications, to provide fault tolerance,
load balancing, dynamic task distribution and deployment on a heterogeneous environment
(e.g. a grid environment). PicsouGrid has been designed to support both large Bag-of-
Tasks (BoT) problems and parallel algorithms requiring more communications. PicsouGrid
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has been successfully deployed on the multi-site grid (e.g. Grid’5000) for European option
pricing. We achieved good performances for such application, using up to 190 processors on
a cluster and up to 120 processors on a 4-sites grid. Fault-tolerance and load balancing are
realized transparently for the programmer, based on processor replacement and dynamic
and aggressive load balancing.

We also tried to figure out the latencies and behaviour within the various layers of the
grid environment on which PicsouGrid applications were being run. Regarding experiments
for such problem in Section 2.7.2, it is clear that heterogeneity of grid is important, even
on a single cluster composed of identical machines. Latencies in binding grid tasks to
particular nodes and initiation of tasks on a particular core can introduce delays of several
seconds to minutes. This presents two major challenges for parallel computing on the grid:
i) synchronization of the task start time; and ii) partitioning of the computational load.
While static measures of relative performance on a cluster or node level are valuable, it
is clear that these cannot always be trusted, hence it is reasonable to imagine the need
for dynamic, application-layer determination of node performance prior to the initiation of
parallel computations. Ideally this responsibility would be taken by the grid infrastructure
(and by implication of the cluster owner), however the federated and unreliable nature of
grids suggests the user or application needs to manage this for the present. At the level of
multi-sites grid computing the key challenges are coordinated reservation and start-up. Our
work has not investigated what granularity of computations are practical, however the start-
up delays and unreliable fulfilment of reservations suggest that “contributory best-effort”
workers may be appropriate, where workers enter and exit a worker pool in a dynamic
fashion, and are acquired by a simulation manager and assigned to particular computations
“on demand”, rather than with a simulation manager expecting a set of workers based on
a prior reservation.

Since the European option pricing can be expressed as an embarrassingly parallel prob-
lem, it is necessary to experiment PicsouGrid with more tightly-coupled applications, such
as American pricing to evaluate the degree of parallelism which can be achieved, and at
what cost, and to discover the performance impacts of real multi-cluster (multi-site) com-
municating parallel computations in a grid environment. In the next Chapter, we are going
to introduce the American option pricing algorithms using Monte Carlo simulations. We
will present a parallel approach for one of these algorithms and also evaluate the scalability
of such proposed parallel approach in a computational grid environment using PicsouGrid.
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Chapter 3

PARALLEL HIGH DIMENSIONAL AMERICAN OPTION PRICING

Pricing high dimensional American option is a hard and computational intensive problem
in finance. This chapter focuses on the parallelization of the Classification Monte Carlo
algorithm proposed by Picazo (2002) [94] for high dimensional American option pricing.

First part of this research work has been accepted to Mathematics and Computers in
Simulation Journal, Elsevier, 2010. Preliminary high dimensional American option

pricing results were also published in the 1st Workshop on High Performance
Computational Finance in conjunction with the 2008 Supercomputing Conference, see [40].
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3.1 Motivation

According to the Eurex and ISE 1 annual report, in 2009 the equity derivatives segment of
the Eurex derivatives exchanges board (options and single stock futures) reached 421 million
contracts. Most of contracts are of the American type. Typical approaches for American
option pricing are the binomial method of Cox and Rubinstein, see Cox and al. (1979) [37]
or later in Cox and Rubinstein (1985) [38], the partial differential equation approach (see
Wilmott and al. (1993) [126]) and Monte Carlo based methods (e.g. see Glasserman (2004)
[52]). However, since binomial methods are not suitable for high dimensional options, MC
simulations have become the cornerstone for simulation of American options in the industry.
Hence in this thesis context, we only discuss about the use of Monte Carlo based methods
for American option pricing. Such MC simulations have several advantages, including ease
of implementation, applicability to multidimensional options and suitability to parallel and
distributed computing. A litte survey showed that most of Monte Carlo based algorithms
such as Andersen and Broadie (2004) [5], Kogan and Haugh (2004) [58], Meinshausen and
Hambly (2004) [85], Rogers (2002) [99], Ibanez and Zapatero (2004) [63], Picazo (2002) [94]
involve calculating an expectation, which itself can be resolved using another set of MC
simulations. This “simulation on simulation” is computationally expensive. For example
pricing American options with a large number of underlying assets is computationally in-
tensive and might take several hours or even days (e.g. on a single processor). For instance,
Ibanez and Zapatero (2004) [63] state that pricing the option with just five assets takes two
days, which is not affordable in modern time critical financial markets.

In the literature, there exist some parallel American option pricing techniques. For ex-
ample Huang (2005) [60] or Thulasiram (2002) [116], both implemented a parallel approach
which is based on the binomial lattice model but are not suitable in case of high dimensional
problems. Wan and al. (2006) [124] developed a parallel approach for pricing American
options on multiple assets. Their parallel approach is based on the low discrepancy (LD)
mesh method which combines the quasi-Monte Carlo technique with the stochastic mesh
method. Muni Toke (2006) [92] investigated a parallel approach for the Monte Carlo based
algorithm proposed by Ibanez and Zapatero (2004) [63]. In the recent studies, Bronstein
and al. (2008) [27] presented a parallel implementation of the optimal quantization method
to price multi-dimensional American options. Choudhury and al. (2008) [9] identified some
opportunities for parallelization in the Least-Squares Monte Carlo (LSM) algorithm. Al-
though the parallel efforts for the parallel approaches above have been made, only few of
them reported using many CPUs at once (e.g. in [92] the experiments were performed on

1http://www.eurexchange.com
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up to 12 processors). Moreover, in almost experiments the authors only evaluated their
approaches only on small dimensional problems (e.g. maximum option on 5 assets [5, 63],
minimum option on 10 assets [99, 94]). Thus there are no numerical results with dimension
bigger than 10 that have been experimented in these research works and available in the
literature.

Therefore, our research objective aims to overcome these limits described above by
investigating a new parallel American option pricing algorithm. We provide a parallel
approach for the Classification Monte Carlo (CMC) algorithm proposed by Picazo (2002)
[94]. Such algorithm in its sequential form is similar to recursive programming so that at
a given exercise opportunity it triggers some independent MC simulations to compute the
continuation value. The optimal exercise strategy of an American option is to compare
at each opportunity date the exercise value (intrinsic value) with the continuation value
(the expected cash flow from continuing the option contract), and exercise if the exercise
value is more valuable. The CMC algorithm classifies the underlying asset prices into two
separated regions, the exercise region S and the continuation region C. Using a classification
technique borrowed from the machine learning domain, CMC algorithm calculates a model
that characterizes the optimal exercise boundary separating these two regions for each
opportunity date. Next, it estimates the option price using MC simulations based on such
models. Our roadmap is to study the algorithm in detail to highlight its potential for
parallelization: Overall we aim to increase the whole algorithm scalability, so for each of
computation phases, our goal is to identify where and how the computation could be split
into independent parallel tasks. That provides us a parallel approach so that it can be easy
handled in by the computational grid. As we aim for a scalable enough approach, we should
then be able to evaluate the American option pricing for high dimensional problems. So
the main guideline of this chapter is to investigate the parallelization of the CMC algorithm
to explore all the opportunities to reduce the pricing time by harnessing the computational
power provided by the computational grid.

Chapter 3 is organized as follows: in Section 3.2 we provide an overview of use of Monte
Carlo based methods for high dimensional American option pricing including regression
based methods and parametric approximation methods. In Section 3.3 we will discuss
in details relevant related works, for example some parallel approaches for the original
LSM algorithm of Longstaff and Schwartz (2001) [77] and the original algorithm of Ibanez
and Zapatero (2004) [63]. Based on these parallel approaches, we shift our interest on
parallelization of another algorithm for high dimensional American option pricing, the CMC
algorithm of Picazo (2002) [94] and provide a parallel approach for such algorithm in Section
3.4. We further detail in this section the use of two machine learning techniques that
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are Support Vector Machines and Booosting in the CMC algorithm. We figure out the
impact of these two techniques on the overall accuracy and the parallel computational
performance for the CMC algorithm. We perform some numerical results and analyze the
performance speedup further in this section. As conclusion, in Section 3.5 we discuss about
the advantages and limitations of our parallel approach and suggest some future research
directions.

3.2 High Dimensional American Option Pricing

This section presents several Monte Carlo based methods that address the problem of high
dimensional American option pricing and hedging. All of these methods require some sub-
stantial computational efforts and a large computational time.

3.2.1 Monte Carlo Based Methods

It is clear that pricing and hedging algorithms for American options are still challenging.
Only few closed forms solutions have been found for some special cases. Particularly, pric-
ing American options on a basket of underlying assets or with multiple risk factors is a
complicated and difficult problem. For the last decade, many methods have been proposed
but none of them are satisfactory. To date, Monte Carlo based methods act as the most
promising methods to solve this problem. In fact, starting from the research of Tilley (1993)
[117], people were encouraged to investigate the possibility of pricing American options us-
ing Monte Carlo methods. This and other early methods such as Barraquand and Martineau
(1995) [15], Broadie (1997) [24], Fu and Hu (1995) [48] are reviewed in Boyle et al (1997)
[21] and a comparison of methods is made in Fu et al. (2001) [49]. Many of these methods
are also explained in Glasserman (2004) [52] and Tavella (2002) [113].

In Chapter 1, we briefly presented the American option pricing problem. In this section,
we are going to detail two ways to formulate such problem: the Optimal Stopping Formu-
lation and the Free Boundary Formulation. Based on these formulations, we also introduce
two branches of Monte Carlo based methods for American option pricing: the Regression
Based Methods and the Parametric Approximation Methods, see Figure 3.1.

3.2.1.1 Free Boundary Formulation - Parametric Approximation Methods

Since the American option can be exercised at any time up to the maturity date T , it is
important to compute when the option should be exercised. During the option life T , at
any time we have to determine the optimal exercise boundary

b∗(t) = {x;V (x, t) = Ψ(x, t)}
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Figure 3.1: Monte Carlo based American Option Pricing Algorithm Family

where V (x, t) is the option price at time t and Ψ(x, t) is the payoff value at time t. However,
the unknown form of the optimal exercise boundary is a major problem when using Monte
Carlo simulation to price American options. Hence there exists a group of approaches for
American option pricing which focuses into parameterizing the option exercise boundary,
named parametric approximation methods. For the single asset cases, Ju (1998) [65] ap-
proximated the exercise boundary by a piecewise exponential curve and Ait Sahlia and Lai
(2001) [69] did it with a four pieces linear spline. Such approaches gave a good approx-
imation for the American option price. However, the structure of the exercise boundary
in higher dimensions is not simple, as investigated by Broadie and Detemple (1997) [24],
Villeneuve (1999) [123]. Later, Ibanez and Zapatero (2004) [63] used a parametric approach
to obtain the optimal exercise boundary function for pricing American option. We will
introduce this approach in the next paragraphs.

Ibanez and Zapatero (2004) [63] proposed an algorithm that computes explicitly the
optimal exercise boundary. They consider a given finite set of opportunity dates Θ =
{tm,m = 1, . . . , N}. They provided an American option pricing algorithm based on the
estimation of the optimal exercise boundary b∗(t) at any opportunity date t ∈ Θ. The
algorithm of Ibanez and Zapatero is based on the observation that when the payoff Ψ is
monotone and convex the optimal exercise boundary b∗(t) relies on the set of points x∗ that
solve

V (x∗, tm) = Ψ(x∗, tm) (3.1)
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, see Broadie and Detemple (1997) [24].

Consider a basket American option on a basket of d assets St = {Si
t : i = 1, . . . , d}; t ∈ Θ.

DenoteBt a (d−1)-dimensional vector of d−1 assets excluding Si
t : Bt =

{
S1

t , . . . , S
i−1
t , Si+1

t , . . . , Sd
t

}
.

In order to obtain Bt, the algorithm creates a lattice of points, called “Good Lattice Points”
(GLPs) as the seeds that help to simulate the value of Bt, see [63] for the construction of
such GLPs. Such lattice is of size (nb GLP ×d−1), where nb GLP is the number of points
that will be used to form the boundary b∗ and d is the number of assets. The optimal exer-
cise boundary at time t ∈ Θ is a function of Bt, F (Bt, t). Such function can be calculated
recursively from tN−1 to t1 because at tN the function is simply the constant strike price K.
Starting at tm,m = N − 1, take an initial point S1,(1)

tm (often it is the strike price K), the
algorithm uses this point to compute the continuation value C(S1,(1)

tm , tm) using Equation
(3.4). Such expectation value can be estimated through straightforward MC simulations as
in case of European option described in Equation (1.21). We note nb cont the number of
MC simulations for pricing such continuation value. Once having C(S1,(1)

tm , tm), we can find
S

1,(2)
tm that solves the following equation:

C(S1,(1)
tm , tm) = Ψ(S1,(2)

tm , tm) (3.2)

Similary using S1,(2)
tm , we are going to find S1,(3)

tm using (3.2) and so on until:

∣∣S1,(n+1)
tm − S1,(n)

tm

∣∣ ≤ ε (3.3)

for a given small ε and n ∈ N+. Then we obtain an optimal point S1,(∗)
tm = S

1,(n+1)
tm .

Such procedure will be repeated until we obtain the full set of optimal points {Sj,(∗)
tm ; j =

1, . . . , nb GLP} in order to be able to build the optimal exercise boundary. We refer reader
to Ibanez and Zapatero (2004) [63] for the full explanation for the convergence condition of
this step (e.g. choosing value of ε, number of iterations n). Once having the optimal points
set, we can perform a regression on these points to obtain the boundary as a parametric
curve (e.g. a second or third degree polynomial). Finally, once having the overall optimal
exercise boundary at each opportunity, the option price at time t ∈ Θ can be estimated
using Monte Carlo simulations as follows:

V (St, t) = E
[
e−r(τ−t) max

(
Ψ(Sτ , τ)−K, 0

)]
, (3.4)

with τ = min{τ > t, τ ∈ Θ;Sτ ≥ S
(∗)
τ = F (Bτ , τ) for a call or Sτ ≤ S

(∗)
τ for a put}. The

following Algorthim 4 showes the pseudo-code of the Ibanez and Zapatero algorithm

The algorithm of Ibanez and Zapatero has some advantages as follows: Firstly it is
able to provide the full detailed optimal exercise boundary to option holder and secondly
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Algorithm 4 Serial Ibanez and Zapatero Algorithm
Require: Si

0, d, r, δi, σi, T , N ,
Require: number of optimal boundary points nb GLP ,
Require: number of trajectories to estimate each continuation value nb cont
Require: number of trajectories to estimate the final option price nbMC
1: Generate the “Good Lattice Points”, Bj ∈ Rd−1, j = 1, . . . , nb GLP
2: [phase 1] :
3: for m = N − 1 to 1 do
4: [step 1] : // Calculate nb GLP optimal boundary points Sj,(∗)

tm : j = 1, . . . , nb GLP .
5: for j = 1 to nb GLP do
6: Compute the continuation value Ctm based on Equation (3.4) using nb cont simu-

lations
7: Calculate the jth optimal boundary point Sj,(∗)

tm using Equations (3.2) and (3.3).
8: end for
9: [step 2] : Form F (Btm , tm) based on the set {Bj

tm , S
j,(∗)
tm : j = 1, . . . , nb GLP}

10: end for
11: [phase 2] : Generate new nbMC paths {Si,s

tm : i = 1, . . . , d;m = 1, . . . , N ; s =
1, . . . , nbMC}. Using these calculated F (Btm , tm) above, we can estimate the final
option price through Equation (3.4).

12: return the final option price.

it can be treated as an European option for both pricing and hedging at the final phase.
However in term of computing performance, Ibanez and Zapatero stated in their paper that
for pricing a maximum option of five assets, the algorithm took two days, which is not
desirable in modern time critical financial markets. To overcome this limitation, Muni Toke
(2006) [92] investigated a parallel approach fo Ibanez and Zapatero algorithm which will be
further discussed in this chapter.

3.2.1.2 Optimal Stopping Formulation - Regression Based Methods

Such formulation is a common way to formulate the American option pricing problem. In
Chapter 1, we presented the formula for a American option fair price at any time t before
T using the optimal stopping formulation:

V (St, t) = sup
τ∈Π(t,τ)

E
[
e−rτΨ(Sτ , τ ∈ [t, T ])

]
.

where St is the asset prices at time t ∈ Π(t, T ), with Π(t, T ) is the set of stochastic stopping
time in [t, T ). This supremum is achieved by an optimal stopping time τ∗ of the form:

τ∗ = inf{t ≥ 0 : St ∈ S(t)}
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where S(t) = {x;V (x, t) ≤ Ψ(x, t)}. To compute numerically V (St, t), we used the dynamic
programming principle in Equation (1.8). For the convenience of the reader we recall here
such Equation (1.8):

V (StN , tN ) = Ψ(StN , tN )

V (Stm , tm) = max
{

Ψ(Stm , tm),E
[
e−r(tm+1−tm)V (Stm+1 , tm+1)|Stm

]}
with the finite set of opportunity dates Θ = {tm,m = 1, . . . , N}. Regarding the Equation
(1.8), at a given opportunity tm ∈ Θ and in a given state Stm = x, we have Ψ(Stm , tm) as
exercise value (also called intrinsic value) and the continuation value like:

C(x, tm) = E
[
e−r(tm+1−tm)V (Stm+1 , tm+1)|Stm = x

]
. (3.5)

Such expectation value can be estimated though straightforward MC simulations as in
case of an European option described in Equation (1.21). Notice that C(x, T ) ≡ 0 and
C(x, 0) = V (x, tm).

Using such dynamic programming representation, we can evaluate the option price
V (S0, 0) by using a recursive backward computing. While the exercise value is easy to
be computed, the estimation of the continuation value C is more challenging. There are
several Monte Carlo based approaches for American option pricing essentially relying on
the way how to estimate and use such continuation value defined in Equation (3.5). Re-
gression based methods include Longstaff and Schwartz (2001) [77], Carriere (1996) [30]
and Tsitsiklis and Van Roy, 2001 [119]. The method of Longstaff and Schwartz has been
particularly popular and has been investigated by a number of authors such as Moreno and
Navas (2003) [91], Stentoft (2004) [108]. Proof of convergence is given in Clement et al.
(2001) [34]. Chaudhary (2005) [32] and Lemieux (2004) [76] have applied quasi-random
sequences to the valuation of American options. Such algorithms above form a group of
approaches for American option pricing, named Regression Based Methods.

The key of such family of approaches is that the continuation value C(Stm , tm) in (3.5)
can be approximated as follows:

C(Stm , tm) = E
[
e−r(tm+1−tm)V (Stm+1 , tm+1)|Stm = x

]
=

M∑
r=1

βr
tmψ

r(Stm) (3.6)

for a set of basic functions ψr(Stm) and constant coefficients βr
tm . Using this continuation

value formulation, the authors in Longstaff and Schwartz (2001) [77], Carriere (1996) [30]
and Tsitsiklis and Van Roy, 2001 [119] have proposed the use of regression to estimate the
continuation values from simulated paths then to compute the American option price by
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using MC simulations. For example, the Least Squares Monte Carlo (LSM) algorithm of
Longstaff and Schwartz used the least squares regression to estimate the best coefficients
β in the approximation (3.6). We refer the readers to Longstaff and Schwartz (2001) [77]
for the full explanation of the LSM algorithm and to Clément, Lamberton and Protter
(2001) [34] for the proofs of convergence of this algorithm. Algorithm 5 briefly presents the
pseudo-code of the serial LSM algorithm.

Algorithm 5 Serial Original Least Square Monte Carlo Algorithm
Require: Si

0, d, r, δi, σi, T , N
Require: number of simulations nbMC
1: [phase 1] : // Simulate {Si,s

T : i = 1, . . . , d; s = 1, . . . , nbMC}
2: for m = N − 1 to 1 do
3: [step 1] Firstly, realize the optimal stopping time at time tm+1. Secondly, generate

nbMC paths of {Si,(s)
tm : i = 1, . . . , d; s = 1, . . . , nbMC} asset prices from tm+1.

4: [step 2] At tm, estimate the best coefficients βtm for
∑M

r=1 β
r
tmψ

r(Stm) using least
square regression

5: for s = 1 to nbMC do
6: Compute the continuation value for each path C(s)(Stm , tm) using the estimated

coefficients βtm

7: Compute the exercise value for each path Ψ(s)(Stm , tm)
8: if C(s)(Stm , tm) ≤ Ψ(s)(Stm , tm) then
9: set the optimal stopping time at tm

10: else
11: set the stopping rule at tm.
12: end if
13: end for
14: end for
15: [phase 2] Using the backward generated nbMC paths {Si,(s)

tm : i = 1, . . . , d; s =
1, . . . , nbMC};m = 1, . . . , N and the optimal stopping time set above, we can estimate
the final option price.

16: return the final option price.

Later, Picazo (2002) [94] stated that the approximation of the continuation value in
regression based methods is not necessary. Based on dynamic programming representation
in Equations (1.8), it is enough to decide between two ways, exercise, or not, and this
does not require full knowledge of the functional form of the continuation value. Instead
of using the continuation value formulation in Equation (3.6), Picazo focuses on Equation
(1.8), classify the exercise values and continuation values into two regions S(t) and C(t) and
uses a classification algorithm, a technique borrowed from machine learning, to characterize
the boundary separating these two regions. Picazo named his algorithm as Classification
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Monte Carlo (CMC) algorithm. Algorithm 6 briefly presents the pseudo-code of the serial
CMC algorithm.

Algorithm 6 Serial Classification and Monte Carlo Algorithm
Require: Si

0, d, r, δi, σi, T , N .
Require: number of classification points nb class,
Require: number of trajectories to estimate each continuation value nb cont
Require: number of trajectories to estimate the final option price nbMC
1: [phase 1] :
2: for m = N − 1 to 1 do
3: Generate nb class points of {Si,(s)

tm : i = 1, . . . , d; s = 1, . . . , nb class}.
4: [step 1] :
5: for s = 1 to nb class do
6: Compute C(s)(Stm , tm) = E

[
e−r(tm+1−tm)V (Stm+1 , tm+1)|Stm

]
using nb cont trajec-

tories and also compute Ψ(s)(Stm , tm).
7: if C(s)(Stm , tm) ≤ Ψ(s)(Stm , tm) then
8: sign = 1
9: else

10: sign = -1
11: end if
12: end for
13: [step 2] : Classify

{(
Stm , sign

)(s) : s = 1, . . . , nb class
}

to characterize the exercise
boundary at tm.

14: end for
15: [phase 2] : Generate new nbMC trajectories {Si,(s)

tm : i = 1, . . . , d;m = 1, . . . , N ; s =
1, . . . , nbMC}. Using the characterization of the exercise boundary above, we can esti-
mate the final option price.

16: return the final option price.

The algorithms of both regression based and parameterized approximation methods
can be divided into two different phases of computation. Currently, research works of
Choudhury and al. (2008) [9], Abbas-Turki (2009) [1] figured out the important factors
for parallelizing the LSM algorithm. While Choudhury and al. (2008) [9] deployed their
parallel approach on a cluster of CPUs, Abbas-Turki (2009) [1] explored the use of a cluster
of GPUs. However, there are no related research works for parallelizing CMC algorithm.
We aim to provide a parallel approach for the CMC algorithm of Picazo (2002) [94] as one
of the main contributions of this thesis.



94

3.3 Parallelization Strategies

3.3.1 Overview

In this section, we are going to summarize the parallel approaches for Ibanez and Zap-
atero algorithm proposed by Muni Toke (2006) [92] and for LSM algorithm proposed by
Choudhury and al. (2008) [9] and Abbas-Turki (2009) [1]. Our parallel approach for CMC
algorithm will be fully described further. The overview of these parallel approaches are de-
scribed in Figure 3.2. As observed, the three original algorithms (Ibanez and Zapatero, LSM
and CMC) could be separated into two different phases of computations. So the authors
listed above, investigated the opportunity of parallelism for each phase.

Figure 3.2: Parallel strategies for Monte Carlo based methods

Of course, the source of parallelism within each phase is not the same. The [phase 1]
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of the LSM and CMC algorithm consists of the use of Monte Carlo methods to generate
the path of asset prices which is naturally parallelisable. Meanwhile the one of Ibanez and
Zapatero algorithm uses a technique of Quasi Monte Carlo methods to create a lattice of
“Good Lattice Points” and then it bases on these points to calculate the optimal boundary
points. Since the lattice is pre-calculated, Muni Toke (2006) [92] divided such lattice into
independent sub-lattices for being suited with parallel computing. There is one common
point, as we can observe from the Algorithms described above: the [phase 1] of all three
algorithms includes two sub-steps of computation. For example, in case of LSM algorithm
the [phase 1] includes the [step 1] that realizes the optimal stopping time rule and [step

2] that estimates the continuation values using the least square regression. Meanwhile in
case of Ibanez Zapatero algorithm, the [phase 1] includes the [step 1] which computes
the continuation values in order to estimate the optimal exercise boundary points and the
[step 2] which performs the boundary based on these optimal points. Similarly as in case
of Ibanez and Zapatero algorithm, the [phase 1] of CMC algorithm contains 2 steps. The
first [step 1] aims to compute the continuation values and the exercise value as well to
decide to continue or exercise the option contract. The [step 2] performs a classification
step in order to build a classifier model which can help the option holder to get the right
decision.

However, while the [step 1] can be parallelized, the [step 2] of the three algorithms is
the most difficult step to be parallelized. In fact in parallelizing the Ibanez and Zapatero
algorithm, Muni Toke (2006) [92] kept running this [step 2] sequentially. In case of LSM
algorithm, Choudhury and al. (2008) [9] provided a parallel approach for such step on a
cluster of CPUs environment. In the parallel approach of Abbas-Turki (2009) [1] for LSM
algorthim using a cluster of GPUs, this [step 2] is kept running sequentially.

For the CMC algorithm, we investigate the parallel approach for the [phase 1] by
parallelizing the [step 1] and keep the [step 2] serial. We also discuss a bit about the
parallel approach for the [step 2] in our perspective section. Finally, the last [phase 2] in
fact relies on straightforward Monte Carlo simulations like in case of an European option.
Hence from now on, we will not discuss on the parallelism for this phase anymore.

3.3.2 Parallel Approach for Ibanez and Zapatero Algorithm

In his work [92], Muni Toke stated that the computation of nb GLP optimal boundary
points of [step 1] can be simulated independently, see Algorithm 4. The [step 1] will
return the optimal boundary points for the computation of the optimal exercise boundary
in [step 2]. Finally, the option price can be estimated using straightforward MC simulations
in [phase 2] which is easy to be parallelized. Muni Toke was successful to deploy his parallel
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approach on a homogeneous parallel cluster using up to 12 processors.

In order to deploy it in a more heterogeneous environment like a grid, we implemented
such approach using PicsouGrid. We also investigated the sensitivities of estimated option
prices with the change of some numerical parameters such as the number of optimal bound-
ary points nb GLP , the number of simulations to compute the continuation value nb cont.
Muni Toke (2006) [92] noted that nb GLP smaller than 128 is not sufficient and prejudices
the option price. In order to observe the effect of nb GLP on the accuracy of the estimated
price, we experimented the algorithm with varied number of nb GLP starting from 128
points, see Table 3.1. For these experiments, we consider a call American option on the
maximum of three assets. The asset prices follow the BSE (1.17). The call payoff at time
t is defined as Ψ(St, t) = ( max

i=1,..,d
(Si

t) −K)+, d = 3. The underlying assets parameters are

described as follows:

Si
0 = 90,K = 100, r = 0.05, δ = 0.1, σ = 0.2 and maturity date T = 3 years

number of exercise dates N = 9, ε = 0.01
(3.7)

While keeping the number of trajectories for continuation value computation nb cont =
5000, the results in Table 3.1 indicate that increasing number of nb GLP has very little
impact on the accuracy of the estimated price compared to the reference price. The reference
price of such option is taken from Andersen and Broadie (2004) [5]. First, the authors
reported the price of 12.90 which was determined from the multidimensional BEG routine
of Boyle et al. (1989) [22] (in the case of 3 assets, the BEG results were from 270 time
steps with an approximate error of 0.015). Second, Andersen and Broadie (2004) [5] also
computed the lower and upper bound for this option price using their primal dual simulation
algorithm. They obtained the lower bound of 11.279± 0.007, based on the LSM algorithm
of Longstaff and Schwartz with 2 × 106 Monte Carlo simulations. They computed the
upper bound which is 11.290 ± 0.009 using extra simulations to estimate the martingale
in the stopping (exercise) region S(t). Notice that both lower and upper bound of the
American option was computed with only 9 opportunity dates. In general, we consider the
price of 11.290 is the American price of this maximum call option on 3 assets. However,
we observe a linear increase in the computational time when increasing the number of
nb GLP , interesting information to set up a trade-off between the computational time and
the accuracy of results.

Now let us focus on the effect of nb cont, the number of simulations required to compute
the continuation value. In [92], the author commented that the large values of nb cont do
not affect the accuracy of option price. For these experiments, we set nb GLP = 128 and
vary nb cont as shown in Table 3.2. We can clearly observe that nb cont in fact has a strong
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nb GLP Price Time (in minute) Abs Error Relative Error
128 11.254 4.6 0.036 0.31%
256 11.258 8.1 0.032 0.28%
1024 11.263 29.5 0.027 0.24%

Table 3.1: Impact of the value of nb GLP on the results of the maximum on three assets
option (S0 = 90) while keeping nb cont = 5000 The reference price is 11.290. Running time
is reported based on 16 processors.

nb cont Price Time (in minute) Abs Error Relative Error
5000 11.254 4.6 0.036 0.31%
10000 11.262 6.9 0.028 0.24%
100000 11.276 35.7 0.014 0.12%

Table 3.2: Impact of the value of nb cont on the results of the maximum on three assets
option (Si

0 = 90). Running time on 16 processors.

impact on the accuracy of the computed option prices: the computational error decreases
with the increased nb cont. A large value of nb cont results in more accurate boundary
points, hence more accurate exercise boundary. Further, if the exercise boundary is accu-
rately computed, the resulting option prices are much closer to the true price. However
this, as we can see in the third column, comes at a cost of increased computational time.

The results obtained clearly indicate that the scalability of Ibanez and Zapatero algo-
rithm is limited by the boundary points computation. The Table 3.1 showed that there is
no effective advantage to increase the number of such points as will, just to take advantage
of a greater number of available CPUs. Moreover, the time required for computing indi-
vidual boundary points varies and the points with slower convergence rate often haul the
performance of the algorithm.

3.3.3 Parallel Approach for Least Square Monte Carlo Algorithm

Choudhury and al. (2008) [9] explored the parallelization of the LSM algorithm proposed
by Longstaff and Schwartz (2001) [77]. The parallel approach separated the LSM algorithm
into three blocks including path simulation, regression/set stopping time and pricing which
correspond to [step 1] and [step 2] in the [phase 1] and [phase 2] in Algorithm 5
respectively. The main technique used in the [step 1] and [phase 2] is Monte Carlo
methods, which are known to be easily parallelized and ideally scalable. Hence the author
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focused on the challenge of parallelizing the [step 2], full explanation can be found in [9].
However in [9], the authors only implemented their parallel approach in the case of one
dimensional American option pricing.

The authors implemented their parallel approach using QuantLib library [4] and ex-
perimented the implementation on a Blue Gene/P system. The number of processors was
varied from 4 to 32. Since the objective of the experimentation is not scaling the whole
algorithm to a very large number of processors, they put their interest into analyzing the
gained performance for each phase while varying the parameters. The performance results
showed that the authors gained a good speedup for both path simulation and pricing phases
due to the natural scalability of the Monte Carlo simulations. The most computation in-
tensive is the regression/set stopping time step which depends on the strike price, volatility
and the choice of regression basis function. In order to analyze this step performance, the
authors considered two scenarios: in the first case they fixed the basis function and vary
the strike price and volatility, while in the second one, they fix the last two parameters and
vary the basis function. The performance results for the regression/set stopping time step
showed that such step scaling is better for the monomial basis function in comparison to
other basis functions (e.g. polynomial). The reason is that there still exists a bottleneck in
price updating.

The overall speedup is limited by the regression/set stopping time step timing. In term of
numerical results, the authors did not provide an implementation in case of high dimensional
American options which require much more intensive computing but which are closed to
the real-life option trading. The main difficulty is that the complexity of regression step
increases linearly with the number of dimensions.

3.4 Parallel Approach for Classification Monte Carlo Algorithm

In this section we will present our contribution in providing a parallel approach for the
Classification Monte Carlo algorithm. We also investigate the use of several classification
techniques for the [step 2] in CMC algorithm. Then, the section continues with some
numerical results that were used in order to validate the CMC algorithm implementation.
The parallel CMC algorithm was successfully experimented in both grid and cluster envi-
ronments using PicsouGrid based upon the ProActive Parallel Suite [11].

3.4.1 Classification Problem

Consider a basket American option of d assets that can only be exercised at a finite
set of opportunity dates Θ = {tm,m = 1, . . . , N}. From the Equation (1.8) we can
see that at time tm the option holder should exercise the option whenever Ψ(Stm , tm) >
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E
[
e−r(tm+1−tm)V (Stm+1 , tm+1)|Stm

]
and to hold it otherwise. Let us define

φ(Stm , tm) = Ψ(Stm , tm)− E
[
e−r(tm+1−tm)V (Stm+1 , tm+1)|Stm

]
(3.8)

then the exercise region is described by S(tm)) = {x
∣∣φ(x, tm) > 0} and continuation region

C(tm) = {x
∣∣φ(x, tm) < 0}. It is enough to find a function F (x, tm) such that

signF (x, tm) = sign(φ(x, tm)) (3.9)

Hence this function F (x, tm) consists of a characterization of the exercise boundary at
time tm ∈ Θ such that the region S(tm) = {x

∣∣F (x, tm) ≥ 0} and the region C(tm) =
{x
∣∣F (x, tm) ≤ 0}. We will further discuss about this characterization problem in the next

section.

Finally, once having the characterization of the exercise boundary for ∀tm ∈ Θ then we
can estimate the option price using:

V (S0, 0) ' sup
τ∈[0,T ]

E
[
e−rτΨ(Sτ , τ ∈ [0, T ])

]
. (3.10)

where the supremum is achieved by an optimal stopping time τ∗ = min{tm ∈ Θ
∣∣F (Stm , tm) ≥

0}.

3.4.1.1 Characterizing Optimal Exercise Boundary Through a Classification Problem

In the American option pricing problem, there are only two regions S and C. So the
exercise region S can be labelled as “1” and the continuation one C as “-1”. From (3.8), we
are interested in characterizing the region where φ(x, t) is positive (class 1) as well as the
region where it is negative (class -1). This problem in fact is a binary classification problem.
Given a dataset {(xi, yi)}nb class

i=1 , each x has d coordinates, x = (x1, x2, . . . , xd) ∈ Rd. Each
point x belongs to a class yi ∈ {−1, 1}. The objective is to build a classifier model using
such dataset which is able to predict the class value for any new given point. There are
a number of methods that address to solve the classification problem such as the boosting
algorithms (for short boosting) in Schapire (1990) [102] and later in Freund (1996) [45] or the
well-known kernel based Support Vector Machines (SVMs) in Cristianini and Shawe-Taylor
(2000) [39].

Boosting is a general strategy for learning the final strong classifier for a given data by
iteratively learning weak classifiers on such data. A decision tree is usually used as the weak
classifier. Some of popular boosting algorithms are AdaBoost in Freund and Schapire (1996)
[45], Gradient Boost in Friedman (2001) [47], etc. Meanwhile, the support vector machines
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are a group of supervised learning algorithms that can be applied for both classification
and regression problems. More precisely, a support vector machine algorithm constructs a
hyperplane in a high dimensional space that separates the data with different class labels.

In the next paragraphs, we will introduce 2 boosting algorithms and the support vector
machine algorithm using kernel function, for our particular option pricing problem.

Gradient Logit Boost : In the original work of Picazo (2002) [94], the author provided
a boosting algorithm based on a logit loss function, named cdb-logitBoost, where cdb means
characterization of decision boundary. Such proposed algorithm was based on the original
algorithms Gradient Boost of Friedman (2001) [47] and AnyBoost of Mason and al. (1999)
[84]. In fact, these two boosting algorithms address the regression problem where the main
idea is to define a loss function then find its minimizer within a given class of functions.
Picazo used a logit loss function in his own algorthim cdb-logitBoost. The criteria for
choosing such loss function are:

• first, its minimizer should characterize the boundary.

• second, once the sign of the function F has ready been correctly obtained, it can stop
the minimizing process.

• and third, it should penalize more heavily the mistakes while estimating the sign of
F .

The logit loss function is described as follows:

Loss(y, F ) = log(1 + e−yF ), y ∈ {−1, 1}. (3.11)

where F (x) = log
[

Pr(y=1|x)
Pr(y=−1|x)

]
, see the discussion in classification problem in Friedman and

al. (2000) [46].
The pseudo-code of the cdb-logitBoost is described in the following Algorithm 7. For the

full explanation of the cdb-logitBoost algorithm, see Picazo (2002) [94].
The weak learner mentioned at each iteration k in Algorithm 7 is a a decision tree with

L terminal nodes which has the form as follows

fk(x) =
L∑

l=1

ckl ll (x ∈ Rl) (3.12)

One of the most popular method for building such decision tree is CART TM [107]. Given a
set of points {(xi, yi)}nb class

i=1 with (xi = (x1
i , . . . , x

d
i ) ∈ Rd and yi ∈ R. CART TM constructs
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Algorithm 7 Gradient Logit Boosting Algorithm
1: Given a training set {(xi, yi)}nb class

i=1 and F0(x) = 0.
2: for k = 1 to K do
3: Compute the pseudo response ŷi = yi/(1 + eyiFk−1(x))
4: Fit the weak classifier fk = {R(k)

l }
L
l=1, a decision tree with L terminal nodes that

minimizes
∑N

i=1(ŷi − f(xi))2

5: Let c(k)
l =

∑
x∈R

(k)
l

ŷi/
∑

x∈R
(k)
l

ŷi(yi − ŷi) for l = 1, . . . , L.

6: Let Fk(x) = Fk−1(x) +
∑L

l=1 c
(k)
l ll (x ∈ R(k)

l ).
7: end for
8: Output the classifier FK(x) =

∑K
k=1

∑L
l=1 c

(k)
l ll (x ∈ R(k)

l ).

the tree as follows:

Each terminal node is defined by three parameters: the split variable, the split point
and the constant c. First we define the left terminal node as Rleft(j, s) = {x|xj < s} and
the right one as Rright(j, s) = {x|xj > s}, where j is the splitting variable (j = 1, . . . , d)
and s ∈ R is the splitting point. CART TM solves the following optimization problem to
obtain j, s and c:

min
j,s

(
min
c1∈R

∑
xi∈Rleft(j,s)

(yi − c1)2 + min
c2∈R

∑
xi∈Rright(j,s)

(yi − c2)2
)

(3.13)

with the constraint that both terminal nodes are nonempty and the optimal values of c1
and c2 are c∗1 = average(yi|xi ∈ Rleft) and c∗2 = average(yi|xi ∈ Rright) with any value of j
and s. Hence the Equation (3.13) can be reduced to

min
j,s

( ∑
xi∈Rleft(j,s)

(yi − c∗1)2 +
∑

xi∈Rright(j,s)

(yi − c∗2)2
)

(3.14)

the optimal values j and s can be found by considering all the possible split points for each
variable.

Once having the FK(x), we can invert it to give the probability value such that

P (y = 1|x) = 1/(1 + e−FK(x))
P (y = −1|x) = 1/(1 + eFK(x))

(3.15)

to predict the label of any given data point. We implemented this Gradient Logit Boost
algorithm in PicsouGrid using Weka, a suite of machine learning software written in Java,
developed at the University of Waikato [56].
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Beside the Gradient Logit Boost mentioned above, we are also interested in performing
the classification in our option pricing problem with other algorithms such as the AdaBoost
algorithm of Freund (1995) [45] and a Support Vector Machines algorithm proposed by
Platt (1999) [95]. These two algorithms are widely used to solve such classification problems
and more important they provide some proportional opportunities for parallelism. In the
following sections, we are going to detail both AdaBoost amd SVMs algorithms to figure
out the motivation of using them in our particular American option pricing problem.

AdaBoost : In this paragraph, we present the AdaBoost (Adaptive Boosting) algorithm
and how it can be applied for the option pricing. AdaBoost aims to fit a decision tree
(classifier) to different reweighted versions of data then take a weighted majority vote of
them to produce the final classification. We repeat the reweighted process in a number of
iterations K, which is predetermined by the user, until we have the desired final function.
In binary classification which is the case in our problem of option pricing, there are only two
used classes label “1” and “-1”. The boosting procedure tries to find tree type model F (·)
that classifies a given input data xi to one of the two labels according to the sign (F (·)).
Algorithm 8 shows how to estimate this function.

Algorithm 8 AdaBoost
1: Given a training set {(xi, yi)}nb class

i=1 , starting weights wi = 1/nb class, i = 1, .., nb class
and F0(x) = 0.

2: for k = 1 to K do
3: Fit the weak classifier fk(x) ∈ {−1, 1} using weights wi (the classifier is usually a

tree)
4: Compute e(k) = 1

N1

∑N
i=1wi ll (yi 6= fk(xi)) and c(k) = log((1− e(k))/e(k)).

5: Update weights wi ←− wi exp(c(k) ll (yi 6= fk(xi))) and renormalize such that∑N
i=1wi = 1.

6: Let Fk(x) = Fk−1(x) + c(k)fk(x).
7: end for
8: Output the classifier sign (FK(x)) = sign

(∑K
k=1 c

(k)fk(x)
)
.

In our experimentation, we consider the “decision stump” as the weak classifier. The
“decision stump” is a special case of decision tree, which has only two terminal nodes and
has the form:

f(x) = y ll (xj > s) (3.16)

where s ∈ R, j ∈ {1, . . . , J} with J is the dimension of x and y ∈ {−1, 1}.
In fact, the AdaBoost algorithm can be viewed as the optimization of the exponential
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loss function, see Friedman and al. (2000) [46] for full explanation. Such loss function is
described as follows:

Loss(y, F ) = e−yF (3.17)

Support Vector Machines (SVMs) : SVMs are well–known data mining methods for
classification and regression problems in machine learning. In this paragraph we describe
how we can use SVMs for classifying the asset values. First, we will briefly discuss the
mathematical background. Consider the dataset mentioned above {xi, yi}nb class

i=1 , SVMs
aims to find the maximum-margin hyperplane that divides the negative class points from
those with positive class. Such hyperplane can be written as the set of points x satisfying

w · x + b = 0 (3.18)

where the vector w is a “normal” vector which is perpendicular to the hyperplane. The

distance between the origin and the hyperplane in Equation (3.18) is
|b|
‖w‖

with ‖w‖ is the

norm of the vector w. Consider the points from the negative and the positive class that
satisfy the following hyperplanes respectively

w · x + b = −1 (3.19)

and
w · x + b = 1. (3.20)

The distance between the origin and these two hyperplanes are |−1−b|
‖w‖ and |1−b|

‖w‖ . Hence
we have the distance between the hyperplanes (3.19) and (3.20) is 2

‖w‖ . Now the problem
of finding the maximum-margin hyperplane is equivalent to maximizing 2

‖w‖ or minimizing
‖w‖2

2 . The problem is formulated as follow

minimizing ‖w‖2
2

with the constraints yi(w · x + b)− 1 ≥ 0, i = 1, . . . , nb class
(3.21)

The optimization problem in Equation (3.21) represents the minimization of a quadratic
function under linear constraints. A common method to solve such minimization problem
in Equation (3.21) is using a Lagrange function, see [103] for more details. Based on the
used of a Lagrange function, Equation (3.21) is transformed into its dual formulation. The
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primal Lagrangian function is described as follows:

LP (w, b,Λ) =
‖w‖2

2
−

nb class∑
i=1

λi(yi(w · x + b)− 1)

=
‖w‖2

2
−

nb class∑
i=1

λiyiw · x−
nb class∑

i=1

λiyib+
nb class∑

i=1

λi

(3.22)

where Λ = (λ1, . . . , λN ) is the set of Lagrangian multipliers with λi ≥ 0. The LP must be
minimized with respect to w and b and maximized with respect to λi. This is equivalent to
maximize LP subject to the constraints that the gradient of LP with respect to w and b is
zero and subject to the constraint λi ≥ 0. Such constraints are named Karush-Kuhn-Tucker
(KKT) conditions [68] and are as follows:

• Gradient Conditions :

∂LP (w, b,Λ)
∂w

= w −
nb class∑

i=1

λiyixi = 0

∂LP (w, b,Λ)
∂b

=
nb class∑

i=1

λiyi = 0

∂LP (w, b,Λ)
∂λi

= yi(w · x + b)− 1 = 0

(3.23)

• Orthogonality Condition

λigi(x) = λi

(
yi(w · x + b)− 1

)
= 0, i = 1, . . . , nb class (3.24)

• Feasibility Condition

yi(w · x + b)− 1 ≥ 0, i = 1, . . . , nb class (3.25)

• Non-negativity Condition

λi ≥ 0, i = 1, . . . , nb class (3.26)

Using the KKT conditions above, we can formulate the dual Lagrangian function LD as
follows:

maximize LD(w, b,Λ) =
∑nb class

i=1 λi − 1
2

∑nb class
i=1

∑nb class
j=1 λiλjyiyjxi · xj

subject to C ≥ λi ≥ 0, i = 1, . . . , N and
∑nb class

i=1 λiyi = 0
(3.27)
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A point is an optimal point of Equation (3.27) if and only if the KKT conditions are
satisfied and Qij = yiyjxixj is positive semi-definite. The common method for solving this
quadaratic optimization (QP) problem in (3.27) is the Sequential Minimal Optimization
(SMO) algorithm proposed by Platt (1999) [95]. We will further describe this algorithm
later in this section.

The points which have λi > 0 represent the support vectors. For those with λi = 0 are
not important and can be removed. The vector w of the hyperplane is obtained by using
Equation (3.23) such that w =

∑nb class
i=1 λiyixi. The value b is computed by using the

obtained w and Equation (3.24) such that b = yj −
∑nb class

i=1 λiyixi · xj

Once having the separation hyperplane, to predict the class value for any new point, we
can use the sign following expression

class of (xk) = sign
( nb class∑

i=1

λiyixi · xk + b
)

(3.28)

We have introduced the SVMs classification algorithm for the linear problems. When
the data are complex so that a linear classifier can not be used, then SVMs can be extended
to handle the nonlinear surfaces using the nonlinear classifiers. In these cases, SVMs will
map the complex data into a feature space (with the feature functions ϕ(·)) of a higher
dimension in order to use a linear classifier. Then the Equation (3.28) can be rewritten as
follows

class of (xk) = sign
( nb class∑

i=1

λiyiϕ(xi) · ϕ(xk) + b
)

(3.29)

The inner product of the feature functions is computed using kernel method.

K(xi,xj) = ϕ(xi) · ϕ(xk) (3.30)

Some of the most used kernels are the polynomial kernel, Gaussian radial basis function, etc.
In our option pricing problem we used the polynomial kernel because it is simple, efficient
and most of all requires less time of computation. The polynomial kernel is as follows

K(xi,xj) = (1 + xi · xj)p (3.31)

with p is the order of the polynomial. Much of computational time of SMO is spent for
evaluating K.

As mentioned above, the common method for solving the QP problem in SVMs is the
SMO algorithm proposed by Platt (1999) [95]. The SMO algorithm provides an advan-
tage that it decomposes the overall QP problem into QP sub-problems. For each QP
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sub-problem, SMO chooses the smallest possible optimization problem which involves two
Lagrange multipliers. Because solving two Lagrange multipliers can be done analytically.

The SMO algorithm consists of three components. The first one is an analytical method
to solve for the two Lagrange multipliers. The second one is a heuristic step for choosing
which multipliers to optimize. The last component is a method to compute the threshold
value b. For finding the first multiplier, the algorithm will iterate over the entire dataset,
finding the points which violate the KKT conditions. Whenever a point is found that it
violates the KKT conditions then it is eligible for optimization. Once the first multiplier
is found then SMO algorithm will go to find the second one to optimize. Once having two
new multipliers, the SVM objective function will be updated with these two multipliers.
After that SMO algorithm continues in finding two others multipliers that violate the KKT
conditions to optimize them until all the Lagrange multipliers satisfy the KKT conditions.
Beside, the computation of the threshold b is separated with solving the Lagrange multipli-
ers. Each time when we have two new multipliers and update the objective function, b is
also recomputed with this new objective function.

A Performance Comparison : The performance of classification algorithms of course
depends on many different parameters such as the dataset size, number of dimensions of
data, the underlying learner function of each classification algorithm, etc. We aim to com-
pare the performance of three algorithms mentioned above in term of classification accuracy
and computational time. Such comparisons have been studied before. For example, Meyer
and al. (2003) in [87] compared the SVMs algorithm to 16 classification methods and 9
regression methods on real and standard datasets in term of accuracy. However, such meth-
ods do not include boosting algorithm using decision tree and as conclusion, the authors
stated that SVMs featured good performance but was not top ranked on all datasets. In
Tan and Gilbert (2003) [112], the authors focused on comparing 3 classification algorithms
using a single decision tree, bagging of decision tree (bootstrap aggregating) and boost-
ing of decision tree (Adaptive Boosting: AdaBoost) for the cancer classification problem.
Of course the performance of bagging and boosting are better than a single tree. Later,
Sordo and Zeng (2005) [106] investigated the link between the classification accuracy and
the dataset size of three classification algorithms including SVMs and a single decision tree.
While increasing the dataset size up to 8000 points, the SVMs more and more outperformed
the single decision tree in term of accuracy.

In our option pricing problem, the computational time is an overall very important factor
hence we want to figure out the dependency between it and the classification accuracy. We
perform the CMC algorithm for our high dimensional American option pricing problem with
all of three algorithms including AdaBoost, Gradient Boost and SVMs. In comparing the
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estimated results with other numerical reference results, we can figure out the accuracy of
the option prices. Hence, we can compare indirectly the performance of each classification
algorithm regarding the computational time and accuracy trade-offs, see further in Section
3.4.3 for more details.

3.4.2 Parallel Monte Carlo Phases Approach

Recall Algorithm 6 that illustrates the serial approach based on CMC Algorithm. Notice
that at a given date tm, knowing Stm it is possible to simulate Stm−1 using the Brownian
bridge. In case of d dimensional option pricing, each trajectory implies of d sub-trajectories,
one for each asset. Since all these d are always simulated together hence, we will not consider
the factor d into the complexity of the algorithm. For simplicity we assume a master-worker
programming model for the parallel implementation: the master is responsible for allocating
independent tasks to workers and for collecting the results.

Regarding Algorithm 6, the [phase 1] contains two sub-steps of computations which
are [step 1] and [step 2]. The complexity of [phase 1] can be described as follow

O

(∑
m

m×nb class×
∑
m

(N−m)×nb cont×O(predict)+
∑
m

O([step 2])

)
,m = N−1, . . . , 1.

(3.32)
where O(predict) is the required time to predict the label value of one given data point.
Notice that O(predict) is not always the same but strongly depends on the given classifica-
tion algorithm. Based on our experiment in the next section, we observe different values of
O(predict) for Gradient Logit Boost, AdaBoost and SVMs respectively. This observation
is very important because it directly influence to the overall computational time of the CMC
algorithm. We will further return to this comment in the performance analysis section.

At the end of [step 1], the master will collect all nb class points from workers and
goes to the [step 2]. The computation in [step 2] is serially performed by the master.
The reason is that since the portion of computational time of the classification step is very
small comparing with the whole [phase 1] and the entire algorithm, see Figure 3.10,
thus parallelizing such [step 2] does not gain much acceleration for the entire algorithm.
Moreover as we mentioned earlier in this chapter, the [step 2] is often hard to be parallelized.

Hence, we have two parallelization strategies for this [phase 1] excluding the [step 2].
The first one is to distribute the nb class points and keeps the nb cont trajectories run
sequentially. The second one could be the parallelization of nb cont trajectories.

In the context of this thesis, we only implemented the first strategy. In this case, nb class
points are divided into nb tasks tasks then are distributed to a number of workers. Thus
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each worker has
nb class

nb tasks
points. Now the complexity of [phase 1] will be :

O

(∑
m

m× nb class
nb tasks

×
∑
m

(N−m)×nb cont×O(predict)+
∑
m

O([step 2])

)
,m = N−1, . . . , 1.

(3.33)

The factor
nb class

nb tasks
should be as small as possible. Ideally, each worker should be only

assigned 1 point to do which means
nb class

nb tasks
= 1.

For the last phase of computing the final results [phase 2] which is embarrassingly
parallel, naturally the number nbMC of simulations are divided into nb tasks tasks (this
nb tasks could differ from the number of tasks in [phase 1]) and then are distributed across
the workers. In case of homogeneous system, we set the number of tasks nb tasks be equal

with the number of workers. Hence, each worker has
nbMC

nb tasks
simulations to do. Finally

we gain a linear speedup of
nbMC

nb tasks
. Otherwise in case of heterogeneous system, each

worker should be assigned a small number of simulations in order to profit the “aggressive”
dynamic task distribution mechanism discussed in Chapter 2. The entire parallel approach
for the CMC algorithm is described in Algorithm 9 below.

In the next section, we are going to present the numerical experiments and the per-
formance results obtained with the parallel CMC algorithm in a grid environment using
PicsouGrid.

3.4.3 Numerical Experiments

This section presents numerical experiments for the parallel CMC algorithm. Each exper-
iment will be performed with three classification algorithm including AdaBoost, Gradient
Boost and SVMs. As we mentioned earlier we attempted to price the American options
on d underlying assets (with d up to 40) and to our knowledge no such results have been
published earlier. Let us recall the Black Scholes equation (BSE) (1.17) for modelling the
asset prices as we described in Chapter 1

dSi
t = Si

trdt+ Si
t

d∑
k=1

aikdW
k
t , i = 1, . . . , d

In our experimentations, we consider the Si are a family of independent stochastic processes.
This means that aik = 0, for i 6= j, moreover for a given σ > 0 we set aii = σ, ∀i = 1, . . . d.
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Algorithm 9 Parallel Classification and Monte Carlo Algorithm
Require: Si

0, d, r, δi, σi, T , N , number of tasks nb tasks.
Require: number of classification points nb class,
Require: number of trajectories to estimate the continuation value nb cont,
Require: number of simulations to estimate the final option price nbMC.
1: [phase 1] : // Characterize the optimal exercise boundary at every opportunity date.
2: for m = N − 1 to 1 do

3: In parallel do : generate
nb class

nb tasks
points, {Si,(s)

tm : i = 1, . . . , d; s = 1, . . . ,
nb class

nb tasks
}.

4: [step 1] : // Compute the continuation value and the exercise value to obtain the
decision of exercise or not.

5: for s = 1 to
nb class

nb tasks
in parallel do

6: [step 1’] : // is serially done on each worker.
7: Compute C(s)(Stm , tm) = E

[
e−r(tm+1−tm)V (Stm+1 , tm+1)|Stm

]
using nb cont trajec-

tories and also compute Ψ(s)(Stm , tm).
8: if C(s)(Stm , tm) ≤ Ψ(s)(Stm , tm) then
9: sign = 1

10: else
11: sign = -1
12: end if
13: end for
14: [step 2] : Merging on the master the computed classification points from each worker{(

Stm , sign
)(s) : s = 1, . . . , nb class

}
for characterization of the exercise boundary

F (tm).
15: end for
16: [phase 2] : Using the characterization of the exercise boundary F (tm) : m = 1, . . . , N−

1, each worker simulates
nbMC

nb tasks
simulations to compute the partial results. The

master will merge all of partial results to estimate the final option price.
17: return the final option price.
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3.4.3.1 Testcases Description

• One Dimensional American Put : Valuing this one dimensional option helps
us to compare the results obtained by parallel CMC algorithm with the true prices
which are computed by common low dimensional methods for option pricing such as
binominal lattice method [37, 62]. The option parameters are as follows:

S0 = 36,K = 40, r = 0.06, δ = 0.0, σ = 0.4,
maturity date T = 1 year

(3.34)

• Geometric Average American Call Option : Consider a call American option
on the geometric average of d assets. The asset prices follow the BSE (1.17). The call
payoff at time t is defined as Φ(St, t) = ( d

√
ΠiSi

t −K)+. The option paramteters are
given below :

Si
0 = 90,K = 100, r = 0.03, δ = 0.05, σ = 0.4,
maturity date T = 1 year

(3.35)

Such geometric average option of d assets can be reduced to an option that depends
only on one underlying factor. Therefore in this case the resulting one-dimensional
option can be accurately priced. Consider the option on 7 underlying asset (d = 7),
the option with new reduced asset has the following parameters:

Ŝ0 = 90, r̂ = 0.03, δ̂ = δ − σ2

2×d + σ2

2 = 0.1186,
σ̂ = σ√

d
= 0.1512, ρ = 0, T = 1 year

(3.36)

• Maximum American Call Option : Consider a call American option on the max-
imum of d assets. The asset prices follow the BSE (1.17). The call payoff at time t is
defined as Φ(St, t) = ( max

i=1,..,d
(Si

t)−K)+. The option paramteters are as follows :

Si
0 = 90,K = 100, r = 0.05, δ = 0.1, σ = 0.2,
maturity date T = 3 years

(3.37)

• Minimum American Put Option : Consider a put American option on the mini-
mum of d assets. The asset prices follow the BSE (1.17). The call payoff at time t is
defined as Φ(St, t) = ( min

i=1,..,d
(K − Si

t))
+ The option parameters are as follows :

Si
0 = 100,K = 100, r = 0.06, δ = 0, σ = 0.6,
and maturity date T = 0.5 years

(3.38)
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3.4.3.2 Convergence Results Analysis

In [94], Picazo originally performed the option pricing testcases with nb class = 5000 and
nb cont = 100 (nb cont = 50 in the case of one-dimensional American put option pricing).
All the testcases were computed with a small number of opportunity dates (smaller than 13)
except the one-dimensional American put option which was computed with 50 opportunity
dates. Moreover, the reference results which were used to compare with the estimated
option prices obtained by CMC algorithm in [94], were also reported with the same small
number of opportunity dates.

It is clear that the convergence of option prices computed by CMC algorithm may depend
on several parameters such as the number of classification points nb class, the number of
trajectories for continuation values computation nb cont, the chosen classification algorithm
and the number of opportunity dates N . Therefore, in our experiments, we perform the
option pricing with some modifications in parameters configuration in comparison with the
original ones of Picazo [94].

Firstly, we observed that nb cont = 100 is not enough and we increased it to 10000. The
impact of this change is figured out in the case of single American put pricing. Secondly,
it is clear that the Bermudan option price will converge to the American one when the
number of opportunity dates N is big enough. Hence, in order to observe this convergence,
we computed our option prices with up to 100s opportunity dates. Next, each testcase is
performed with three classification algorithms. Finally, in our figures, the option prices
which are produced by the CMC algorithm are presented within a confidence interval. We
use nbMC = 2×106 of Monte Carlo simulations for the final pricing phase for every testcase
(except in the case of one dimensional American put, we use nbMC = 106).

The parameters of CMC algorithm were chosen as follows:

nb class = 5000, nb cont = 10000,
Boosting iterations K = 150,
Number of Monte Carlo simulations nbMC = 2× 106,
Decision tree classifier for AdaBoost and Gradient Logit Boost.
Linear and Polynomial kernel for SVMs.

(3.39)

• One Dimensional American Put : Consider the put option which was described
in (3.34). In [37, 62], the price of such option is reported as 7.109 using binominal
tree method with N = 250 opportunities (m = 1, . . . , N , where tm = m×T

N and T = 1
year). Since the number of opportunity dates is big enough, we consider this price
as the American price and present it by the black continuous line in Figure 3.3. In
order to have more reference results, we also use the LSM algorithm of Longstaff
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and Schwartz which is implemented in Premia2, to compute this option price. As
expected, the obtained prices by LSM algorithm (using 107 simulations) converge to
the American price while increasing N up to 200, see the green continuous curve in
Figure 3.3. In fact, the option prices produced by LSM algorithm have to be presented
within a confidence interval (CI) however, because Premia does not provide such CI
values thus the green curve only presents the prices.

Figure 3.3: One Dimensional American Put option.

Figure 3.3 shows the prices produced by CMC algorithm with three classification
algorithms. For each classification algorithm, the option prices are computed with
different numbers of opportunity date, starting from 10 up to 200. As we can observe,
the value of N has a strong impact in computing the option price. Similarly as in case
of LSM algorithm, when increasing N the option prices produced by CMC algorithm
will converge to the American price. However, only the experiments with AdaBoost
and Gradient Tree Logit Boost present a good convergence (the red and blue dash
curves). Meanwhile, in the case of SVMs, we observe a poor result (the orange dash
curve). The reason is that the kernels used within SVMs are designed to support the

2www-rocq.inria.fr/mathfi/Premia/index.html
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high dimensional classification problems. Even we have chosen the linear kernel for
our experiments, it is still not a suitable kernel for this one dimensional classification
problem.

Moreover, in term of the impact of nb cont, we can see that the prices obtained with
nb cont = 10000 (the dash curves) is much better than the case of nb cont = 100 (the
dash dot curves) for all of three classification algorithms. Even with N = 200, the
experiments with nb cont = 100 still resulted undesired option prices. Based on such
observation thus from now, the rest of our experiments with other option types will
be performed with nb cont = 10000.

• Geometric Average American Call Option : The generic geometric average
(GMA) option on d assets was described in Section 3.4.3. In our experiment, we
choose d = 7. As we mentioned earlier, such option pricing testcase is a useful example
for validating any high dimensional American option pricing algorithm. Because such
geometric average option of d assets can be reduced to a “reduced” option that depends
only on one underlying factor and can be computed by many common methods in
American option pricing (e.g lattice based methods, Monte Carlo based methods).
Hence we can easy compare the estimated high dimensional option price with the
“reduced” one. Using the dimension reduction technique mentioned in Chapter 1,
the “reduced” underlying asset from basket of 7 assets was described in (3.36).

Such “reduced” option was studied in Broadie and Glasserman (2004) [26]. The
authors reported a price of 0.761 using the binomial tree method with N = 10 oppor-
tunity dates (m = 1, . . . , N , where tm = m×T

N and T = 1 year). This price is presented
by the black continuous line in Figure 3.4. In order to obtain more reference results
with different number of opportunity dates, we perform such “reduced” option pric-
ing using two others algorithms implemented in Premia. The first one is the Euler
binomial tree method and the second one is the LSM algorithm (using 107 simula-
tions). We have chosen the LSM algorithm as a reference for this case because it is a
“reduced” one-dimensional American option pricing. The number of opportunities for
Euler binomial tree method is 50 and 100 while for LSM algorithm N = 10, 25, 50, 100.
In Figure 3.4, the two brown continuous lines present the prices obtained by Euler
method with 50 and 100 opportunities respectively. As before, the green continu-
ous curve presents the prices obtained by LSM algorithm. We can observe that the
green continuous curve approaches the black lines at N = 10 and approaches the two
brown lines at N = 50 and N = 100. That means the reported price from Broadie
and Glasserman (2004) [26] is only a good reference as a Bermudan option with 10
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Figure 3.4: Geometric Average American Call option on 7 assets.

opportunity dates.

As we can observe in Figure 3.4, it is similar as in the case of the one dimensional
American put option pricing above (e.g. the convergence of option price has a signifi-
cant dependency on the increasing of N). The red, blue, violet and orange dash curves
present the option prices using CMC algorithm with AdaBoost, Gradient Logit Tree
Boost, SVMs polynomial order 2-kernel and SVMs linear kernel respectively. The red,
blue and violet dash curves converge to the green continuous one and the two brown
continuous lines with respect to the number of N . Meanwhile, the orange dash curve
converges less than the three other dash curves. That means the AdaBoost, Gradient
Logit Tree Boost, SVMs polynomial order 2-kernel perform the CMC algorithm better
than the SVMs linear kernel in this option pricing. Among the three good dash curves,
it seems that the SVMs polynomial order 2-kernel overcomes AdaBoost and Gradient
Logit Tree Boost at N = 100. However, it is difficult to state which algorithm is the
best trade-off regarding the confidence interval for each price versus spent computa-
tional effort. Hence in order to do that, we need to figure out the performance in
term of computational time for each algorithm which will be discussed further in this
section.
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• Maximum American Call Option : Note that we do not have an exact price for
this kind of option. This kind of option on 5 assets has been studied in several works
[26, 63, 5]. First, Broadie and Glasserman (2004) [26] applied the stochastic mesh
method to compute such option price with N = 9 (m = 1, . . . , N , where tm = m×T

N

and T = 3 years) and reported the 95% CI for this option as [16.602, 16.710] (presented
by the two black continuous lines in Figure 3.5). As before, in order to obtain more
reference results with different numbers of opportunity dates, we perform this high
dimensional option pricing using two others algorithms implemented in Premia: the
LSM algorithm (using 107 simulations) and the Tsitsiklis-VanRoy algorithm [119]
(using 5× 104 simulations) with N = 9, 30, and 75, respectively. The prices obtained
by these two algorithms are presented by the green and brown continuous curve in
Figure 3.5, respectively.

Figure 3.5: Maximum American Call option on 5 assets.

As we can observe in Figure 3.5, both Tsitsiklis-VanRoy and LSM algorithm pro-
duced an undesired result in comparison with the bounds provided by Broadie and
Glasserman at N = 9. Moreover, the LSM algorithm then produced decreasing prices
while increasing N .
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In term of CMC algorithm, the red, blue, violet and orange dash curves present the
option prices obtained with AdaBoost, Gradient Logit Tree Boost, SVMs polynomial
order 2-kernel and SVMs linear kernel respectively. AtN = 9, all of the prices obtained
by CMC algorithm (except the one with SVM linear kernel) are within the lower and
upper bound provided by Broadie and Glasserman (2004) [26]. When increasing N ,
the prices obtained with AdaBoost, Gradient Logit Tree Boost, SVMs polynomial
order 2-kernel grow up like the results of Tsitsiklis-VanRoy algorithm. As we can
observe, these prices seem to converge to one point at N = 75.

As in the testcase of geometric average option pricing, it is not easy to conclude a best
choice among 3 classification algorithms and we need to analyze the computational
time for each algorithm.

• Minimum American Put Option : As in the case of maximum option, we do
not have an exact price for this kind of option. However, the minimum option on 10
assets was studied in Roger (2002) [99] and the price is reported as 48.33 using duality
method with N = 50 (m = 1, . . . , N , where tm = m×T

N and T = 0.5 year). We per-
formed this high dimensional option pricing using two others algorithms implemented
in Premia: the LSM algorithm (using only 106 simulations due to the memory limi-
tation of Premia because now we have d = 10) and the Tsitsiklis-VanRoy algorithm
(using 50000 simulations) with N = 12, 25, 50, and 100 (presented by the green and
brown continuous curves in Figure 3.6, respectively).

We have the same observation as in case of maximum option that LSM algorithm
produced an undesired result in comparison with the bounds provided by Roger atN =
50. Moreover, the LSM algorithm then produced decreasing prices while increasing
N . Meanwhile the prices obtained by Tsitsiklis-VanRoy seem to approach with the
lower bound of Roger at any value of N .

In term of CMC algorithm, the red, blue, violet and orange dash curves present the
option prices with AdaBoost, Gradient Logit Tree Boost, SVMs polynomial order 2-
kernel and SVMs linear kernel respectively. At N = 12, all of the prices obtained
by CMC algorithm are quite out of the lower and upper bound provided by Roger.
However, once N increases, the prices obtained with AdaBoost, Gradient Logit Tree
Boost, SVMs polynomial order 2-kernel grow up and are within the bounds of Roger.
Finally, as we can observe, these prices obtained by CMC algorithm converge to one
point at N = 100.
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Figure 3.6: Minimum American Put option on 10 assets.

3.4.3.3 Computational Time and Speedup Analysis

Computational Time : Since, it is difficult to state which algorithm is the best re-
garding numerical convergence analysis above, we are interested in investigating overall
computational time in order to try to establish acceptable trade-off time/accuracy for each
classification algorithm.

For the case of one dimensional American put option, obviously the CMC algorithm is
not a good choice due to the existence of other low dimensional analytical methods (e.g.
the PDE, tree methods). Therefore we do not investigate the computational time of the
CMC algorithm for this one dimensional case.

For the other high dimensional testcases, first let us consider the Geometric Average
American Call option pricing on 7 assets. The Figure 3.7 shows the computational time
for each classification algorithm with respect to the number of opportunity dates. Each
experiment was performed using 64 processors (each one is a Intel(R) Xeon(R) 2.00 Ghz
CPU, 2G RAM). The computational times are reported in minutes. As we can observe, the
computational time increases with increasing of N .

The Figure 3.8 shows the computational time for pricing the Maximum American Call
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Figure 3.7: Total computational time for pricing the Geometric Average American Call
option on 7 assets using 64 processors.

option on 5 assets. The Figure 3.9 shows the computational time for pricing the Minimum
American Put option on 10 assets.

Speedup : Because our parallelization strategy does not depend on the choice of option
type thus we consider the Geometric Average testcase to analyze the speedup. First, we
figure out the distribution of computational time for each phase of the CMC algorithm,
see Figure 3.10. We perform this experiment on a single machine (Intel 2 Duo 2.20 Ghz
CPU, 3.5G RAM). The total computational time is 220, 259, 1132 minutes for AdaBoost,
Gradient Logit Tree Boost and SVMs with polynomial order 2 kernel, respectively. The
SVMs with linear kernel is not considered here due to its poor numerical convergence in
almost testcases.

On the experiments plotted in Figure 3.10 we can observe that it is [phase 1] (the red
part) which consumes most of the time for overall computation (almost 99% of total time
for all of three algorithms). The time for performing the [step 2] only takes a very small
portion of the total time (� 1%). The percentage of computational time of [phase 2]

approximates 1% of total time (the yellow part). However, as we can see in the original
complexity in (3.32) and after parallelizing in (3.33) when m decreases in each backward
induction steps, (N−m) increases linearly. Then the amount of computational time of [step

1’]
(∑

m

(N − m) × nb cont × O(predict)
)

increases linearly and consumes a significant
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Figure 3.8: Total computational time for pricing the Maximum American Call option on 5
assets using 64 processors.

Figure 3.9: Total computational time for pricing the Minimum American Put option on 10
assets using 64 processors.
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Figure 3.10: Distribution of computational time for each phase of the CMC algorithm in
case of pricing Geometric Average American Call option on 7 assets with nb cont = 10000.

amount of the total computation time. Unfortunately, such computation is serially run on
each worker. We assume that parallelizing this [step 1’] would accelerate very much the
total computational time of the entire algorithm. However, since we already distributed the
nb class points to our workers it is not possible to distribute again the nb cont trajectories
to such workers because they are already all busy. It is possible only in case where the
number of workers is very much bigger than nb class. As mentioned above, we can use the
strategy which parallelizes [step 1’] instead of distributing the nb class points. But this
problem is not considered within this thesis and this can be considered as future work.

Figure 3.11 presents the speedup which was achieved by the parallel approach for the
CMC algorithm. Such approach is based on the distribution of nb class points across
processors (aka. workers).

We can observe that the parallel approach achieves almost linear speedup with 64 pro-
cessors. As we have shown in the figures, different parts of the algorithm scale differently. In
our particular approach, only a part of [phase 1] and [phase 2] are parallelized and they
scale almost linearly. There is still a limit in our parallel approach which is the sequential
part of [step 2] hence it is constant despite of the number of processors. However, this
only takes a small amount of time of total computational time, see Figure 3.10. According
to this, we can see that this factor does not make an effect on the overall speedup.
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Figure 3.11: Speedup for pricing the Geometric Average American Call option on 7 assets.
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3.4.3.4 American Option Pricing on 40 Assets: Numerical Results

Pricing the large dimensional (e.g. d > 10) options particularly American ones, is still
a challenge in term of practical computational time. Even the pricing library Premia,
which we used to obtain the reference results in Section 3.4.3, is limited itself with d ≤ 10.
Thanks to the use of PicsouGrid, we are now able to run such large dimensional American
options pricing up to 40 underlying assets (e.g. based on the French CAC40 stock index).
We, in order, performed the geometric average call/put, maximum call and minimum put
American options on 40 underlying assets using the CMC algorithm with AdaBoost. We
choose AdaBoost for such 40-dimension pricing problems because the experiments, presented
in Section 3.4.3.2 and 3.4.3.3, using AdaBoost offered a good trade-off between numerical
convergence and computational time. The parameters of CMC algorithm were chosen as
follows:

nb class = 5000, nb cont = 10000,
Boosting iterations K = 150,
Number of Monte Carlo simulations nbMC = 2× 106,
Decision tree classifier for AdaBoost.

(3.40)

• Geometric Average American Call/Put Option : The option paramteters are
as follows :

Si
0 = 100, i = 1, . . . , 40; K = 100, r = 0.03, δ = 0.05, σ = 0.4, T = 1 year (3.41)

Such call and put options are computed withN = 50 opportunity dates (m = 1, . . . , N ,
where tm = m×T

N and T = 1 year) which means the option holder can exercise his
option contract every one-week until the maturity date. As before, in this geometric
average case, we also provide the option based on the “reduced” asset (with d = 40),
see below:

Ŝ0 = 100, K = 100, r̂ = 0.03, δ̂ = 0.128,
σ̂ = 0.0632, ρ = 0, T = 1 year

(3.42)

Table 3.3 presents the option prices computed by CMC algorithm and the reference
option prices based on the one dimensional “reduced” asset obtained by LSM and
Euler binomial algorithms in Premia. The overall computational time for the CMC
algorithm is 8.82 hours using 64 processors

• Maximum American Call Option : In this case (d = 40), we do not have an exact
price for this kind of option. No equivalent experiments have been published in the
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Option CMC LSM (107 simulations) Euler
Call 0.70571 (± 0.0013) 0.70392 0.69469
Put 9.21329 (± 0.00714) 9.21833 9.21846

Table 3.3: The geometric average American call/put options pricing on 40 assets. The
column CMC presents the high dimensional option prices obtained by the CMC algorithm.
The LSM and Euler columns report the option prices based on the one dimensional “re-
duced” asset, computed by the LSM and Euler binomial algorithm respectively. All prices
are computed with 50 opportunity dates.

literature. Even the current version of Premia (the public version 9) does not support
such high dimensional options. The option paramteters are as follows :

Si
0 = 100, i = 1, . . . , 40; K = 100, r = 0.05, δ = 0.1, σ = 0.2, T = 3 years (3.43)

We compute this call option with N = 30 opportunity dates (m = 1, . . . , N , where
tm = m×T

N and T = 3 years). The price is reported with 95% CI as: 65.86631±0.02965.
The overall computational time is 3.73 hours using 64 processors.

• Minimum American Put Option : Similarly as in case of the maximum option
(d = 40), no exact price, neither equivalent experiments have been published in the
literature. The option paramteters are as follows :

Si
0 = 100, i = 1, . . . , 40; K = 100, r = 0.06, δ = 0.0, σ = 0.6, T = 0.5 year

(3.44)
We compute this call option with N = 50 opportunity dates (m = 1, . . . , N , where
tm = m×T

N and T = 0.5 years). The price is reported with 95% CI as: 59.83627 ±
0.00926. The overall computational time is 11.5 hours using 64 processors.

3.5 Conclusion

In this chapter, we particularly focused on the Classification-Monte Carlo (CMC) algorithm
for pricing high-dimensional American options. CMC algorithm belongs to the regression
based methods for option pricing, however instead of performing a regression as the Least
Square Monte Carlo algorithm of Longstaff and Schwartz, the CMC algorithm aims to esti-
mate the characterization of the exercise boundary of the American option using a generic
classification technique. After that, using such characterization of the exercise boundary,
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the CMC algorithm simulates straightforward Monte Carlo simulations in order to estimate
the option price.

It is well-known that the Monte Carlo based methods in option pricing is very useful in
case of high dimensional problems, however they are not practical in term of computational
time. Hence our contribution was to provide a parallel approach for the CMC algorithm.
We evaluated scalability of the proposed parallel approach in a computational grid envi-
ronment. We also experimented with some real size world options with large number of
underlying assets (e.g. 40 underlying assets). In terms of validation of our implementa-
tion, we performed the parallel CMC algorithm for pricing different option types such as
geometric average, maximum or minimum basket options. To our knowledge, all the high
dimensional American option pricing examples in the academic literature are examinated
with a small number of exercise dates. The reason might be due to the large amount of
required computational time however that leads to the less accurate results as we could con-
firm by the experiments. In our experimentations, in order to obtain high accuracy results,
we performed our American option pricing examples with a high number of exercise dates.

We also analyzed the performance and the accuracy of the CMC algorithm with several
classification algorithms such as AdaBoost, Gradient Boost and Support Vector Machines.
All of the methods have performance–accuracy tradeoffs. These performance results are
still far from a longer term goal which aims to price these options within a critical time (i.e.
within hand of minutes).

In term of perspectives, firstly we could improve the parallelism strategy for the [phase

1] where we aim to parallelize the continuation values computation [step 1’] instead of dis-
tributing the nb class points. Then secondly, we want to implement a parallel version for
the [step 2] which performs the classifier model. In fact, there exists several parallel imple-
mentations for Support Vector Machines [54, 28], for AdaBoost [50] and for general boosting
algorithms [72, 78]. However, these parallel approaches focus on using the shared memory
paradigm which should thus require to be implemented in PicsouGrid. Since ProActive
itself does not include any built-in shared data mechanism, hence such an extension should
better be first addressed at the ProActive programming model level.
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Chapter 4

FINANCIAL BENCHMARK SUITE FOR GRID COMPUTING

This chapter aims to introduce the definition and the use of a financial benchmark suite
used for performance evaluation and analysis of grid computing middleware. Such

benchmark suite was successfully used in the 2008 SuperQuant Monte Carlo challenge - the
Fifth Grid Plugtest and Contest using the ProActive Monte Carlo API (part of the

ProActive Parallel Suite). Such research work was reported in the INRIA technical report
[41] and later was also presented in 4th International Conference on High Performance
Scientific Computing in 2009 (full paper is still under review for inclusion in the final

proceedings)
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4.1 Introduction

As we discussed in the first two chapters of this thesis, financial engineering has become a
critical discipline and have gained strategic reputation for its own. Financial mathemati-
cians (aka. financial quant) keep coming up with novel and complex financial products and
numerical computing techniques which often increase volume of data or computational time
while posing critical time constraints for transactional processing. Interestingly, that raised
interest towards the use of grid computing in computational finance. In practice, financial
institutions are more and more contemplating using grid computing to perform more time
critical computations for competitive advantage even if today they mostly rely on in-house
large size HPC clusters. With this unprecedented computational capacity, running overnight
batch processes for risk management or middle-office functions to re-evaluate whole prod-
uct of portfolios is now affordable. However, managing such powerful but heterogeneous
computing environment has never been an easy problem and obviously, that requires tools
and middleware to do that (e.g. PicsouGrid presented in Chapter 2 is one such example).

In that sense, grid middleware is what makes grid computing work and easier to work
with. It provides abstractions for core functionalities like authentication across large num-
ber of resources, authorization, resource matchmaking, data transfer, monitoring and fault–
tolerance mechanisms in order to account for failure of resources etc. Any robust financial
service operation cannot be achieved without paying a great attention to such issues. Grid
middleware research and development had its beginning in the Condor Project1 and the
Globus Alliance2. Recently, we have seen an upsurge of academic and commercial middle-
ware solutions such as gLite3, ProActive/GCM Parallel Suite4, Alchemi .NET grid comput-
ing framework5, Unicore6 and KAAPI/TakTuk7. . . Now the question is which middleware to
choose for gridifying financial applications? An obvious way is to devise a set of benchmarks
and put different implementations through their paces. The middleware that results in the
fastest computation could be declared as a winner. For this, one would need a standard well
defined benchmark which would represent a wide set of financial algorithms, for instance
those based on MC methods, and could also generate enough load on the middleware in

1http://www.cs.wisc.edu/condor/

2http://www.globus.org/

3http://glite.web.cern.ch/glite/

4http://proactive.inria.fr/

5http://sourceforge.net/projects/alchemi/

6http://www.unicore.eu/

7http://kaapi.gforge.inria.fr/
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test.
Benchmarks provide a commonly accepted basis of performance evaluation of software

components. Performance analysis and benchmarking, however, is relatively young area
in grid computing compared to benchmarks designed for evaluating computer architecture.
Traditionally, performance of parallel computer systems has been evaluated by strategically
creating benchmark induced load on the system. Typically, such benchmarks comprise of
codes, workloads that may represent varied computations and are developed with different
programming paradigms. Some examples are Linpack8, the most popular NAS Parallel
benchmark9 and MPI Benchmarks10. The Parkbench, the Linpack and NAS benchmarks
are the most widely known benchmarks in the HPC domain and have been used to rank
the parallel supercomputers. The MPI benchmarks are used to accurately estimate the
execution time of MPI communication operations as used within parallel applications. Since
these benchmarks are widely used in ranking the highly parallel systems, a key issue however,
is whether these benchmarks can be used “as is” for the grid settings. The adoption of these
benchmarks may raise several fundamental questions about their applicability, and ways of
interpreting the results. Furthermore, in order to have fair evaluation, any benchmark would
have to account for heterogeneity of resources, presence of virtual organizations and their
diverse resource access policies, dynamicity due to inherent shared nature of the grid. Such
issues in turn have led to broader implications upon methodologies used behind evaluating
middleware as discussed in [3, 120]. In Tsouloupas and Dikaiakos (2003) [120], the authors
presented GridBench, a tool for benchmarking grid systems. This tool provides in fact
a framework for both running benchmarks on a grid and then collecting, archiving and
displaying results. It allows integrating any new code to be executed as a benchmark,
following a Plug-in like approach.

In our work, however, we are interested in definition of a benchmark in the context of
computational finance area, named “SuperQuant” instead of more classical ones coming
from scientific computing area such as the NAS benchmark suite. We also implemented
a simple tool for running such a benchmark in a grid environment. The “SuperQuant”
benchmark mainly solves the option pricing problem in finance. On running this benchmark
in a grid, we can indirectly evaluate the performance of financial applications, achievable
scalability, ease of deployment across large number of heterogeneous resources and their
efficient utilization. Perspectively, we could want to integrate the SuperQuant benchmark
into the GridBench presented in [120].

8http://www.netlib.org/benchmark/

9http://www.nas.nasa.gov/Resources/Software/npb.html

10http://hcl.ucd.ie/project/mpiblib
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To sum up, this chapter describes the design and development of the SuperQuant Fi-
nancial Benchmark Suite, a tool to help users investigate various aspects of usage of grid
middleware using as simple as possible benchmark kernels. The availability of such kernels
can enable the characterization of factors that affect application performance, the quantita-
tive evaluation and comparison of different middlewares. This is done by regarding features
as ease of deployment, scalability in resource acquisition through the execution of financial
algorithms instead of traditional scientific ones, devised for parallel computing.

4.2 SuperQuant Financial Benchmark Suite

4.2.1 Motivation

In order to produce verifiable, reproducible and objectively comparable results, any mid-
dleware benchmark must follow the general rules of scientific experimentation. Such tools
must provide a way of conducting reproducible experiments to evaluate performance metrics
objectively, and to interpret benchmark results in a desirable context. The financial appli-
cation developer should be able to generate metrics that quantify the performance capacity
of grid middleware through measurements of deployability, scalability, and computational
capacity etc. Such metrics can provide a basis for performance tuning of application and
of the middleware. Alternatively, the middleware providers could utilize such benchmarks
to make necessary specific software design changes. Hence, in order to formalize efforts to
design and evaluate any grid middleware, we designed a financial benchmark suite named
SuperQuant.

4.2.2 Desired Properties

Some other considerations for the development of this benchmark are described below and
significantly follow the design guidelines of NAS benchmarks suite [12].

• Benchmarks must be conceptually simple and easy to understand for both financial
and grid computing community.

• Benchmarks must be “generic” and should not favour any specific middleware. Many
grid middlewares provide different high level programming constructs such as tailored
APIs or inbuilt functionalities like provision for parallel random number generators,
etc.

• The correctness of results and performance figures must be easily verifiable. This
requirement implies that both input and output data sets must be limited and well
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defined. Since we target financial applications, we also need to consider real world
trading and computation scenarios and data involved therewith. The problem has to
be specified in sufficient detail and the required output has to be brief yet detailed
enough to certify that the problem has been solved correctly.

• The problem size and runtime requirements must be easily adjustable to accommodate
new middleware or systems with different functionalities. The problem size should be
large enough to generate considerable amount of computation and communication. In
the kernel presented in this chapter, we primarily focus on the computational load
while future benchmark kernels may impose communication as well as data volume
loads.

• The benchmarks must be readily redistributable.

The financial engineer implementing the benchmarks to be supported by a given grid
middleware is expected to solve the problem in the most appropriate way for the given com-
puting infrastructure. The choice of APIs, algorithms, parallel random number generators,
benchmark processing strategies, resource allocation is left open to the discretion of this
engineer. The languages used for programming financial systems are mostly C, C++ and
Java. Most of the grid middlewares are available in these languages and the application
developers are free to utilize language constructs that give the best performance possible or
any other requirements imposed by the business decisions, on the particular infrastructure
available at their organization.

4.3 Components of SuperQuant Financial Benchmark Suite

Our benchmark suite consists of three major components:

• An embarrassingly parallel kernel

• The input/output data and grid metric descriptors

• An output evaluator

Each of these components are briefly described in the following sections.
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4.3.1 Embarrassingly Parallel Kernel

We have devised a relatively “simple” kernel which consists of a batch of high dimensional
European and barrier options. The objective is to compute price and Greeks values of a
number of options with acceptable accuracy and within definite time interval using MC
based methods.

Denote the option payoff Ψ
(
f(St), t

)
where S = {S1, . . . , Sd} is a basket of d assets

price and f(·) is given by the option’s payoff type (e.g. Arithmetic Average, Maximum,
or Minimum whose definition can be found in common financial engineering textbooks
[61, 126]). Here let us briefly recall the description of European and barrier options:

• Basket European option is a contract that pays Ψ(f(ST ), T ) at maturity date T .
Hence we run the trajectory realization of ST directly from Equation (1.20).

• Barrier option is an option that is either activated or cancelled based on the underlying
asset price hitting a certain barrier B. For example, a barrier put down and in
option pays Ψ(f(ST ), T ) ll ( min

0<t≤T
(St) ≤ B

)at time T . Such option will be activated

once the underlying asset prices in the basket hits the barrier B. To price such
option using MC methods, we discretize the option life time into a finite set of dates

Θ = {tm = h×m,m = 1, . . . , N}, with tN = T and uniform step h =
T

N
. One willing

to approximate the true price can let m increase to infinity. The trajectory realization
of {Stm , tm ∈ Θ} is obtained by solving Equation (1.19).

In the first section of Chapter 1, we provided an example of pricing and hedging a call Ge-
ometric Average European option of d assets including the definitions, method description,
pseudocodes of pricing and hedging algorithms. Similarly, the European options with other
payoff types and barrier options can be priced and hedged using the same pseudo codes
with only slight modifications. The full implementation and the exemplary parallel versions
of MC based pricing method for such pricing and hedging problems are provided along with
the benchmark suite and are available on our website 11.

4.3.1.1 The Composition of the Benchmark Kernel

The core benchmark kernel consists of a batch of 1000 well calibrated TestCases. Each
TestCase is a multi–dimensional European option with up to 100 underlying assets with
necessary attributes like spot prices, payoffs types, time to maturity, volatility, and other

11http://www-sop.inria.fr/oasis/plugtests2008/ProActiveMonteCarloPricingContest.html
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market parameters. In order to constitute an option, the underlying assets are chosen
from a pool of 250 companies listed in the equity S&P500 index12, while volatility of each
asset and its dividend rate are taken from CBOE. The complexity of computation of each

Figure 4.1: Computational time of several European basket option pricings on a single core
(Intel Xeon(R), E5335, 2.00GHz, 2G RAM, JDK 1.6)

testcase depends on both the number of dimensions and the length of maturity date. In
order to balance the computational time between testcases, we decided that the one with
small number of dimensions will have a big maturity and the composition of the batch is as
follows:

• 500 TestCases of 10–dimensional European options with 2 years time to maturity

• 240 TestCases of 30–dimensional European options with 9 months time to maturity

• 240 TestCases of 50–dimensional European options with 6 months time to maturity

• 20 TestCases of 100–dimensional European options with 3 months time to maturity

Besides, in practice the options based on up to 10 underlying assets are the most widely
traded. Hence in order to be realistic, we distributed half of the number of testcases to 10
dimensional problems. We have 240 examples of both 30 and 50 dimensional testcases and
only 20 examples of 100 dimensional ones. Figure 4.1 presents the computational time on

12http://www2.standardandpoors.com
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a single core for each type of option within the benchmark suite. Thus, the objective of the
benchmark is pricing and hedging of a maximum number of TestCases in a definite amount
of time by implementing the associated algorithms using a given grid middleware.

4.3.1.2 Financial Model Description

As mentioned above, the benchmark kernel includes 1000 multi-dimensional European op-
tion contracts with up to 100 underlying assets S = {S1, . . . , S100} chosen from a pool
of 250 companies. Such options are evaluated using the BS model described in (1.2). In
Chapter 1, we mentioned the model for simulating these correlated assets by completing
the model with a correlation matrix

(
ρij , i, j = 1, . . . , d

)
of Brownian Motion B, such that

ρij = E(Bi
t,B

j
t )

t so Covariance(Bi
t, B

j
t ) = ρijt. Hence the d × d covariance matrix Cov is

defined by,
Covij = σiσjρij ,

where (σi, i = 1, . . . , d) is the volatility vector of S and Cov is always a positive-definite
matrix. In the next paragraph, we will introduce how to achieve the computation of ρij .

Consider a pool of d asset prices,
(
Si

t , i = 1, . . . , d
)

continuous in time t within the BS
model. We need to compute the correlation matrix

(
ρij

)
. First we compute from historical

data the return value of an asset Si over a time scale ∆t (e.g. a business day or less if we
have enough data),

Xi(t) = log
(
Si

t+∆t − Si
t

)
.

Here the increment
(
Si

t+∆t − Si
t

)
is supposed to be independent of t. We then define a

normalized return as
xi(t) =

Xi(t)− 〈Xi〉
σi

where σi =
√
〈X2

i 〉 − 〈Xi〉2 is the standard deviation of Xi and 〈Xi〉 =
1

N − 1
∑N−1

n=1 Xi(n),

where N is the number of observations of Si during the time t. Then the correlation matrix
ρ is constructed as

ρij = 〈xi(t)xj(t)〉 =
E(XiXj)− E(Xi)E(Xj)(

E(X2
i )− E(Xi)2

) 1
2
(
E(X2

j )− E(Xj)2)
) 1

2

, (4.1)

where the expectations above are approximated by the Law of Large Number (LLN) rule,

such that E(Xi) '
1

N − 1
∑N−1

n=1 Xi(n). By this construction, all the coefficients of ρ are

restricted to the interval [−1, 1]. Since the coefficient ρij = 〈xi(t)xj(t)〉, in matrix notation,
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such matrix ρ can also be expressed as

ρ =
1
N

XXt (4.2)

where X is a d × N matrix with elements
(
xi,n ≡ xi(n × ∆t); i = 1, . . . , d;n = 1, . . . , N

)
.

However, such historical correlation matrix ρ is not always able to be used directly in any
financial application (e.g. option pricing, portfolio optimization) if the number of observa-
tions N is not very large compared to d. Let us give an example: if we construct a historical
correlation matrix of first 250 assets in the S&P500 index list using 254 observations (e.g.
from 07–Avril–2008 to 07–Avril–2009, it means 1 year data, N/d = 1.016), the result is a
non positive–definite matrix which can not be directly used in an option pricing applica-
tion. However, if we increase the number of observations to 505 for the same 250 assets
(e.g. from 07–Avril–2007 to 07–Avril–2009, it means 2 year data, N/d = 2.02), the result
is a positive–definite one. Therefore in the first case where we can not increase the number
of observations by any reason, we need to re-calibrate the historical correlation matrix in
order to make it applicable for the financial applications. We do recalibration as follows :

We diagonalize the historical correlation matrix ρ such that ρ = V DV t where V is the
matrix that contains the eigenvectors of ρ and D is the diagonal matrix whose diagonal
contains the eigenvalues of ρ. We set a small non–negative value to the negative diagonal
elements of D. Then we compute the matrix D which is the reduction matrix of D by
simplifying the eigenvalues of D within the interval

[
λR,min, λR,max

]
, as follow

D =
n∑

j=1

Dj +
d∑

j=d−m+1

Dj + diag( 0, . . . , 0︸ ︷︷ ︸
n elements

, TD, TD, . . . , TD, 0, . . . , 0︸ ︷︷ ︸
m elements

) (4.3)

where Dj = diag(0, . . . , 0, λρ,j , 0, . . . , 0︸ ︷︷ ︸
d elements

) and the constant TD is the trace of the matrix

D. The two bounded numbers
(
λR,min, λR,max

)
are computed using the random matrix

theory, see more details in Laloux (2000) [70] and Plerou and al. (2000) [96]. To be more
clear, each Dj is a square matrix of order d, with the elements of eigenvector on the main
diagonal. Once having the new diagonal matrix D, we reconstruct an approximation of the
historical correlation matrix ρ under the new form ρ = V DV >. The last step consists in
re-normalizing the coefficients of the matrix ρ such that

ρij =
ρij√

ρii

√
ρjj

(4.4)

Now, the matrix ρ presents a well–defined correlation matrix that is a positive–definite
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matrix with the diagonal equal to 1 and all the coefficients are in the interval of [−1, 1].

4.3.2 Input/Output Data and Grid Metrics Format

To facilitate processing, exchanging and archiving of input data, output data and grid
related metrics, we define relevant XML data descriptors. The TestCases required by the
kernel and the “reference” results are also included in the benchmark suite.

• Input AssetPool : represents the database of 250 assets required to construct a
basket (collection) option of assets

• Input CorrelationMatrix : defines a correlation matrix of each testcase. Such
provided matrix is positive-definite with diagonal values 1 and correlation coefficients
in the interval of [−1, 1] and ready to use. The calibration of a historical correlation
matrix was described above in the previous section.

• Input TestCases : defines a set of TestCases, input parameters, needed by the
pricing and hedging algorithm discussed above. Each TestCase includes parameters
such as an option, which is a subset of AssetPool, a sub-matrix of CorrelationMatrix,
type of payoff, type of option, barrier value if needed, interest rate, maturity date,
etc.

• Output Results : defines a set of Result which consists of Price and Greeks values
of each individual TestCase and time Metrics required to compute each output value.

• Output grid Metrics : is defined to store the total time required for the entire
computation.

4.3.3 Output Evaluator

The output evaluator is a tool to compare the results computed by different implementations
of the benchmark kernel TestCases with “reference” results provided in the suite. The
values we provide as “reference” results are approximated using Monte Carlo simulations
because we can not obtain them by the analytical methods. So for them to be able to be
“reference”, we need to rely on a very high number of simulations. Hence such results are
obtained within an acceptable confidence interval. Since these prices are not obtained by
an analytical method, we call them the “reference” prices, using “ ” !
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4.3.3.1 Evaluation Criteria

Based on the Central Limit Theorem of MC methods mentioned in Section 1, the es-
timated option price V is obtained with a 95% confidence within the following interval[
± 1.96 bsC√

nbMC

]
, where the estimator ŝC computes the standard deviation of V and nbMC

is the number of MC simulations, see Equation (1.1.2).
We decide the tolerable relative error in computing the results is 10−3 which required

a number of MC simulations of
106

ŝC
. Since the accuracy of the computed results relies

on the spot prices of the underlying assets, we consider relative errors with respect to
the “reference” results (see below). These “reference” results are computed in advance
(e.g. in the definition phase of the benchmark suite) with sufficiently large number of MC
simulations in order to achieve lower confidence interval as briefly explained above, see more
in the next section.

The Output Evaluator employs a point based scheme to grade the results and also
provides a detailed analysis of points gained per TestCase. Thus we have outlined the
following points based system:

• The main evaluation criteria is the total number of finished testcases, say M , that are
priced during the assigned time slot. For each price computed, we have +10 points.
Thus at maximum, we can earn up to +10×M points.

• If the computed price is within the expected precision, we gain +5 points

• If the computed price is above the expected precision, we gain +10 points

• If the computed price is below the expected precision, we are penalized with −10
points.

• For each Greek letter, namely Delta, Gamma, Rho and Theta that is precisely com-
puted, we will get +2 points per Greek letter. The Greek letters must be computed by
a finite difference method with a fixed step size. Note that if non–precise, the values
will not be given any points.

• For each minute saved out of the assigned time slot, then we gain +1 point.

4.3.3.2 “Reference” Results Validation

The “reference” results provided in the benchmark suite are not analytical results and are
computed by using MC based methods. It is well known in BS model that there only
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exists analytical solution for European option pricing in case of one dimension otherwise in
case of multi-dimension we have to use other approximation approaches such as MC based
methods.

We observed that in some very specific cases we can analytically reduce a basket of
assets into a one-dimensional “reduced” asset. Further details of the reduction technique
were given in the third section of Chapter 1. The exact option price on this “reduced”
asset can be computed by using BS formula. Thus in such particular cases, we can validate
the “reference” results based on the relative error compared to the exact results. These
“reference” results will be validated once they achieve equal or better accuracy than the
tolerable relative error 10−3 which we have decided, otherwise we must calibrate the number
of MC simulations until they satisfy such condition. This calibration helps us to have an
idea about a large enough number of MC simulations for computing other “reference” results
especially for those that do not have any analytical solution for comparison. Such calibration
has to be done before releasing the benchmark suite. To highlight the usefulness of this
approach, we provide below a numerical example.

Numerical Example: Consider a call/put GA option of 100 independent assets (d =
100) with prices modeled by SDEs (1.2). The parameters are given as Si

0 = 100, i =
1, . . . , 100, K = 100, r = 0.0, δi = 0.0, σi = 0.2 and T = 1 year. The basket option
is simulated by using 106 MC simulations by using Algorithm 1. The “reduced” asset is
Σt =

∏d
i=1 S

i
t

1
d , i = 1, . . . , 100 and it is the solution of the one–dimensional SDE: dΣt/Σt =(

µ̃dt+σ̃dZt

)
where µ̃ = r+ σ2

2d−
σ2

2 , σ̃ = σ√
d

and Zt is a Brownian Motion. The parameters of
Σ are given as Σ0 = 100, µ̃ = 0.0198, σ̃ = 0.02. We are interested in comparing the estimated
option price V of d assets with the analytical “reduced” one Ṽ on Σ. The computation of
Ṽ was described in Section 1.3 of Chapter 1. We denote the absolute error ∆V = |V − Ṽ |,
then the relative error η is computed as η = ∆VeV .

In Table 4.1, the first column represents the estimated option prices using MC methods
and their 95% confidence interval. The second column gives the analytical exact option
prices. The last two columns show the absolute and relative errors. As it can be observed,
the relative error in case of put option pricing is less than 10−3, therefore we validate such
put option price as reference. Meanwhile the call price is not, thus to validate the call option
price we have to increase the number of MC simulations. The Table 4.2 shows that such
call option price is validated whenever using 108 MC simulations. Based on this calibration
analysis, we can find, for each “reference” result in the benchmark suite, an optimal number
of MC simulations which can produce a relative error less than 10−3 (e.g. for any call option
pricing on up to 100 underlying assets, we should consider at least 108 MC simulations).

In this example, we also consider the Delta hedging for both MC based option pricing
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Table 4.1: Call/Put price of a GA of 100 assets option using 106 MC simulations and of the
“reduced” option

Call MC Price V (95% CI) “Reduced” Call Price Ṽ Absolute error Relative error
0.16815 (0.00104) 0.16777 3.8× 10−4 2.2× 10−3

Put MC Price V (95% CI) “Reduced” Put Price Ṽ Absolute error Relative error
2.12868 (0.00331) 2.12855 1.3× 10−4 6.1× 10−5

Table 4.2: Call price of a GA of 100 assets option using 108 MC simulations and of the
“reduced” option

Call MC Price V (95% CI) “Reduced” Call Price Ṽ Absolute error Relative error
0.16793 (0.00011) 0.16777 1.6× 10−4 9.5× 10−4

Table 4.3: Delta values of the Call/Put GA of 100 assets and of the “reduced” one

Basket MC Call Delta ∆i “Reduced” Call Delta ∆̃
0.00160 0.16030

Basket MC Put Delta ∆i “Reduced” Put Delta ∆̃
-0.00818 -0.82010

and analytical option pricing. In the first case, the Delta hedging produces a vector of 100
first order derivatives of the option price

(
∆i, i = 1, . . . , 100

)
with respect to the change of

each asset price among 100 assets. Following the initial parameters, every asset has the same
spot price and volatility rate, hence ∆i, ∀i are uniform. Such Delta values are computed
by using finite difference methods as described in Algorithm 2. In the later case, the Delta
value ∆̃ is computed by using an analytical formula [61]. The relation between ∆i and ∆̃
is described as follows,

d∏
i=1

∆i =
(1
d
∆̃
)d
. (4.5)

Further details of this relation are given in Section 1.3 of Chapter 1. In Table 4.3, we
present the numerical results of the Delta hedging for both high dimensional and reduced
option. As we can observe, since the option prices are validated, the Delta values of both
options follow the relation in Equation (4.5). As illustrated by such numerical example, we
are able to validate our “reference” results in the benchmark suite and also to verify the
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option pricing implementation.

4.4 Proof of Concept : The V grid Plugtest and Contest

As a proof of concept, we used the SuperQuant Benchmark Suite for the 2008 SuperQuant

Monte Carlo Challenge organized as part of V GRID Plugtest and Contest13 at
INRIA Sophia Antipolis. The details of the contest and the benchmark input data can be
found on the Plugtest and Contest website14.

4.4.1 Test-Bed

Each contest participant was given an exclusive one hour grid access for evaluating the
benchmark on two academic grids, Grid’500015 and InTrigger16, which combined consisted
of around 5000 computational cores geographically distributed across France and Japan.
The description of Grid’5000 resources which were provided during the contest is given in
Table 4.4.

4.4.2 ProActive Monte Carlo API

In order to provide a simple programming framework in a distributed environment for the
Grid Plugtest participants, we developed what is named the ProActive Monte Carlo API
(MC API), based on the underlying ProActive Master/Worker framework 17. This MC API
aims to ease the running of Monte Carlo simulations on the grid through the ProActive
grid middleware and its programming APIs and is well suited for embarrassingly parallel
problems (as the parallel European option pricing using MC methods which constitutes
kernel of the SuperQuant benchmark suite). In such a quite simple case, it is enough to
create a master and a group of workers: then tasks have simply to be distributed uniformly
to workers and merged later by the master. Master, worker creation and task creation and
distribution are in fact handled by the Master/Worker ProActive API. The MC API is
simply an extension of Master/Worker ProActive API for problems which would need MC
simulations to be solved in parallel. The main features of the ProActive MC API are as
follows:

13http://www.etsi.org/plugtests/GRID2008/VGRID PLUGTESTS.htm

14http://www-sop.inria.fr/oasis/plugtests2008/ProActiveMonteCarloPricingContest.html

15https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home

16https://www.intrigger.jp/wiki/index.php/InTrigger

17http://proactive.inria.fr/release-doc/ProActive/api published/index.html
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• It integrates a mechanism for generating parallel random number sequences using
the SSJ package written by Pierre l’Ecuyer. The relevant discussion of using the
SSJ package for this MC based problem were mentioned earlier in Chapter 2. Each
worker has its own independent sequence of random numbers and there is a guarantee
that two different workers, will generate sequences that won’t overlap until a certain
number of experiences (2127).

• Monte Carlo simulations or other tasks can be run on remote workers. Tasks are
defined by implementing an interface, named EngineTask.

• A small set of common numerical operations required for computational finance are
developed (e.g. Geometric Brownian Motion, the Brownian Bridge, etc).

Using the MC API, the deployment of the workers infrastructure is hidden to programmers
and is done through GCM deployment descriptors (see Chapter 2). Hence programmers
only have to focus on the application implementation.

In this section we will illustrate how to use the MC API for developing distributed
European option pricing. The programming must address the following steps:

1. Initialization : First, programmers create a runner class, say EuropeanOption and
initialize a root PAMonteCarlo that references the deployment descriptor and two
virtual node names. That root has the responsibility to handle master/worker creation
and deployment, task distribution, results collection.

// In the runner class EuropeanOption

PAMonteCarlo mcRoot = new PAMonteCarlo

(URL descriptorURL, String workersVNName, String masterVNName);

For master creation, the API has the possibility to create either a local master (on the
processor the runner class is running on) or a remote master. The workers deployment
triggered by the MC API relies on the use of ProActive Master/Worker framework
deployment mechanism. Regardless of the way it is created any active object instan-
tiation is transparent to the MC API programmers. For more detailed explanation of
the deployment mechanism and of ProActive deployment descriptors, see Chapter 2.

2. Tasks Definition and Submission :

Before creating task, programmers have to create a class, say MCEuropeanBaske-
tOption, for basket European option pricing. Such MCEuropeanBasketOption class
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contains the reference to mcRoot and the market information requested for the pricing
problem. Hence it has the responsibility to create and distribute tasks. Notice that
task implementation will be managed by programmers.

// In the runner class EuropeanOption

MCEuropeanBasketOption euroBasketOption =

new MCEuropeanBasketOption(mcRoot, basketParams,

testCaseCorrMatrix, testCases, testCaseAssetPool);

// Tasks implementation

MCEuropeanPricingEngineTask euroBasketOptionTask =

new MCEuropeanPricingEngineTask();

// Task setting

euroBasketOption.setPricingEngine(euroBasketOptionTask);

// Task execution by calling the built-in run() method implicitly

euroBasketOption.calculateMC();

The method calculateMC computes the price of the option using MC methods.

public void calculateMC() throws ProActiveException, TaskException {

result = (Result)mcRoot.run(pricingEngine);

result.setTestCaseID(pricingEngine.getTestCase().getTestCaseID());

}

The run(·) method implemented within MCEuropeanPricingEngineTask class will cre-
ate and launch a bag of tasks of MC simulations for computing the European option
price implemented in MCEuropeanPricingAlgorithm class. The MCEuropeanPricin-
gAlgorithm class will perform a number of Monte Carlo simulations (which is pre-
defined as the task size by the user). Each simulation provides a value and MCEuro-
peanPricingAlgorithm class then returns the sum of such values. The details of such
implementation can be found on the Plugtest and Contest website18. The sum value
from the individiual tasks in the bag are collected and averaged for computing the
final price of the European option.

// In the class MCEuropeanPricingEngineTask

public class MCEuropeanPricingEngine extends AbstractPricingEngine {

// Launches the bag of Monte Carlo simulations.

public Result run(final Simulator simulator) {

final List<SimulationSet<Result>> set = new

ArrayList<SimulationSet<Result>>(DEFAULT_NUMBER_TASKS);

18http://www-sop.inria.fr/oasis/plugtests2008/ProActiveMonteCarloPricingContest.html
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Enumeration<Result> simulatedPriceList = null;

for (long i = 0; i < DEFAULT_NUMBER_TASKS; i++) {

set.add(new MCEuropeanPricingAlgorithm

(basketParams, testCase, assetPool,

correlationMatrix,DEFAULT_MCITER));

}

// Submitting this set of tasks.

try {

simulatedPriceList = simulator.solve(set);

} catch (final TaskException e) {

throw new RuntimeException(e);

}

final ResultHelper finalResultHelper = new ResultHelper();

// collect individual results of tasks

while (simulatedPriceList.hasMoreElements()) {

final Result partialResults

= simulatedPriceList.nextElement();

// accumulate all the results

finalResultHelper.update(partialResults);

}

// Finalizing the accumulated prices, this requires the total

// number of simulations for the algorithm.

finalResultHelper.finalizePrices(DEFAULT_NUMBER_TASKS,

DEFAULT_MCITER, testCase.getOption(),

basketParams, assetPool, testCase);

return finalResultHelper.getResult();

}

3. Results Gathering : Results are collected by the master when the calculations are
complete. There are two ways of waiting for the results. These two ways strongly rely
on the ProActive Master/Worker API. The users can either wait until one or every
result is available (the thread blocks until the results are available) or ask the master
for result availability and continue until the results are finally available. In the second
case the application thread does not block while the results are computed.

// In the runner class EuropeanOption

Result result = euroBasketOption.getResult();

4. Resources Releasing : At the end, the root uses one single method to terminate the
master and also terminates the workers manager as well, thus eventually freeing every
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resources. A boolean parameter tells the master to free resources or not (i.e. terminate
remote JVMs).

// In the runner class EuropeanOption

mcRoot.terminate();

4.4.3 Challenge Results

Figure 4.2 presents the final results of the Challenge. The participants primarily used

Figure 4.2: Final results of the 2008 SuperQuant Monte Carlo challenge

two middlewares, ProActive and KAAPI/TAKTUK, which couples KAAPI, a Parallel Pro-
gramming Kernel and TAKTUK, a middleware for adaptive deployment. Both middleware
implement the Grid Component Model (GCM) deployment model, recently standardized
by the ETSI GRID19 technical committee for deploying the application over a large number
of grid nodes [16]. The infrastructure descriptors and application descriptors required by
GCM deployment were bundled with the benchmark suite.

As we can see in Figure 4.2, the KAAPI/TAKTUK team was successful in computing
98.8% of total number of TestCases and was also able to deploy application on a significantly
large number of nodes. The other teams used ProActive to implement the benchmark
kernel. From Figure 4.2, we can observe that the benchmarks were not only useful to
quantitatively compare two middleware solutions, but also gave the opportunity to evaluate
different benchmark implementations using the same middleware. Such comparison is useful
not only to middleware providers but also to grid application developers.

19http://www.etsi.org/WebSite/Technologies/GRID.aspx
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However, since the ProActive MC API relies on the one master/multiple workers pat-
tern implemented within the ProActive Master/Worker API, the teams who used it faced
a poor performance due to the overhead in communication between too many workers and
the master. To avoid this, the solution is to adopt an alternative architecture of one mas-
ter/multiple sub-masters/multiple workers where each sub-master only handles a not too
large group of workers. Such a more scalable architecture has been discussed in Chapter 2.

4.5 Conclusions

In this chapter we have presented SuperQuant Financial Benchmark Suite for performance
evaluation and analysis of grid middleware in the financial engineering context. We de-
scribed the preliminary guidelines for designing the benchmark. We then described the
benchmark constituents along with a brief overview of the embarrassingly parallel bench-
mark kernel. Now as this benchmark kernel is defined, it could be used within other bench-
marking tools (e.g. the Gridbench tool [120]). As a proof of concept, we also utilized this
benchmark in a grid programming contest. Within the contest context, in order to greatly
simplify the grid aspects in application implementation for participants, we provided a
simple programming framework, named ProActive Monte Carlo API. Such MC API eases
running Monte Carlo simulations on the grid and is well suited for embarrassingly parallel
problems. However, since it is simply based on the single level ProActive Master/Worker
framework, it raised some limitations when used on large-scale heterogeneous infrastruc-
tures as grids, so its concrete use to implement the SuperQuant benchmark suite was not
really successful. Nevertheless, the MC API might be relevant to be used by itself and hence
is promoted as one component of the ProActive Parallel Suite 20.

20http://proactive.inria.fr
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Chapter 5

CONCLUSIONS AND PERSPECTIVES

This research work was initiated and took place in the context of the French “ANR-
CIGC GCPMF” project (Grilles de Calcul Pour les Mathématiques Financières) with the
aim to show the efficiency of grid computing in performing the Monte Carlo based intensive
calculations in financial derivative pricing applications. Applying parallel computing for
computational finance is a very active research and development area, and it is still a very
promising research domain.

In Chapter 2, we presented PicsouGrid, a grid computing framework for Monte Carlo
based financial applications. PicsouGrid provides fault tolerance, load balancing, dynamic
task distribution and deployment on a heterogeneous grid environment. PicsouGrid has
been successfully deployed on the multi-site French Grid’5000 for European option pricing.
We achieved very good performances for such European option pricing experiments, using up
to 190 processors on a cluster and up to 120 processors on a 4-sites grid. Fault-tolerance and
load balancing are realized transparently for the programmer, based on processor replace-
ment and dynamic and aggressive load balancing. PicsouGrid also proved a very adaptable
tool for experimenting parallel solutions to the high dimensional American option pricing
problems which are computational intensive in their serial form.

In Chapter 3 we particularly proposed a parallelization of the Classification Monte Carlo
(CMC) algorithm, originally devised by Picazo (2002) [94], for high dimensional American
option pricing. Thanks to the use of PicsouGrid, we were able to run this algorithm for
pricing American options requiring important computation times, because of a large number
of opportunity dates (e.g. up to 100 such dates), and because of large dimension (e.g. up to
40 underlying assets). We also compared and analyzed the option price accuracy obtained
with this CMC algorithm when using different classification algorithms such as AdaBoost,
Gradient Boost and Support Vector Machines. Beside, we provided a full explanation and
some detailled numerical experiments of the dimension reduction technique which is very
useful in validating the estimated option prices using CMC algorithm.

Additionally in Chapter 4, we define a financial benchmark suite for performance eval-
uation and analysis of grid computing middlewares. Such benchmark suite is conceptually
simple and easy to understand for both the grid computing and financial communities. The
benchmark suite was successfully used in the 2008 SuperQuant Monte Carlo challenge - the
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Fifth Grid Plugtest and Contest. Within the context of this challenge, we developed the
ProActive Monte Carlo API (MC API), now integral part of the ProActive Parallel Suite.

In general this research work provided a view of applying grid computing for finance
particularly in computational intensive high dimensional option pricing, thus issuing some
perspectives. PicsouGrid framework, presented in Chapter 2, is successfully used in case
of high dimensional European and American option pricing. In future, we aim to use Pic-
souGrid in exploring other financial computational intensive applications such as portfolio
management, Value at Risk computation, etc. On the other hand, the PicsouGrid scope is
not restricted within the financial domain but should also be well suited for accelarating any
application using Monte Carlo methods in other domains such as biomolecular simulations,
protein structure prediction, etc. Of course, such collaboration would be a very promising
work in the future. Returning to our thesis context, using the parallel approach of the
CMC algorithm, we can reduce significatively the computational time for pricing large di-
mensional American options. However, these performance results are still far from a longer
term goal which aims to price these options within a critical time (i.e. within 1 minute).
Hence other alternative parallelization strategies for the entire CMC algorithm, described in
Chapter 3 should be realized. Besides, parallel version of Support Vector Machines [54, 28],
of Boosting [50, 72, 78] should be designed and implemented to spare additional time in the
classification step (even if its sequential duration is proportionally small compared to the
other steps) for the next parallel version of CMC algorithm. Obvisouly, such parallel CMC
algorithm (as a kernel with complex communication) could be integrated in the SuperQuant
benchmark suite in order to truly understand the overhead imposed by grid middleware in
financial applications.
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