
THÈSE DE DOCTORAT

École Doctorale
« Sciences et Technologies de l’Information et de la Communication »

de Nice - Sophia Antipolis

Discipline Informatique

UNIVERSITÉ DE NICE - SOPHIA ANTIPOLIS
FACULTÉ DES SCIENCES

COMPONENTS FOR GRID COMPUTING

par

Matthieu MOREL

au sein de l’équipe OASIS,

équipe commune de l’I.N.R.I.A. Sophia Antipolis, du C.N.R.S. et du laboratoire I3S

soutenue le 27 novembre 2006

Jury:

Rapporteurs Dennis GANNON Professeur, Indiana University

Sergei GORLATCH Professeur, Westfälische Wilhelms-Universität

Thierry PRIOL Directeur de Recherche, INRIA

Examinateurs Thierry COUPAYE Expert Recherche, France Télécom

Philippe LAHIRE Professeur, UNSA

Directeur de thèse Denis CAROMEL Professeur, UNSA

ii

iii

To my family,
– Matthieu

iv

Acknowledgements
The course of a PhD thesis is a great opportunity not only to work on exciting topics and
challenging problems, but also to meet and collaborate with extraordinary people. For
these reasons I deeply thank Isabelle Attali who created, through admirable determi-
nation, the best conditions for my PhD thesis.

I thank Denis Caromel, my supervisor, for his trust and support in my work, and
for his spirit of innovation. He managed to establish a comprehensive and consistent
framework that federates the research efforts of our team, and he put constant incentive
in giving a significant impact to my work.

Collaborating with Françoise Baude and Ludovic Henrio was delightful, both from a
scientific and human point of view, and I express my gratitude to them. They were very
helpful and always available.

My greetings also go to Dennis Gannon, Sergei Gorlatch and Thierry Priol who hon-
ored me by accepting to review my thesis. I am also very grateful to the other members
of the jury, Thierry Coupaye and Philippe Lahire.

I respectfully acknowledge the work of the authors of the Fractal model: they made a
major contribution to the field of middleware technologies, and brought a great platform
to the scientific community.

Many thanks to Mario Leyton for his thorough review of this document and to Chris-
tian Delbé for his enlightening comments.

Thanks to Nikos Parlavantzas for his contribution to the design and to the report-
ing of the methodology for the Jem3D experiment, and thanks to the first users of the
component framework for their valuable feedback.

I would also like to thank all the members and collaborators of the Oasis team for
very insightful scientific (and not only scientific) discussions and contributions. In ran-
dom order: Alex, Laurent, Fabrice, Santosh, Antonio, Marcelita, Paul, Guillaume, Géral-
dine, Romain, Clément, Arnaud, Virginie, Eric, Tomas, Igor, Vladimir, Javier, Yu, Luis,
Maciej... among others.

Working in such a dynamic, emulating and diversely rich team was a pleasure. I
believe it is a key factor for creating the conditions of successful achievements.

Of course, I cannot but express my best greetings to my parents Alain and Jacqueline
and to my sister Elise for their help and support.

Last but not least, I would also like to thank the members of the INRIA squash
team, particularly Francis, for their great sports spirit and for very enjoyable extra-
thesis moments.

v

vi Chapter 0. Acknowledgements

Contents

Acknowledgements v

List of Figures xiii

List of Tables xiv

Glossary xv

I Thesis 1

1 Introduction 3
1.1 Problematics . 3
1.2 Objectives and Contributions . 4
1.3 Overview . 5

2 Positioning and State of the Art 7
2.1 Positioning . 7

2.1.1 Positioning with respect to general Grid architecture 7
2.1.2 Positioning with respect to existing programming models for the Grid 10

2.1.2.1 Message passing . 10
2.1.2.2 Distributed objects . 10
2.1.2.3 Skeletons . 11
2.1.2.4 Remote Procedure Calls for Grids 12
2.1.2.5 Service Oriented Architectures and workflows 12
2.1.2.6 Component-based programming 14

2.2 Component-based programming models and frameworks 14
2.2.1 Component-based programming . 15
2.2.2 Industrial component models . 15

2.2.2.1 EJBs . 15
2.2.2.2 COM and .NET . 16
2.2.2.3 CCM . 16

2.2.3 Academic research in component models 17
2.2.4 ODP . 17
2.2.5 OpenCOM . 18
2.2.6 SOFA . 19
2.2.7 Fractal . 19

2.3 Component models for Grid computing . 22
2.3.1 CCA . 22
2.3.2 ICENI . 24

vii

viii CONTENTS

2.3.3 HOC-SA . 25
2.3.4 GridCCM . 25

2.4 Collective communications . 25
2.4.1 Rationale . 26
2.4.2 Common models and frameworks for collective communications . . 27

2.4.2.1 Message-based collective communications 27
2.4.2.2 Invocation-based collective communications 28

2.4.3 Collective communications in component models 29
2.4.3.1 Connection-oriented programming 29
2.4.3.2 ODP . 29
2.4.3.3 ICENI . 30
2.4.3.4 CCA . 31
2.4.3.5 GridCCM . 31

2.5 Discussion . 32
2.6 Context: a model based on active objects . 33

2.6.1 Active objects model . 34
2.6.2 The ProActive library: principles, architecture and usages 35

2.6.2.1 Implementation language 35
2.6.2.2 Implementation techniques 35
2.6.2.3 Semantics of communications 36
2.6.2.4 Features of the library . 37
2.6.2.5 Deployment framework . 38
2.6.2.6 Large scale experiments and usages 41

2.7 Conclusion . 41

3 A Component Model for Programming Grid Applications 43
3.1 Requirements for the component model . 43
3.2 Adequacy of the Fractal model for the Grid 44

3.2.1 Distribution . 44
3.2.2 Deployment . 44
3.2.3 Heterogeneity . 45
3.2.4 Interoperability and legacy software 45
3.2.5 High performance . 46
3.2.6 Complexity . 46

3.2.6.1 Hierarchical composition 46
3.2.6.2 Sharing . 47
3.2.6.3 Parallelism . 48

3.2.7 Dynamicity . 48
3.2.8 Conclusion and role of the underlying middleware 49

3.3 A component model based on the active object model 49
3.3.1 A component is an active object . 49
3.3.2 Communication paradigm . 50

3.3.2.1 Asynchronous and synchronous communications 50
3.3.2.2 Optimizations . 50

3.3.3 Deployment model: a virtualization of the infrastructure 51
3.3.3.1 General model . 51
3.3.3.2 Cardinality of virtual nodes 52
3.3.3.3 Controlled deployment through the composition of virtual

nodes . 52

CONTENTS ix

3.3.3.4 Collective operations for deployment 54
3.3.4 Dynamic configuration . 56

3.3.4.1 Locking issues in synchronous systems 56
3.3.4.2 Locking issues with active components 57

3.4 Conclusion . 59

4 Collective Interfaces 61
4.1 Motivations . 61

4.1.1 On the current cardinalities of component interfaces in the Fractal
model . 61

4.1.2 Rationale for collective interfaces . 63
4.2 Proposal for collective interfaces . 64

4.2.1 Multicast interfaces . 64
4.2.1.1 Definitions . 64
4.2.1.2 Multicast client interfaces vs multicast server interfaces . 65
4.2.1.3 Signatures of methods . 65
4.2.1.4 Invocation forwarding . 67
4.2.1.5 Distribution of invocation parameters 67
4.2.1.6 Distribution of invocations 70
4.2.1.7 Management of results . 70
4.2.1.8 Programming example . 71
4.2.1.9 Application to the master-worker pattern 72

4.2.2 Gathercast interfaces . 72
4.2.2.1 Definition . 72
4.2.2.2 Gathercast client interfaces vs gathercast server interfaces 73
4.2.2.3 Bindings to gathercast interfaces 74
4.2.2.4 Synchronization operations 74
4.2.2.5 Data operations . 74
4.2.2.6 Implications on dynamicity 76
4.2.2.7 Programming example . 76

4.3 SPMD-based component programming . 77
4.3.1 SPMD programming concepts . 77
4.3.2 From message-based SPMD to component-based SPMD 77
4.3.3 Component based SPMD with gathercast and multicast interfaces 78

4.3.3.1 Principles . 78
4.3.3.2 Usage and benefits . 79

4.4 Towards automatic MxN redistributions . 81
4.5 Conclusion . 82

5 A Component Framework Based on Active Objects 85
5.1 Design goals . 85
5.2 Architecture . 86

5.2.1 An architecture based on ProActive’s Meta-Object Protocol 86
5.2.1.1 Component instance . 86
5.2.1.2 Configuration of controllers 89

5.2.2 Lifecycle . 90
5.2.3 Interception mechanism . 91
5.2.4 Communications . 94

5.3 Implementation of collective interfaces . 96
5.3.1 Adaptation of the signatures of methods 96

x CONTENTS

5.3.2 Multicast interfaces . 96
5.3.2.1 Principles . 97
5.3.2.2 Configuration . 97

5.3.3 Gathercast interfaces . 100
5.3.3.1 Principles . 100
5.3.3.2 Asynchronism and management of futures 101
5.3.3.3 Timeout . 101

5.4 Deployment . 102
5.5 Conclusion . 102

6 Methodology and Benchmarks 105
6.1 C3D . 105

6.1.1 Methodology . 105
6.1.2 Design . 105
6.1.3 Observations . 106

6.2 Jem3D . 106
6.2.1 The Jem3D application . 107
6.2.2 Problem statement . 108
6.2.3 Methodology . 108
6.2.4 Evaluation of the new design . 112
6.2.5 Benchmarks and analysis . 112

6.2.5.1 Comparison between object-based and component-based
versions . 112

6.2.5.2 Grid scalability . 113
6.2.5.3 Discussion . 115

6.3 Component based SPMD : benchmarks and analysis 115
6.3.1 Applicative example: Jacobi computation 115
6.3.2 Design . 116

6.3.2.1 Typing . 116
6.3.2.2 Borders reception and synchronization 117
6.3.2.3 Borders sending . 117
6.3.2.4 Deployment and assembly 118

6.3.3 Benchmarks . 119
6.3.4 Analysis . 120

6.4 Conclusions . 122

7 Ongoing Work and Perspectives 125
7.1 CoreGrid’s Grid Component Model . 125
7.2 Pattern-based deployment . 125
7.3 Graphical tools . 127
7.4 Dispatch and reduction strategies for collective interfaces 129
7.5 Adaptivity . 130

7.5.1 Autonomic computing . 130
7.5.2 Towards autonomic ProActive/GCM components 131

7.6 Industrial dissemination with the GridComp project 132

8 Conclusion 133

CONTENTS xi

II Résumé étendu en français (Extended french abstract) 137

9 Introduction 139
9.1 Problématique . 139
9.2 Objectifs et contributions . 140
9.3 Plan . 141

10 Résumé 143
10.1 Etat de l’art . 143

10.1.1 Positionnement . 143
10.1.2 Modèles à composants pour le Grid computing 144
10.1.3 Communications collectives . 144
10.1.4 Contexte: objets actifs avec ProActive 145

10.2 Un modèle à composants pour le Grid computing 145
10.2.1 Adéquation du modèle Fractal pour le Grid computing 145
10.2.2 Un modèle à composants basé sur le modèle d’objets actifs 145

10.3 Interfaces collectives . 145
10.3.1 Motivations . 145

10.3.1.1 Proposition . 146
10.3.1.2 Couplage d’applications . 146

10.4 Un framework à composants basé sur les objets actifs 147
10.5 Méthodologie et benchmarks . 147
10.6 Travaux en cours et perspectives . 148

10.6.1 GCM, le modèle de composants de CoreGrid’s 148
10.6.2 Patrons de déploiement . 148
10.6.3 Outils graphiques . 148
10.6.4 Dispatch et réduction pour les interfaces collectives 149
10.6.5 Adaptativité . 149
10.6.6 Dissémination industrielle . 149

11 Conclusion 151

Bibliography 155

Abstract & Résumé 169

xii CONTENTS

List of Figures

2.1 Positioning of this thesis within the Grid layered architecture 9
2.2 A CCM component . 17
2.3 OpenCOM concepts . 18
2.4 A Fractal component . 20
2.5 A hierarchical assembly of Fractal components 21
2.6 An assembly of CCA components . 23
2.7 The lifecycle of an ICENI application (adapted from S. Newhouse’s pre-

sentation at ICENI workshop’04) . 24
2.8 The MxN data redistribution problem . 27
2.9 ODP compound binding . 30
2.10 ICENI tees . 30
2.11 Coupling of parallel components with GridCCM 32
2.12 Seamless sequential to multithreaded to distributed objects 34
2.13 Meta-object architecture . 36
2.14 Layered features of the ProActive library 38
2.15 Descriptor-based deployment . 40

3.1 A conceptual view of the hierarchical structuration of a NAS Grid bench-
mark . 47

3.2 Overview of the component deployment process and roles 51
3.3 Composition of virtual nodes in a hierarchical architecture 54
3.4 Composition of virtual nodes and components 54
3.5 A simple locking situation when stopping two components 57
3.6 Recursive stop operation leading to a deadlock 58
3.7 Recursive stop operation leading to a deadlock: involved active objects . . 58

4.1 Single interfaces for primitive and composite components 62
4.2 Collection interfaces for primitive and composite components 63
4.3 Multicast interfaces for primitive and composite components 65
4.4 Component systems using multicast interfaces 67
4.5 Broadcast and scatter of invocations parameters 70
4.6 Gathercast interfaces for primitive and composite components 73
4.7 A simple example of the aggregation of invocation parameters for a gath-

ercast interface . 75
4.8 A component system using a gathercast interface 76
4.9 A typical algorithm for SPMD components 80
4.10 Synchronization between components in a SPMD computation 80
4.11 A non-optimized solution to the MxN problem 81

xiii

xiv LIST OF FIGURES

4.12 An optimized implementation for the MxN problem based on local multi-
cast and gathercast interfaces . 82

4.13 A gather multicast interface for the MxN problem 82

5.1 ProActive Meta-Object architecture for primitive components 88
5.2 ProActive Meta-Object architecture for composite components 89
5.3 Default encapsulation of functional activity inside component activity . . 92
5.4 Execution sequence of an input interception 93
5.5 Execution sequence of an output interception 93
5.6 Using short cuts for minimizing remote communications 95
5.7 Adaptation and delegation mechanism for multicast invocations 98
5.8 An example of multicast interfaces: the signature of an invoked method is

exposed, and in this case exhibits a scattering behavior for the parameters 98
5.9 Data structure for the buffering of requests in gathercast interfaces . . . 100
5.10 Management of futures for gathercast invocations 102

6.1 C3D component classes and interfaces . 106
6.2 Original Jem3D architecture following an object-oriented design 107
6.3 Componentization process . 109
6.4 Component-based Jem3D design . 111
6.5 Performance comparison between object based and component based ver-

sions of Jem3d . 113
6.6 A possible distribution of Jem3D computation over Grid5000 clusters . . . 114
6.7 Jacobi computation: matrix elements exchange border data with their

neighbors during computation . 116
6.8 Jacobi computation: borders exchanges through multicast and gathercast

interfaces (communications are represented only for component (1;0)) . . 118
6.9 Jacobi computation: borders exchanges through collection and gathercast

interfaces (communications are represented only for component (1;0)) . . 118
6.10 Jacobi computation benchmarks: comparing ProActive OOSPMD, compo-

nents using multicast and components using collection interfaces for send-
ing data . 121

6.11 Jacobi computation benchmarks: performance gain of the component based
version using collection interfaces compared to the OOSPMD version . . . 122

7.1 A few assembly patterns . 126
7.2 Graphical assembly of components using the FractalGUI 128
7.3 A view of the distribution and communications of a Grid application with

the IC2D GUI . 129
7.4 Autonomic components in ProActive/GCM 131

List of Tables

2.1 Evaluation of the general properties of evaluated component models . . . 33
2.2 Fulfillment of Grid computing requirements in studied component models 34

4.1 Applicability of a distribution function depending on the type of the ith

parameter of method of the multicast interface vs. the type of the corre-
sponding parameter in the corresponding method of its connected server
interfaces. A and T are incompatible types. 68

4.2 Applicability of a redistribution function depending on the return types of
the methods of the gathercast interface vs. the return types of the methods
of its client interfaces. A and T are incompatible types 75

5.1 Adaptation of method signatures, with list parameters or return types, be-
tween client and server interfaces for collective interfaces in the proposed
implementation . 97

6.1 Computational experiments with different Grid configurations 114

8.1 A comparison of the general features of Fractal, ProActive/Fractal and
ProActive/GCM . 135

8.2 A comparison of how Grid requirements are addressed in Fractal, ProAc-
tive/Fractal and ProActive/GCM . 135

11.1 Compaison des propriétés générales entre Fractal, ProActive/Fractal et
ProActive/GCM . 153

11.2 Comparaison de la prise en charge des besoins des grilles entre Fractal,
ProActive/Fractal et ProActive/GCM . 153

xv

xvi LIST OF TABLES

Glossary

Active object A distributable object with its own thread and its graph of non-shared
passive objects. Communications with active objects may be asynchronous through
a transparent future mechanism.

ADL Stands for Architecture Description Language: a file defining a component system

Annotation Metadata added on a declaration in order to add semantic information to
an element.

Autonomic computing A software paradigm that defines self-managed components
able to monitor their environment and adapt to it by automatically optimizing and
reconfiguring themselves

Broadcast Mode of distribution of parameters in a multicast communication in which
all receivers are sent the same data.

Component-based programming Programming model in which software units are
units of deployments with contractually defined interfaces.

Composite binding An indirect connection between components through dedicated
binding components.

Controller In the Fractal model it is a constituent of a component and it handles non
functional properties.

Core Grid Middleware Software layer offering management and utility services.

Deployment descriptor A file that defines the mapping between a virtual infrastruc-
ture based on virtual nodes and a targeted physical infrastructure.

Fractal A modular and extensible component model that can be used with various pro-
gramming languages for the design implementation deployment and reconfigura-
tion of software systems.

Future A placeholder for the result of an invocationİt is given as a transparent proxy to
the actual result and automatically updatedİt enables transparent asynchronous
invocations.

Gathercast Communication from n entities to 1 entity. A gathercast interface trans-
forms a list of invocations into a single invocation.

Grid A shared computing infrastructure of hardware software and knowledge resources
that allows the coordinated resource sharing and problem solving in dynamic multi-
institutional virtual organizations to enable sophisticated international scientific
and business-oriented collaborations.

xvii

xviii Glossary

Grid Application Layer Grid software layer containing the Grid-enabled applications.

Grid Fabric Accessible distributed and federated resources of a Grid infrastructure.

Grid Programming Layer Grid software layer offering high-level abstraction for pro-
gramming and deploying Grid applications.

Intercession Ability to modify the characteristics of a software entity at runtime.

Interface cardinality In the original Fractal specification indicates how many inter-
faces of type T a given component may have. This was extended in our proposal
for designating interfaces with multiple bindings (multicast gathercast).

Introspection Ability to inspect the characteristics of a software entity at runtime.

Multicast Communication from 1 entity to n entities. A multicast interface transforms
a single invocation into a list of invocations.

MxN problem Refers to the problem of communicating and exchanging data between
parallel programs from a parallel program that contains M processes to another
parallel program that contains N processes.

Network-enabled server Programming model where tasks are delegated to workers
through a dedicated server.

Parallel component A component that exhibits at least one multicast server inter-
face.

Reflection Ability to introspect and intercede on a software unit at runtime.

Scalability The ability to handle large number of entities.

Scatter Mode of distribution of parameters in a multicast communication in which
receivers may be sent different data.

Scavenging Grid A distributed computational infrastructure that uses idle processor
time from volunteering machines.

Service Oriented Architecture Programming model that emphasizes decoupled col-
laboration between software units.

Skeleton High-level and parameterizable algorithmic pattern.

SPMD Stands for Single Program Multiple Data: a programming model for parallel
computing in which each task executes the same program but works on different
data.

Tensioning Optimization mechanism that remembers the shortest way between two
software entities and establishes a direct connection between them.

Virtual node An abstraction of the physical infrastructure used in application code in
order to separate the design from the infrastructure.

Part I

Thesis

1

Chapter 1

Introduction

Computer chips performance follows Moore’s law, storage capabilities are also increas-
ing exponentially, access to computers and electronic equipments has generalized in
industrialized countries, and the Internet and wireless technologies provide worldwide
and ubiquitous interconnection. As a result, we are surrounded with increasing compu-
tational capabilities. They present new opportunities, for scientists to solve new cate-
gories of problems, for industrials to develop new business models, and for academics to
investigate ways to use these resources.

Taking advantage of these resources implies federating them: this is a difficult chal-
lenge. The term Grid computing was coined in the 90’s to designate this challenge, and
Grid computing was popularized with the book “The Grid: Blueprint for a New Comput-
ing Infrastructure” [FOS 98]. The concept of Grid has since matured and may now be
defined as follows:

A production Grid is a shared computing infrastructure of hardware, soft-
ware, and knowledge resources that allows the coordinated resource sharing
and problem solving in dynamic, multi-institutional virtual organizations to
enable sophisticated international scientific and business-oriented collabora-
tions [LAS 05].

1.1 Problematics

Grid computing has specific requirements due to its inherently largely distributed and
heterogeneous nature. Research efforts first focused on the access to physical resources
by providing tools for the search, reservation and allocation of resources, and for the
construction of virtual organizations. Accessing the Grid infrastructure is a first nec-
essary step for taking advantage of the resources of the Grid, and the second step is to
offer adequate development models and environments (frameworks). A new research
area therefore emerged, which focused on programming models and tools for efficiently
programming applications which could be deployed on Grids. As mentioned in [FOS 98],

Grid environments will require a rethinking of existing programming mod-
els and, most likely, new thinking about novel models more suitable for specific
characteristics of Grid applications and environments.

The requirements of Grid computing that must be handled by programming envi-
ronments may be listed as follows:

3

4 Chapter 1. Introduction

• Distribution : resources can be physically distant from each other, resulting in sig-
nificant and sometimes unpredictable network latency and bandwidth reduction.

• Deployment : the deployment of an application on a Grid is a complex task in terms
of configuration and connection to remote resources. The target deployment sites
may be specified beforehand, or automatically discovered by browsing available
resources and by selecting those matching deployment constraints.

• Multiple administrative domains : the resources can be spread around many dif-
ferent networks, each with their own management and security policies.

• Scalability: Grid applications use a large number of resources, and the framework
must be able to accommodate large number of entities, notably by handling latency
and by offering parallelism capabilities.

• Heterogeneity : unlike cluster computing, where resources are homogeneous, Grids
gather resources from multiple hardware vendors, running on heterogeneous op-
erating systems, and relying on different network protocols.

• Interoperability and legacy software : in order to reuse already existing and opti-
mized software, legacy software should be wrapped, enabling further integration
in broader systems, and interoperability with tier applications must be possible.

• High performance : programming frameworks should be designed for efficiency,
notably by offering parallel programming facilities, because one of the aim of Grids
is to solve computation-hungry problems.

• Complexity : Grid applications can be complex software because they combine the
complexity of highly specialized pieces of software with integration, configuration
and interoperability issues.

• Dynamicity : the application may evolve at runtime (structurally and functionally),
motivated by environmental changes (for ensuring optimized performance, or in
case of failures), or by the addition or removal of resources while the application is
running (a Grid is intrinsically dynamic).

1.2 Objectives and Contributions

This work belongs to the research area that focuses on programming models and tools,
and our main objective is to define a programming model and a framework that address
the requirements of Grid computing.

We consider that some of the requirements must be handled by the underlying Grid
middleware, such as distribution, multiple administrative domains and interoperability,
and that the other requirements must be handled by the programming model. In the
programming model we propose, we aim at simplifying the design of Grid applications,
and at providing high-level abstractions for the design of interactions between multiple
distributed entities.

Our approach relies on a hierarchical component model based on active objects, aug-
mented with collective communications.

The main contributions of this thesis are:

• an analysis of the adequacy of existing programming models, and particularly com-
ponent models, with respect to the requirements of Grid computing,

Section 1.3. Overview 5

• a proposal for a component model that aims at fulfilling these requirements, through
hierarchical composition, and a component deployment model suitable for Grid
computing,

• a specification of collective interfaces as a means to design multiway interactions
between distributed components, parallelism, and synchronization between mul-
tiple components,

• a component framework that implements the proposed component model and the
specification of collective interfaces.

1.3 Overview

This document is organized as follows:

• In Chapter 2 we position our work in the context of the Grid software architecture.
We provide an overview of existing programming models for Grid computing in or-
der to justify our approach, and we evaluate means for collective communications.
We consequently expose how Grid computing requirements are addressed in exist-
ing models and frameworks; this allows us to point out what must be enhanced.
Finally, we present the active object model and the ProActive middleware that we
based our work on.

• In Chapter 3, we propose a component model for Grid computing that grounds up
on the Fractal component model.

• In Chapter 4 we augment the proposed component model with a specification of
collective interfaces, as a means to tackle multiway interactions at the level of
component interfaces. We show how collective interfaces can be advantageously
applied to coupled applications.

• Chapter 5 describes our component framework which implements the component
model specified in chapters 3 and 4.

• Chapter 6 reports some experiments we realized using our component framework:
we demonstrate its suitability for Grid computing, its scalability, and we show
how it can be used for SPMD applications. We also present a methodology for
refactoring object-based applications into component-based Grid applications, and
we highlight some problematics related to coupled applications in a Grid environ-
ment.

• In Chapter 7 we give an overview of our current work and of the enhancements
we foresee, and we outline the potential of our model in academic and industrial
contexts.

• Chapter 8 concludes and summarizes the major achievements of this thesis.

6 Chapter 1. Introduction

Chapter 2

Positioning and State of the Art

In this chapter, we justify our choice of a hierarchical component model based on ac-
tive objects and augmented with collective communications, by evaluating existing pro-
gramming models for the Grid, by evaluating different approaches to provide collective
communications, and by pointing out what requirements are not addressed by existing
models and frameworks.

This chapter is organized as follows. We begin by positioning our work with respect
to, first, the Grid software architecture, and second, the existing Grid programming
models. We thereby justify our choice of a component-based approach. We then present
an overview of component-based programming and of common frameworks, and we eval-
uate component frameworks specifically targeting Grid computing. We also consider the
existing strategies for defining collective communications. Based on our evaluations, we
discuss the suitability of the existing component models in the context of Grid comput-
ing, by considering their general properties and how they fulfill Grid computing require-
ments. Finally, we describe the active object model and the library we based our work
on.

2.1 Positioning

Grid computing aims at providing transparent access to computing power and data stor-
age from many heterogeneous resources in different geographical locations - this is also
called virtualization of resources. Taking advantage of these resources involves both an
environment providing the virtualization, and a programming model and deployment
framework so that applications may be designed, deployed, and executed.

We aim at defining a high-level programming model along with a deployment frame-
work for Grid applications. In this section, we position our work in the context of the
Grid layered infrastructure and of the Grid programming models, in order to fulfill the
requirements expressed in chapter 1.

2.1.1 Positioning with respect to general Grid architecture

We start by describing our target audience, then we position our contribution with re-
spect to the Grid software layers.

From a user point of view, Grid application developers may be classified in three
groups, as proposed in [GAN 02]: the first group consists of end users who build pack-
aged Grid applications by using simple graphical or Web interfaces; the second group
consists of programmers that know how to build Grid applications by composing them

7

8 Chapter 2. Positioning and State of the Art

from existing application “components”; the third group consists of researchers and ex-
perts that build the individual components. In this work we essentially address the
second group of users, by providing them a programming model and a deployment and
execution environment.

From a software point of view, the development and execution of Grid applications
involves three concepts which have to be integrated : virtual organizations, program-
ming models and deployment and execution environments.

Virtual organizations are defined in the foundation paper [FOS 01] as:

individuals and/or institutions who share access, in a highly controlled
manner with clearly defined policies, to computers, software, data and other
resources required for solving computational problems in industry, science
and engineering.

Virtual organizations are set up following concertations and agreements between in-
volved partners. Such organizations are becoming popular within the academic com-
munity, and they take advantage of large infrastructures of federated resources such
as Grid’5000 [CAP 05] and NorduGrid [EER 03] in Europe, TeraGrid in the U.S. [TER],
Naregi [NAR] and ChinaGrid [JIN 04] in Asia, etc.. Global interactions between these
infrastructures may also be created punctually, resulting in even larger virtual organi-
zations, such as during the Grid PlugTests events [GPT05, GPT].

Programming models provide standards and a basis for developing Grid applications;
the definition of standards is a complex and lengthy process, which has to take into
account existing standards used in Internet technologies.

The execution environments allow access to Grid resources, and usually require com-
plex installation and configuration phases.

The concepts of virtual organizations, programming models and deployment and ex-
ecution environments may be gathered in a layered view of Grid software, depicted in
figure 2.1.

• At the bottom, lies the Grid Fabric, which consists of all the accessible distributed
resources. These resources physically consist of CPUs, databases, sensors and spe-
cialized scientific instruments, which are federated through a virtual organization.
These physical resources are accessed from the software stack thanks to operating
systems (and virtual machines), network connection protocols (rsh, ssh, etc.) and
clusters schedulers (PBS, LSF, OAR, etc.).
The resources of this layer are federated through virtual organizations.

• Above, layer 2, is the Grid middleware infrastructure (sometimes referred to as
the Core Grid Middleware), which offers core services such as remote process man-
agement and supervision, information registration and discovery, security and re-
source reservation. Various frameworks are dedicated to these aspects. Some of
them are global frameworks providing most of these services, such as the Globus
toolkit [FOS 05a] which includes software services and libraries for resource mon-
itoring, discovery, and management, plus security and file management. Nim-
rod [ABR 95] (a specialized parametric modeling system), Ninf [SEK 96] (a pro-
gramming framework with remote procedure calls) and Condor [THA 05] (a batch
system) take advantage of the Globus toolkit to extend their capabilities towards
Grid computing (appending the -G suffix to their name). Unicore [UNI] and Grid-
lab [ALL 03] services are other examples of global frameworks providing access to

Section 2.1. Positioning 9

3. Grid programming

2. Grid middleware infrastructure

4. Grid applications and portals

1. Grid fabric

high-level access to
Grid middlewaremodelsenvironments tools

super-schedulers

information services security

resource trading

communication brokers

PSEs Web portals Client applications

Federated hardware resources

schedulers networking operating systems

databases scientific instrumentscomputers

Figure 2.1: Positioning of this thesis within the Grid layered architecture

federated Grid resources, with services including resource management, schedul-
ing and security. Other frameworks in the Core Grid Middleware layer are more
specialized: JXTA [JXT] for example is a peer-to-peer framework which may be
integrated within Grids for managing large amounts of data, such as in JuxMem
[ANT 05]. GridBus [BUY 04] is a Grid middleware designed to optimize perfor-
mance/cost ratios, by aggregating the most suitable services and resources for a
given task.
The deployment and execution environments for Grid entities are provided by the
Grid middleware layer.

• Layer 3 is the Grid Programming Layer, which includes programming models and
tools.
This layer contains high-level programming abstractions facilitating interaction
between application and middleware, such as the GGF’s initiative called SAGA
[GOO , GGF04] which is inspired by the Grid Application Toolkit (GAT) [ALL 05],
and Globus-COG [LAS 01] which enhances the capabilities of the Globus Toolkit
by providing workflows, control flows and task management at a high level of ab-
straction. As reported by some users [BLO 05] however, some of these abstractions
still leave the programmer with the burden to deal with explicit brokerage issues,
sometimes forcing to use literal host names in the applicative code.

• The top layer is the Grid Application Layer, which contains applications developed

10 Chapter 2. Positioning and State of the Art

using the Grid programming layer as well as web portals, in which users control
applications and feed data through web applications. Applications may collaborate
in various levels of coupling, from service based interactions to optimized direct
communications between internal entities.

The contributions of this thesis belong to the Grid programming layer. Existing Grid
programming models are considered in more detail in the following section.

2.1.2 Positioning with respect to existing programming models for the Grid

We describe here the main programming models applicable to Grid computing. A num-
ber of articles ([LAF 02, PAR 05, FOX 03, LEE 01] present overview of Grid program-
ming models and environments, highlighting usability as a fundamental requirement.
In this section our objective is to justify why we consider component-based programming
as the most suitable paradigm.

2.1.2.1 Message passing

Message-passing programming models are popular within the scientific community, as
they represent an efficient mean to solve computational problems on dedicated clusters,
notably using the SPMD programming style. Message passing frameworks such as MPI
or PVM [GEI 94] provide an optimized communications layer. Moreover, numerous al-
gorithms are available for further optimizing the communications and distribution of
tasks between involved distributed processes.

Message-passing is one of the most basic ways to achieve process communication
in the absence of shared memory, but it is a low-level programming style, which on
one hand provides efficiency, latency management, modularity and global operations,
but on the other hand fails to provide the abstractions necessary for Grid computing,
such as support for heterogeneity, interoperability, resource management, adaptivity
and dynamicity.

Nevertheless, in regard of the advantages given by latency management, modular-
ity and global operations, some frameworks have been implemented in order to bring
the message-based programming paradigm to Grid computing. They usually rely on
existing Grid middleware, such as Globus. This is the case for instance of MPICH-
G2 [KAR 03], which uses Globus for authentication, authorization, executable stag-
ing, process creation, process monitoring, process control, communication, redirection
of standard input and output and remote file access. PACX-MPI [KEL 03] is another
implementation of MPI geared towards Grid computing, which contains a wide range
of optimizations for Grid environments, notably for efficient collective communications.
MagPie [KIE 99] also focuses on the efficiency of collective communications: it can opti-
mize a given MPI implementation by replacing the collective communication calls with
optimized routines.

In conclusion, although not a high-level programming model, message-passing may
be used for Grid programming by relying on the services of other Grid middleware,
however, direct control over low-level communications is attractive only for certain kinds
of applications.

2.1.2.2 Distributed objects

The object-oriented paradigm is a widely used programming approach, thanks to its
high level and structured programming concepts. Distributed communications between

Section 2.1. Positioning 11

objects are easily performed through remote method invocations, either through a stan-
dardized extension of the language (such as Java RMI) or through a tier middleware
layer (CORBA). The portability of some object-oriented languages such as Java facil-
itated the development of distributed objects frameworks, and some of them are gen-
eralized to address the specificities of Grid computing. For example, JavaSymphony
[JUG 04] provides explicit control over locality, parallelism, synchronization and load
balancing of distributed objects. Active objects are medium-grained distributed objects
with their own configurable activity, and they exhibit determinism properties. The
ProActive library is an implementation of the active object model; it is described in
more detail in a following section, as the implementation work in this thesis is based on
this library.

Satin [NIE 05] extends the Java language for providing parallel execution of method
invocations, which are reified and can be distributed to the best suited resources. It
targets divide-and-conquer programs by offering dedicated constructs (spawn and sync),
and automatically load-balances the invocations. Satin uses an optimized communica-
tion layer called Ibis Portability Layer [NIE 02]. Both Satin and Ibis Portability Layer
belong to the Ibis project [IBI].

Unfortunately, object-oriented approaches impose explicit dependencies between ap-
plicative objects, and generally lack modularity as well as external description and con-
figuration, and packaging capabilities.

2.1.2.3 Skeletons

Skeletons are high-level and parameterizable algorithmic patterns, introduced in
[COL 89]. Complex applications may be modeled and built by composing basic skele-
tons such as farm, pipe, map etc., hence keeping a highly structured design. Skele-
tons are a way to program Grid applications by providing abstraction for parallelism
(through parameterizable parallel modules as skeletons), and by providing a higher
abstraction level on the program structure, as suggested in [ALT 02]. Programmers
use parallelized algorithms built with skeletons and may customize the skeletons with
application-specific parameters, allowing optimized implementations.

Several frameworks provide skeleton programming facilities for Grid computing. In
ASSIST (A Software development System based upon Integrated Skeleton Technology)
[ALD 06] programs are defined as generic graphs: nodes are parallel or sequential mod-
ules and arcs represent typed asynchronous streams of data/objects. The classical skele-
ton programming model is extended to provide flexibility and to express new forms of
parallelism. Parallel modules are expressed as so-called parmod skeletons. ASSIST
provides a high-level language with a compiler, as well as runtime support dynami-
cally enforcing quality of service requirements by means of self-configuration and self-
optimization. ASSIST provides interoperability with CORBA and plans interoperability
with Globus for accessing Grid services. Another skeletons framework also provides in-
teroperability with Grid services through Globus: HOC-SA [DUN 04], which uses the
terminology higher-order components (HOC) to emphasize the possibility of composing
skeletons.

We observe that current work around skeletons for Grid computing focus on struc-
tured and optimized distributed and parallel programming in order to achieve high per-
formance. Grid computing offers a wider diversity of programming challenges and the
latest developments in Grid skeletons programming tend to converge with another pro-
gramming model: component-based programming.

12 Chapter 2. Positioning and State of the Art

2.1.2.4 Remote Procedure Calls for Grids

The concept of Remote Procedure Call (RPC) has been widely used in distributed com-
puting for many years. It provides an elegant and simple abstraction that allows dis-
tributed software entities to communicate with well-defined semantics. Bringing RPC
to Grid computing implies adding a number of features for scalability and abstracting
from the underlying infrastructure.

Grid-based Remote Procedure Call may be seen as standard RPC augmented with
asynchronous coarse-grained parallel tasking. GridRPC [SEY 02] is a proposal fostered
by the GGF research group on programming models, and therefore follows a standard-
ization process with the intention of becoming a recognized standard.

In GridRPC, remote calls are identified by session IDs in order to add functionalities
such as canceling, waiting for an asynchronous call to complete, querying about past
calls. A variety of features are also added in order to hide the dynamicity, security
and instability of the Grid from the programmers, but a driving idea is to focus on
a simple and lightweight implementation of RPC functionality which would meet the
needs of scientific computing. It differs in this sense with standard distributed object-
based RPC technology (CORBA or Java RMI) which have broader goals but at the cost
of IDL complexity, protocol performance1 and software footprints.

GridRPC is commonly realized with a delegation model: clients submit invocations
to a pool of servers through intermediate agents. These agents gather informations on
the servers and therefore handle the scheduling and load-balancing of tasks/invocation
in the most suitable manner. GridRPC with delegation is usually referred to as the
network-enabled server (NES) paradigm. Some examples of frameworks that enable
the NES paradigm are Ninf-G [TAN 03], Netsolve [SEY 05] (oriented towards scientific
solvers) and DIET [DES 04] (which proposes an innovative distributed scheduling ap-
proach for a better scalability).

Scavenging Grids such as BOINC [AND 04] represent a popular Grid infrastructure
where the programming paradigm is also similar to GridRPC: the system is central-
ized and tasks are distributed following a master-slaves model. Such infrastructures
are however dedicated to a single category of problems, namely embarrassingly paral-
lel problems, in which the computation can be split into independent tasks with a low
data/compute ratio.

Unfortunately, GridRPC is restricted to client-server interactions: it may be used to
distribute tasks to servers, but falls short when more complex interactions are required,
for example in the case of tightly coupled applications.

2.1.2.5 Service Oriented Architectures and workflows

In this paragraph, we consider the use of services for applicative design. Service based
designs provide interoperability, enable on-demand access and loose-coupling, and are a
way to achieve scalability. They are also gaining popularity in the industry because they
are seen as a way to simplify design, enable code reuse, and facilitate integration of tier
products and collaboration with tier companies, as pointed out in [VOG06]. Services are
usually composed thanks to workflow languages and workflow engines.

We distinguish the use of a service-based approach for applicative design from the
use of services as a mean to access the Grid infrastructure. Services are advocated
for Grid middleware since the foundation paper “The Physiology of the Grid” [FOS 02]

1CORBA can prove highly efficient on this aspect

Section 2.1. Positioning 13

which defines the Open Grid Services Architecture (OGSA), and proposes a standard-
ization effort towards a common services-based architectural vision of the Grid. Indeed,
as pointed out in [LAS 05]:

A job submission, a file transfer, and an information query should not be
treated differently and [...] they present a task, or job, to be executed by a
service. The task is invoked in all cases through a query to a service.

OGSA first spawned the Open Grid Services Infrastructure (OGSI) as an implementa-
tion standard, which extended web services by adding state, persistency, notification
and lifecycle management, thereby defining Grid services. This initiative unfortunately
failed to converge with existing web services standards. A second initiative is the Web
Services Resource Framework (WS-RF) [WSR04], which is more tightly coupled with
standard web services and allows integration of web services directly into the Grid fab-
ric; it is implemented in the latest version of the Globus toolkit (GT4).

Coming back to the applicative design on Grids using a service-oriented approach,
one should note that Grids are now not merely seen as frameworks for high-performance
simulations in academic environments. In the industry (as shown for instance in [SRI 05]),
Grid technologies tend to be recognized as foundations for flexible management and use
of global IT resources as commodity resources; moreover, new kinds of applications can
now be envisaged: applications which would build global interactions between various
kinds of functional modules and services. In the scientific community, the collaborative
opportunities provided by a standardization of interoperable services will be fostered
by Grids, which enable a separation of concerns between discipline-specific content and
domain-independent software and hardware infrastructure [FOS 05b].

The orchestration of services into workflows requires an adequate workflow lan-
guage, and a workflow engine to coordinate the participating entities at runtime. Many
workflow languages are available for Grid computing, as shown by [YU 05], and a de
facto standard has not yet emerged even though some industrially established work-
flow standards such as BPEL seem extensible enough to suit the needs of Grid com-
puting, as explained in [SLO 06]. There are three ways of creating concrete workflows.
The first one is to handwrite them, a usually tedious task. The second one is to use
a graphical tool, such as Problem Solving Environments (PSE) graphical interfaces
[TAY 05, ALL 02, MAY 03]. For scientists or other Grid applications designers who are
not expert programmers, assembling coarse grained applications by workflow composi-
tion (either automatically from a program or by graphical composition) is simpler and
better suited than lower-level coding and assembly. The third way is to automatically
infer the workflow by analyzing a program or a script, which allows an automatic and
potentially optimal parallelization of the tasks - an interesting approach is Grid super-
scalar [BAD 03], inspired by the superscalar design of parallel processors and targeting
applications composed of coarse grained entities as these of the Grid NAS benchmarks
[FRU 01a].

We note however that Grid services are not suitable for tightly synchronized ap-
plications2, because of the communication overhead of XML/SOAP mechanisms3. Fur-
thermore, the deployment of services is not properly specified (services must be up and
running, but they somehow need to be placed on their host environment).

2Tightly synchronized applications notably include climate, physics and molecular models employing
explicit iterative methods.

3We note that some implementations of SOAP may provide optimizations for high performance comput-
ing [CHI 02]

14 Chapter 2. Positioning and State of the Art

Finally, we also note that services in service-oriented architectures are coarse grained
entities, but that they usually depend on an object-based or component-based frame-
work for their implementation.

2.1.2.6 Component-based programming

Component-based programming is another programming model used for Grid comput-
ing. There is no standard definition of what a software component is, although several
definitions are well accepted. In the context of this work, we adopt the following defini-
tion, proposed after the first edition of the Workshop on Component Oriented Program-
ming [SZY 96]:

Definition 2.1.1 A software component is a unit of composition with contractually spec-
ified interfaces and explicit context dependencies only. A software component can be
deployed independently and is subject to composition by third parties.

We argue that component-based programming encompasses the formerly described
programming models and can be used with new programming paradigms. It either
already provides most of the features of formerly described programming models, or can
provide them by means of encapsulation:

• Components are a higher level of abstraction than objects, thus they inherit the
properties of distributed objects programming models.

• Skeleton patterns are commonly encapsulated in components.

• Communications among components may use message-passing and remote pro-
cedure calls, may be synchronous or asynchronous, and may use any optimized
communication layer; component-based programming not only allows message-
passing and RPC models to be used for communications and task management,
but it is also possible to implement these paradigms using component-based pro-
gramming, as in the DREAM project [LEC 04].

• Components may be exported as services, moreover, components suit both tightly
and loosely coupled systems, whereas services target loosely coupled systems. The
recent Service Component Architecture specification [SCA] may appear as a con-
vergence between services and components, however it specifically targets loosely-
coupled systems which may be decomposed as modules with input and output in-
terfaces.

• Components can handle various levels of granularity, from fine-grained to coarse-
grained.

• Encapsulation provides access to high-performance legacy codes.

For these reasons, we decided to follow an approach for the design and execution of
Grid applications based on the software component paradigm. In section 2.2 we describe
more thoroughly this paradigm and present major industrial and academic component
models, and in section 2.3 we present component models geared at Grid computing.

2.2 Component-based programming models and frameworks

In this section we consider the benefits of a component-based approach; then we study
some of the most common component models, both industrial and academic. They are

Section 2.2. Component-based programming models and frameworks 15

not oriented specifically towards Grid computing, but they propose and implement core
concepts of component-based programming, and some of these concepts may be advan-
tageous for Grid computing. A summary of component models and component-based
programming concepts is proposed in section 2.5.

2.2.1 Component-based programming

Component based programming takes the idea of using construction bricks and ele-
ments for building manufactured products, and applies it to software. Historically, the
idea of envisaging software development as the assembly of components dates back the
a 1968 NATO’s meeting, where McIllroy introduced the notion of software components.
It is not until the 90’s that component based programming effectively broke out in the
industry, notably with Microsoft’s Component Object Model and .NET, and Sun’s Enter-
prise JavaBeans.

Component-based programming is advocated for three main aspects:

• Encapsulation: components are seen as black-boxes, which define services offered
and services required through external interfaces; they enforce a strict separation
between declaration and implementation, and a strict separation between func-
tional and non-functional concerns.

• Composition: components are composable, which facilitates the design of complex
systems by simply assembling functional software units, and hierarchical models
offer abstractions of composed sub-systems.

• Description: assemblies of components are usually defined in Architectural De-
scription Languages, which give a higher level of abstraction than raw code, and
standardized ADLs means tools can be used for the design of component systems,
and for verifying the correctness of the assembly. The description of components
and component systems can also include packaging and deployment information,
to be used during the deployment phase.

The software development process benefits from this approach, which better sepa-
rates roles within the development team - design, development, configuration, deploy-
ment - and increases productivity as the execution environments handle most of the non
functional concerns.

2.2.2 Industrial component models

Today the most common software component models in the industry are Sun’s Enter-
prise Java Beans, .NET and CCM.

2.2.2.1 EJBs

Enterprise Java Beans (EJB) [MIC c] is a specification from Sun Microsystems which
addresses the whole lifecycle of component software development, from coding to as-
sembly deployment to the management of running applications. It allows developers
to concentrate on the business logic, while non functional services are provided by
the container: persistency, transactions, security, load-balancing. EJBs target large,
transaction-intensive enterprise scenarios where scalability4 is a key factor.

4scalability here means a large number of clients for the application

16 Chapter 2. Positioning and State of the Art

The specification process follows a concerted path between involved members of the
specification committee (Java Community Process [MIC d]) and version 3 has recently
been finalized, notably introducing annotation-based configuration.

2.2.2.2 COM and .NET

Microsoft’s approach for component-based programming is a pragmatic one and pro-
poses global frameworks5 rather than strictly defined component models. Common Ob-
ject Model (COM) [MIC a] was the proposal fostered by Microsoft for software compo-
nents in the 90’s, and is still used in the forthcoming version of Windows, Vista. COM
is a binary standard not tied to any particular language. It defines how components
interact on a “binary” level by specifying a set of key services, though it does not specify
what a component or an object is. COM is underpinned by three fundamental concepts:

• uniquely identified and immutable interface specifications,

• uniquely identified components that can implement multiple interfaces,

• a dynamic interface discovery mechanism.

There is one fundamental entity: the interface. A COM entity may propose several in-
terfaces, though one is mandatory: the IUnknown interface, which identifies the entire
COM entity. DCOM extends COM by adding distributed communication capabilities,
and takes charge of the low-level details of network protocols. The COM and DCOM
technologies served as a base for many Microsoft technologies, and are now being su-
perseded by the .NET technology [MIC b]. .NET is the new advocated development
framework from Microsoft and it provides a broader set of services and interoperability,
notably through web services.

2.2.2.3 CCM

The CORBA Component Model (CCM) [GRO] is defined by the Object Management
Group, an industrial consortium aiming at defining standards for distributed systems,
and the author of the CORBA 1 and CORBA 2 specifications. The CCM is a specification
for business components which may be distributed, heterogeneous, and independent
from the programming language or operating system. It relies on the previous CORBA
specification, hence is based on the notion of distributed objects.

The objectives of the CCM are fist to allow the design of application using a com-
ponent based approach, with a clear separation between functional and non-functional
concerns, and second to specify the lifecycle of component application. Therefore, CCM
defines a complete process for the definition, production, deployment and execution of
the components. The role of each actor of the process is clearly identified: designer,
implementer, packager, deployer, end-user.

A CCM component can be represented as a black box with several access points, as
illustrated in figure 2.2. It offers a base reference on itself (the component reference).
Functional services are defined in the form of facets (for receiving invocations) or sinks
(for receiving events through a message bus). Receptacle interfaces are client interfaces
requiring which need to be connected with matching facets. Sources and sinks are inter-
faces for event-based communications.

5a global framework such as .Net provides a large body of pre-coded solutions to common program
requirements, and manages the execution of programs written specifically for this framework

Section 2.2. Component-based programming models and frameworks 17

Business Component

Component interface

Facets

Event sinks

Attributes

Event sources

Receptacles

Business Component 2

Figure 2.2: A CCM component

Component are deployed into component containers and created and managed by
homes. Only the business code needs to be written, all other services are provided by
the framework and require configuration.

2.2.3 Academic research in component models

There are many component models proposed within the academic community. Com-
pared to industrial models, they usually do not define a global specification of the life-
cycle of the component from development to deployment, as CCM does for instance, and
they usually focus on specific points of research interest.

2.2.4 ODP

The Reference Model for Open Distributed Processing (RM-ODP) is a set of standards
defined by the International Standards Organization, in an effort to standardize dis-
tributed computing [ISO 95]. The ODP standards describe the protocols and interfaces
that distributed systems should possess, and they aim at being both abstract enough
(for having different implementations) and directive enough (so that the implementa-
tions may cooperate).

ODP distinguishes five points of view for specifying distributed systems: the point
of view of the company (rights and obligations of the software entities); the point of
view of the information (application semantics); the point of view of the processes (a
functional view with a definition of the interactions between entities); the point of view
of engineering (which services are required from the infrastructure and how); and the
point of view of the technology (imposed constraints on the infrastructure).

The point of view of the processes defines the ODP component model: an application
consists of components (processing objects) that encapsulate an internal state and data.
The internal state may be modified by processing the data, and processing operations
are gathered into interfaces. Interactions between components only happen through
interfaces, which are typed, and therefore impose typing compatibility for connecting
interfaces of components, through a binding operation.

Although it defines the foundations of a component model and a high-level view of the
lifecycle of the development of applications, ODP does not propose any implementation.

18 Chapter 2. Positioning and State of the Art

The core concepts of the component model were nevertheless reused for the Fractal and
OpenCOM models described next.

2.2.5 OpenCOM

OpenCOM [CLA 01] is a component model proposed by researchers in Lancaster Uni-
versity. OpenCOM aims at reusing the component-based techniques within middleware
platforms. It defines a lightweight, efficient and reflective component model that uses
the core features of Microsoft COM to underpin its implementation; these include the bi-
nary level interoperability standard, Microsoft’s IDL, COM’s globally unique identifiers
and the IUnknown interface. The higher-level features of COM, including distribution,
persistence, transactions and security are not used. Specifically targeting the design
of middleware platforms, OpenCOM was concretely used for the implementation of an
efficient version of the OpenORB reflective middleware, developed at Lancaster, hence
offering support for building high-performance reflection functionality.

receptacle
binding

interface

IM
eta

Int
er

fac
e

ILi
feC

yc
le

IC
on

ne
cti

on
s

reflective interfaces

capsule API

capsule

enclosed
components

Figure 2.3: OpenCOM concepts

The key concepts of OpenCOM are capsules, components, interfaces, receptacles and
bindings, represented in figure 2.3. Capsules are runtime containers and they host
components. Each component implements a set of custom interfaces and receptacles.
An interface expresses a unit of service provision, a receptacle describes a unit of service
requirement and a connection is the binding between an interface and a receptacle of
the same type.

OpenCOM is used in various middleware projects, and more recently, in the GridKit
middleware [GRA 04], which aims at providing an adaptive middleware for dealing with
changing environments, notably for Grid and pervasive computing.

For the moment, OpenCOM remains oriented towards middleware construction, as
shown by the recent efforts on building overlays frameworks. It is does not target end-
user application designs, however it follows common principles with the Fractal compo-
nent model that we describe later in this section.

Section 2.2. Component-based programming models and frameworks 19

2.2.6 SOFA

SOFA [PLA 98] stands for SOFtware Appliances; it is a component model proposed by
Charles University in Prague. It initially targeted the issues of dynamic updates of
components, and is now also used for the behavioral verification of component systems,
as communications between components can be formally captured.

In the SOFA component model, applications are viewed as a hierarchy of nested
components. Components can be either primitive or composed - a composed component
is built of other components, while a primitive component contains no subcomponents.
As a result, all functionality is located in the primitive components.

A component is described by its frame and its architecture. The frame is a black-
box view of the component. It defines provides interfaces and requires interfaces of
the component. Optionally, it declares properties for parameterizing the component.
The frame can be implemented by more than one architecture. The architecture of a
composed component describes the structure of the component by instantiating direct
subcomponents and specifying the subcomponent’s interconnections via interface ties.
The architecture reflects a particular grey-box view of the component - it defines the first
level of nesting in a component hierarchy. A tie which connects two interfaces is realized
via a connector. A connector is the mediator of an interaction between components, and
establishes the rules that govern component interaction [SHA 93]. Connectors have
protocol specifications defining their properties. For convenience, the simple connectors,
expressing procedure (method) calls are implicit so that they do not have to be specified
in an architecture specification.

The whole application’s hierarchy of components (all levels of nesting) is described
by an application deployment descriptor. Components are bound through connectors,
which are first-class entities in SOFA.

A particularity of SOFA is behavior protocols are central to the model, to the point
that typing relationships are defined by behavior protocols.

2.2.7 Fractal

Fractal is a modular and extensible component model proposed by INRIA and France
Telecom, that can be used with various programming languages to design, implement,
deploy and reconfigure various systems and applications, from operating systems to
middleware platforms or graphical user interfaces. Fractal consists of: a general model
and a detailed specification with an API [FRAa], a reference implementation called Julia
[BRU 04a], and a set of tools and reusable components (an Architecture Description
Language, a set of component for remote communications (FractalRMI), a set of tools
for management (FractalJMX) and a Graphical User Interface (FractalGUI)).

Since the first version of the specification was proposed in 2002, an active commu-
nity of academics and industrials has been building around Fractal, as can be observed
from the number of available implementation of Fractal and the number of publications
experimenting with Fractal, for instance in ECOOP’06 Fractal Workshop [FRAc].

The main features of the model are:

• composite components, offering a uniform view of applications at various levels of
abstraction,

• shared components, to model resources and resource sharing while maintaining
encapsulation,

• introspection capabilities, in order to monitor a running system,

20 Chapter 2. Positioning and State of the Art

• intercession and reconfiguration capabilities, to dynamically configure a system.

Fractal enforces separation of concerns between functional and non-functional features,
by distinguishing functional and non-functional (control) access points to components.

The Fractal model is somewhat inspired from biological cells, where exchanges be-
tween the content of a cell and the environment are controlled by the membrane. By
analogy, a Fractal component, as represented in figure 2.4 is a runtime entity, which
offers server and client functional interfaces, as well as control interfaces (for non func-
tional properties) implemented as controller objects in the membrane. All interactions
with the component are interactions with the membrane of the component, and this
allows interception and intercession using interception objects positioned within the
membrane.

The Fractal model is an open component model, and in that sense it allows for ar-
bitrary classes of controllers and interceptor objects, including user-defined ones. It is
therefore possible to customize the non-functional features of the component. A basic
set of controllers is already defined, for setting attributes (AttributeController), bind-
ing components (BindingController), adding components within composite components
(ContentController) or controlling the lifecycle of the component (LifeCycleController).

Activator

controller part (membrane)

content part

client interface

server interface

control interfaces (binding, content, lifecycle etc...)

internal (client) interface

input interceptor
output interceptor

Component interface

Figure 2.4: A Fractal component

Functional interfaces are defined by a name, a role (client or server), a cardinality
(singleton or collection), a contingency (mandatory or optional) and a signature (in Java,
the fully qualified name of a Java interface). In the type system proposed by Fractal, the
ensemble of functional interfaces defines the type of a component. A Fractal component
also provides a Component interface, which is similar to the IUnknown interface in the
COM model, and which allows the discovery of all external client and server interfaces.
A Fractal component may be a composite component, in which case it usually contains
other components, or it may be a primitive component, which is an atomic component
implementing the business logic. The instantiation of components is performed through
configurable factories.

Components communicate through their interfaces; a client interface is bound to a
server interface so that two components can communicate. Fractal supports primitive

Section 2.2. Component-based programming models and frameworks 21

bindings and composite bindings. A primitive binding is a binding between one client
interface and one server interface of compatible types in the same address space. A
composite binding is a communications path between an arbitrary number of component
interfaces, and it consists of an assembly of primitive bindings and binding components
(stubs, skeletons, adapters, etc.). The concept of binding in Fractal is related to the
concept of connector in other component models such as SOFA. A typical assembly with
bindings and a composite component is presented in figure 2.5

Activator

binding

primitive
component

primitive
component

Figure 2.5: A hierarchical assembly of Fractal components

Fractal also defines an Architecture Description Language for the description of com-
ponent systems. FractalADL is an open and extensible language to define component
architectures. Associated tools allow the parsing and analysis of ADLs and the deploy-
ment of the corresponding component systems. FractalGUI is a graphical tool which
allows the creation and graphical visualization of component assemblies.

As Fractal provides a detailed specification and an API, several projects implementa-
tion of the Fractal model have been developed as answers to specific needs or for experi-
menting novel implementation approaches. For instance, FracNet is an implementation
of Fractal on the .NET platform, AOKell [SEI 06] is an implementation using Aspect
Oriented Programming, Think [FAS 02] is a C implementation targeting the design of
operating systems.

The reference implementation is a Java implementation called Julia, and was de-
veloped by France Telecom. Julia has four main objectives: first, provide a framework
for programming controllers; second, provide a continuum from static configuration to
dynamic configuration (a static configuration is more efficient but not reconfigurable);
third, provide a highly optimized implementation in order to minimize the time over-
head of the framework; fourth, provide an implementation which may be used in con-
strained environments such as KVM or J2ME virtual machines. Distributed commu-
nications are provided through Java RMI binding components. Julia is used in sev-
eral project and served as a basis for implementing several middleware applications.
For instance, Speedo is a JDO (Java Data Object, a specification for the persistency
of objects) implementation implemented with Julia. Another interesting example is
DREAM (Dynamic REflective Asynchronous Middleware) [LEC 04]. DREAM is a soft-
ware framework dedicated to the construction of asynchronous middleware. It provides
a component library and a set of tools to build, configure and deploy middleware im-
plementing various asynchronous communications paradigms such as message passing,
event-reaction, publish-subscribe etc.

22 Chapter 2. Positioning and State of the Art

2.3 Component models for Grid computing

Common component based programming models and frameworks as listed above pro-
vide many facilities for the development of complex and robust applications, however
they do not answer the requirements of Grid programming regarding high performance
computing, parallelism, dynamicity, interoperability and large-scale deployments.

For these reasons, researchers started investigating component models that would
address these Grid computing requirements. In this section we evaluate three of these
component models and frameworks: CCA, ICENI and GridCCM.

2.3.1 CCA

CCA stands for Common Component Architecture and is a general component model
driven by the CCA Forum. The CCA Forum is an initiative of the Department of Energy
in the United States and gathers various DoE national laboratories and collaborating
academic institutions. The goals of the CCA Forum are to specify a minimal compo-
nent architecture for high-performance computing, and to federate research efforts and
resources in this area. The need for performance and for the federation of resources
positioned the CCA community as a major actor within the Grid community.

The CCA proposal aims at facilitating inter-software and inter-implementations col-
laboration by specifying software modules as components, with strictly defined client
and server interfaces. This eases the development of multi-physics applications, which
require the coupling of independent applications that usually do not exhibit standard-
ized interfaces. Instead of assembling libraries into a monolithic application difficult
to maintain and to modify, the CCA model proposes to isolate independent software el-
ements into components with well-defined interfaces. Interconnection of components
is standardized and exposed ports are normalized in a Scientific Interface Description
Language (SIDL) file.

The CCA proposal consists of:

• A general model, specified in [ARM 99] and [CCA], which defines the core concepts:
component (the software entity), framework (the container) and ports (the access
points to the component).

• A framework, which is a workbench or container for building, connecting and run-
ning components.

• A scientific IDL, which is the actual CCA specification: it describes interactions of
components with the framework, and it is a basis for language interoperability.

• A configuration API for interacting with the container.

• A repository API for searching components in a repository.

• A tool for language interoperability and re-use, Babel [KOH 01], which uses IDL
techniques to generate glue code between components which normally cannot in-
teroperate.

Components are assembled at runtime by scripts or programs that interact with the
CCA frameworks, which act as containers and provide the glue for binding components
together, as represented in figure 2.6. A particularity of the CCA proposal is that con-
nections are a dynamic, run-time activity. Ports can be added, removed, and connected
at run-time, and this is considered normal behavior.

Section 2.3. Component models for Grid computing 23

A B

a

b

c

d

e

f
g

h

Grid
script

connectPorts(c, f)

provides port uses port

connection between ports
of compatible types

Builder port
a CCA component

Figure 2.6: An assembly of CCA components

A driving idea of the CCA proposal is to address the needs of the High Performance
Computing community with the introduction of abstractions for parallelization. Section
2.4.3.4 studies this topic more thoroughly.

There are various implementations of the CCA specification, each tailored for specific
needs:

• XCAT [KRI 04] is an implementation where components are deployed as Grid ser-
vices and interact through Grid services.

• CCAFFEINE [ALL 02] targets Single Program Multiple Data (SPMD) applications
and fosters a Single Component Multiple Data (SCMD) model approach, charac-
terized by distributed memory and message passing communications. The imple-
mentation relies on a minimal set of functionalities, which may be extended using
specialized service components.

• SciRun2 [ZHA 04] is a scientific problem-solving environment (PSE) that allows
the interactive construction and steering of large-scale scientific computations. It
is based on an existing PSE infrastructure (SciRun [PAR 98]) and on the CCA
specification, so that it may interact with other CCA implementations. It supports
distributed computing and defines parallel components which use the MxN data
distribution mechanism.

• DCA [BER 04] is a CCA framework based on MPI which exhibits MxN data redis-
tribution capabilities.

• Mocca [MAL 05] is a CCA-compliant framework implemented on top of the H2O
metacomputing framework [SUN 02], which provides an infrastructure for build-
ing Grid environments, in a fashion similar to ProActive.

A strong point of CCA is that it is a model initiated by experimental scientists
and targeted for experimental scientists, with a broad community of users. The con-
sequences are that CCA focuses on solving the problems which are relevant to its com-
munity, and that many reusable components have been developed for various scientific
domains: chemistry, accelerator beam dynamics, fusion, material science etc. [KUM 06]

24 Chapter 2. Positioning and State of the Art

The flexible nature of CCA ports and connections is supposed to facilitate the in-
tegration of CCA components in Problem Solving Environments (PSEs), in which the
end user directly manipulates component connections to solve the particular problem
at hand. However CCA falls short of providing standardized conception and monitor-
ing tools because these tools usually rely on typed assemblies of components such as
those defined in ADLs. The lack of static typing also hinders the verifications which
may be performed at design-time. Besides, CCA does not offer a formal specification
like the ones of CCM or Fractal. Finally, component assemblies are only flat: composite
components containing other components are absent of the programming model.

2.3.2 ICENI

ICENI stands for Imperial College e-Science Networked Infrastructure. It is a Grid pro-
gramming framework which proposes a component model and a deployment framework,
and provides a service-oriented architecture. ICENI explicitly handles both spatial and
temporal composition. On one hand, components are assembled in a spatial composi-
tion, which is the typical model for component based systems: component client inter-
faces are linked to other components server interfaces. On the other hand, ICENI also
provides temporal composition, which corresponds to workflow description of service-
oriented architectures, and can provide useful information for application scheduling.
The temporal composition is inferred from the user defined spatial composition by using
a graph-based workflow language.

The definition of a component includes metadata about its behavior and implemen-
tation requirements.

The lifecycle of an ICENI application is illustrated in figure 2.7: the metadata of the
components is used both to create a structural composition and a workflow orchestration
(emphasized shapes). Then the deployment is performed thanks to a deployment frame-
work which allows an automatic distribution of components according to user or quality
of service constraints and infrastructure information, and is interfaced with various mid-
dleware for the deployment process: Globus, Condor and Sun Grid Engine among others
[YOU 03].

software component
metadata

meaning behavior

implementation

infrastructure information
and user requirements

composite
application

workflow
model

performance
model execution plan

application as
interactive

service

design and development deployment and execution

Figure 2.7: The lifecycle of an ICENI application (adapted from S. Newhouse’s presentation at
ICENI workshop’04)

Future versions of ICENI should be developed on top of Web Services, and the ar-

Section 2.4. Collective communications 25

chitecture decomposed into separated composable toolkits, with third-party component
reuse in mind [MCG].

Unfortunately, the development of ICENI is currently stalled due to reorganizations
at Imperial College.

2.3.3 HOC-SA

HOC stands for Higher-Order Components. It is a programming model in which first
class entities are parameterizable and deployable software units.

HOC-SA (Higher-Order Component Service Architecture) is an execution environ-
ment for HOCs. The HOC-SA framework aims at simplifying the development of Grid
applications by proposing pre-packaged standard computational patterns and by trans-
parently handling deployment.

HOC applications are created by composing and deploying reusable patterns (skele-
tons) of parallelism. The patterns are available to grid application programmers as a
collection of Web Services. A component in the HOC-SA framework is a software unit
that may be deployed on Grid machines using Globus standards, that may be config-
ured by application-specific code or data, and that is accessed through web services.
The framework also features code mobility through a code downloading service.

The HOC-SA framework relies on Globus components and is currently being incu-
bated in the Globus consortium.

2.3.4 GridCCM

Research work on providing parallelization for Corba objects (PACO++) [PÉR 04] and
Corba components (GridCCM) led to the specification of parallel components used in
GridCCM [DEN 04]. The objective of GridCCM is to ground on CCM capabilities (sup-
port for heterogeneity, open standards and deployment model) and extend CCM to allow
an efficient encapsulation of SPMD codes. Deployment and specification of the compo-
nents follow the standard CCM specification, notably for the description of components
and the deployment process.

GridCCM defines a notion of parallel components, which are CCM components that
embed parallel codes. A parallel component can execute in parallel all or some parts
of the services it provides. The parallelism of the component is described in a separate
configuration file, which contains a description of the parallel methods of the compo-
nent, the distributed arguments of these methods and the expected distribution of the
arguments. Unfortunately, to our knowledge, the implementation of GridCCM is not yet
finalized, and the different configurations for parallel invocations are not exhaustively
specified.

Collective communications between parallel components are described in more detail
in section 2.4.3.5.

2.4 Collective communications

Collective communications designate multiway interactions between software entities.
These interactions are also categorized as multipoint communications6. Senders

6Actually multipoint communications enclose point-to-multipoint, multipoint-to-point and multipoint-
to-multipoint interactions

26 Chapter 2. Positioning and State of the Art

hold references on receivers, enabling explicit multiway interactions in the design of
applications.

In this section, we evaluate different high-level approaches for achieving collective
communications between distributed software entities, as a means to handle the com-
plexity of multiway interactions between numerous distributed entities and as a means
to improve performance. We are interested in the parallelism and synchronization fea-
tures offered by collective communications, therefore we do not expose here communi-
cation paradigms such as publish-subscribe or event-reaction. These other features are
usually implemented by a tier broker and can be easily integrated in component models
by defining send and receive interfaces.

2.4.1 Rationale

We distinguish two ways of achieving collective communications offering parallelism
and synchronization features. The first way is to provide a set of primitives or connec-
tors for defining 1-to-n and n-to-1 interactions. The second way is to establish an opti-
mized schedule of direct communications between m components and n components, for
addressing the so-called MxN problem.

In the first way, thanks to a set of primitives for defining collective communications,
designers can simply and comprehensively express multiway interactions between com-
ponents in the system. Data distribution can be customized, and collective commu-
nications primitives are a basis for optimizing communications between parallel com-
ponents. Furthermore, collective operations, as a higher and more sophisticated pro-
gramming abstraction than simple operations or send-receive operations, allow a better
structuration of communications, by notably bringing simplicity, programmability and
expressiveness to programs [GOR 04].

The second way is related to the MxN problem, illustrated in figure 2.8, and defined
as follows:

Definition 2.4.1 The MxN problem refers to the problem of communicating and ex-
changing data between parallel programs, from a parallel program that contains M
processes, to another parallel program that contains N processes.

The parallel programs in the MxN problem are usually SPMD programs (Single Pro-
gram Multiple Data). In order to reach maximum efficiency, frameworks that specifi-
cally address the MxN problem perform direct connections between parallel entities of
the parallel programs, so that data is directly exchanged and does not suffer superflu-
ous copies. The connections between distributed entities are determined by commu-
nication schedules, which define the sequences of messages required to correctly move
data among cooperating processes. Computing communication schedules is usually a
complex operation, which may be facilitated by the use of external dedicated libraries.

One of the objectives of this thesis is to define a consistent and well defined pro-
gramming model for collective interactions between components, which can be further
extended and implemented to tackle the MxN problem. In the remaining paragraphs of
this section, we present the different approaches for collective communications, starting
with message passing and invocations. We then focus on collective communications in
component models.

Section 2.4. Collective communications 27

Parallel component with N entities

direct communications for
the distribution of data

data element

Parallel component with M entities

pa
ra

lle
l c

om
m

un
ic

at
io

ns
 la

ye
r

pa
ra

lle
l c

om
m

un
ic

at
io

ns
 la

ye
r

Figure 2.8: The MxN data redistribution problem

2.4.2 Common models and frameworks for collective communications

We consider two main approaches for multipoint communications: message-based, and
invocation-based.

2.4.2.1 Message-based collective communications

PVM and MPI are the two main standards for programming parallel and distributed
applications communicating by exchange of messages.

PVM provides a virtual abstraction of a parallel machine, although processes are
distributed. Multipoint communications are achieved with direct addressing of with
process groups, but they are not very efficient. MPI (Message Passing Interface) is a
standard for the SPMD programming model, using message passing as a communica-
tion paradigm [MPI94]. It is commonly used for scientific applications, and it defines
some collective communication operations. The processes participating to a collective
communication are identified in a group communicator. Group communicators allow a
dynamic selection of processes participating to a collective communication. Some collec-
tive operations in MPI address message distribution: a broadcast operation sends the
same message to a group of processes, and a scatter operation sends a distinct part of a
given message to each member of a group of processes. Some collective operations ad-
dress message gathering: a gather operation gathers the messages sent from a group of
processes, and a reduce operation combines messages sent from a group into a structure,
according to a predefined reduction operation. Another collective operation addresses
synchronization: a barrier operation blocks the processes of a given group until they all
have reached the barrier.

On top of these basic operations for collective communications in MPI, many algo-
rithms have been developed for optimizing performance in complex systems, such as the
recursive-doubling or dissemination algorithms.

MPI proved a good approach for a large number of users, and one may highlight sev-
eral features applicable to other forms of collective communications: the various com-

28 Chapter 2. Positioning and State of the Art

munication modes available, the basic nature of available reduction operations, and the
dynamicity provided through group communicators. Messaged-based communications
with MPI however remains a low-level paradigm, complex to code and hard to debug.

2.4.2.2 Invocation-based collective communications

Collective communications can be performed using group method invocations: this al-
lows a high-level design of group communications, and parallelism can be provided by
the implementations. Group invocations correspond to the invocation of a given method
on a group of objects. This requires the identification of the group and the specification of
the distribution of parameters, if parameters are to be decomposed between invocation
receivers.

We now discuss some of the frameworks that provide group method invocations.

• Various frameworks were built on the CORBA Object Request Broker, using ei-
ther a transparent integration approach requiring modification of the ORB, like
Orbix+Isis and Electra [LAN], or a service approach, requiring explicit manipula-
tion of groups (examples include a Group Communication Service [FEL 96]). Other
investigations intended to efficiently encapsulating Single Program Multiple Data
codes in CORBA objects, in order to facilitate the coupling of parallel applications
(hence addressing the aforementioned MxN problem). such as Cobra [PRI 98],
PACO [REN 99] or PARDIS [KEA 97]. These approaches define parallel objects as
sets of identical sequential objects, and the broker is responsible for transferring
distributed arguments between inner sequential objects of remote parallel objects
(as in figure 2.8). The parallelism is defined at the level of the IDL, and an official
OMG specification also formalizes this notion [GRO 03]. PACO++ [PÉR 04] lever-
ages the PACO experiment by aiming at a portable specification of parallel objects
(i.e. without modification to the IDL or to the ORB). It considers parallelism as
an implementation issue, and parallelism is therefore specified outside of the IDL.
Proxies are responsible for the management of parallelism, and this approach does
not require modifications to the ORB.

• The Group Method Invocation framework (GMI) [MAA 02] allows a high flexibility
in the management of invocations, but delegates the management of the groups
to the programmer. Indeed, the programmer has to implement specific interfaces:
a member of a group must implement the GroupInterface interface, and the cus-
tomization of results handling and method invocations also require the implemen-
tation of specific interfaces. The GMI framework is flexible but forces the program-
mer to add non-functional code (managing group communications) to the objects
members of the group. Besides, objects that do not implement group interfaces
cannot be members of a group.

• ProActive Typed Groups [BAD 05a] provide asynchronous group invocations in a
transparent manner. A typed group is a reference on a collection of objects of the
same type, and when methods defined by the group type are invoked on the group,
invocations are performed in parallel using multithreading, and FIFO ordering is
guaranteed. Parameters are distributed among group members in a broadcast or
scatter manner. Unfortunately a scatter distribution only occurs for parameters
that are groups, in which case the elements of these groups are distributed accord-
ing to one-to-one mapping between the ith element of a group parameter and the
ith. Moreover, scatter distribution mode is restricted to a one-to-one mapping, and

Section 2.4. Collective communications 29

if the sizes of the parameter group and of the target group are different, the dis-
tribution proceeds with the following policy: if the parameter group is bigger than
the target group, the excess members are ignored (therefore all parameters are
not distributed); if the parameter group is smaller that the target group, then the
members of the parameter group are reused in a round-robin fashion (the number
of parameters that are distributed varies). Extensions to ProActive Typed Groups
were proposed in order to address some of these issues [BAD 05c].

Unfortunately, to our knowledge, frameworks for multipoint collective communica-
tions based on invocations only provide one-to-n communications, and do not provide
n-to-one or m-to-n communications. To our understanding, MxN communications in
CORBA parallel objects actually correspond to 1-to-n communications initiated from
individual objects contained in parallel objects: there is no gathering of invocations.

2.4.3 Collective communications in component models

Few component models explicitly define semantics of collective communications. They
rely on messages, invocations, and intermediate components.

2.4.3.1 Connection-oriented programming

In [SZY 02], Szyperski describes connection-oriented programming as a programming
paradigm for linking software entities but avoiding statically chained call dependencies,
using indirections that can be configured at runtime. The connection oriented program-
ming paradigm is used in the Fractal model, through an inversion of control pattern
used by the binding controllers. The author also considers one-to-many connections
and outlines that intermediate abstractions - channels or groups - can be introduced
to facilitate connections to sets of components. These groups or channels correspond to
connectors, or binding components in the Fractal terminology, that decouple the caller-
callee connection, and they can provide useful services such as filtering, count, delay
etc.

On one hand, Szyperski, mentions connections from several callers to one callee as
possible and even common. But on the other hand, he does not explicitly consider many-
to-one connections with their capabilities: synchronizations of callers invocations, and
reduction or gathering of invocation parameters.

2.4.3.2 ODP

The binding model of ODP defines two kinds of bindings: primitive bindings and com-
pound bindings. Primitive bindings correspond to direct bindings beetwen interfaces
of compatible types, while compound bindings correspond to indirect bindings through
binding objects (like Fractal’s composite bindings), as represented in figure 2.9. In ODP,
binding objects are fully configurable and the semantics associated with the bindings
are customizable: different communication models (event based, synchronous etc ...)
can be used, and one can specify multiway bindings.

Some of these concepts are implemented in the Dream project [LEC 04], which pro-
vides a set of binding components for Fractal.

We believe that instead of relying on explicit intermediate binding components, which
complexifies the design, it is possible to define some of the semantics associated with
multiway bindings at the level of the interfaces themselves, through the definition of
collective interfaces.

30 Chapter 2. Positioning and State of the Art

computational
object binding object computational

object

computational
object

control interface

Figure 2.9: ODP compound binding

2.4.3.3 ICENI

ICENI defines collective communications between multiple interfaces. They are achieved
through the use of tees: binding objects that are generated automatically from configu-
ration information. Collective communications in ICENI were actually designed for the
distribution of XML data. Similarly to the binding components of ODP, the tees allow
the specification of different communication policies between multiple interfaces. The
different kinds of tees are represented in figure 2.10. For instance, switch tees connect

switch combiner

splitter gather broadcast

Figure 2.10: ICENI tees

one client interface to several server interfaces, and can dispatch messages from the
client to selected server interfaces. Inversely, combiner tees can redispatch messages
from several selected client interfaces to one server interface, and combiner tees include
a buffering mechanism to store incoming data. Splitter tees scatter data from one client
interface to several server interfaces, while inversely, gather tees combine data from
several clients, using a buffering mechanism, and transfer the resulting data to a single
server interface. Broadcast tees forward a given invocation from a single client inter-
face to several server interfaces, with the same parameters. Tees have already proven
useful in the Grid Enabled Integrated Earth system model of the UK e-Science project
[MAY 03].

Unfortunately, tees only perform data redistribution for arrays, and only work on
XML data. The ICENI tees are therefore similar in functionality to ODP binding com-
ponents.

Section 2.4. Collective communications 31

2.4.3.4 CCA

Collective method execution and data redistribution between parallel components are
addressed by several groups within the CCA community, notably through the Parallel
Application WorkSpace (PAWS) [KEA 01], the CUMULVS project [GEI 97], the PRMI
specification [DAM 03]; a sum-up of these works is available in [BER 05]. Two ap-
proaches are undertaken in CCA for parallel data redistribution. The first one is to
encapsulate parallel data redistribution support into a standard component, which can
then be composed with other components to realize different coupling scenarios. The
second one is to use Parallel Remote Method Invocation for embedding the parallel data
redistribution.

The first approach is the one adopted in PAWS. PAWS introduces the notion of collec-
tive port for CCA as an intent to let the component framework in charge of the collective
interactions and let the developer focus on higher-level program design. A collective
port designates one logical connection in the design, but is implemented as multiple
network connections. The behavior of the collective ports is customizable in terms of re-
mote invocations and of data redistribution between interacting components. Collective
interactions between parallel components are handled through intermediate transla-
tion components (also called MxN components), in charge of the redistribution of invo-
cations and data from M components to N components. Translation components are
composable into higher level translation components, facilitating the management of
complex interactions. The Seine framework [ZHA 06] also defines MxN components
with a virtual-geometry shared space approach and efficient local computation of com-
munication schedules.

The second approach relies on collective remote invocations defined in the Parallel
Remote Method Invocation (PRMI) specification as proposed in [DAM 03]. PRMI is used
in DCA [BER 04], which is a framework for distributed collective communications with
CCA, tied to MPI. This framework chose the second approach described later for parallel
data redistribution. For dynamically selecting participating components of a collective
invocation, DCA uses MPI communicator groups passed as the last argument of collec-
tive method invocations.
Although there has been some intents to precisely define collective interfaces in the
CCA specification, to our knowledge this specification is not exhaustive, only simple
cases are mentioned, and there are no details on the redistribution features; this raises
many questions on the use and capabilities of such interfaces.

2.4.3.5 GridCCM

GridCCM aims at coupling parallel codes by providing direct communications between
parallel components and optimally distributing data. An example of coupled GridCCM
components is given in figure 2.11 and we can observe it is very similar to the illustration
of the MxN problem in figure 2.8: optimized internal communications with MPI or PVM,
and external communications through CORBA.

The parallelism of applications is described in an auxiliary XML file, which contains
a description of the parallel methods of the component, the distributed arguments of
these methods and the expected distribution of the arguments. Coupling is realized by
non-functional entities of the parallel component; they perform the connection bindings
and compute the communication schedules for the redistribution of data, possibly using
external data redistribution libraries.

An abstract parallel programming model has been defined for GridCCM[RIB 04]. It

32 Chapter 2. Positioning and State of the Art

is articulated around four aspects. First, it defines what are parallel and distributed
entities: a collection of distributed entities, some of them managing the business as-
pects, usually SPMD codes, and the others managing the non functional aspects. Sec-
ond, it defines how parallel entities communicate, which includes the connection phase,
the communication phase itself and the deconnection phase. Third, it addresses the
distribution of data between parallel entities. Fourth, it considers the management of
exceptions between distributed parallel entities.

Parallel componentParallel component

CCM
component
SPMD code

CCM
component
SPMD code

pa
ra

lle
l c

om
m

un
ic

at
io

ns
 la

ye
r (

M
PI

, P
VM

)

CCM
component
SPMD code

CCM
component
SPMD code

CCM
component
SPMD code

pa
ra

lle
l c

om
m

un
ic

at
io

ns
 la

ye
r (

M
PI

, P
VM

)

CO
RB

A
co

m
m

un
ic

at
io

n
la

ye
r

Figure 2.11: Coupling of parallel components with GridCCM

GridCCM’s approach for the MxN problem results in efficient couplings, but seems
tedious to design and requires a deep knowledge of each coupled application.

2.5 Discussion

In this state of the art, we justified our choice of a component-based programming ap-
proach with respect to other programming approaches, and we described the general
expected benefits. We presented existing standard component models, pointed out that
they do not address the requirements of Grid computing, and finished by evaluating
component models specifically addressing Grid computing. We also presented different
approaches to collective communications.

A component model suitable for Grid computing should present good properties as a
general component model, so that it can be extended and adapted to correspond to the
many diverse use cases of Grids. We propose an overview of these properties in table 2.1
for the component models we presented.

On a general scope, industrial models tend to have complex specifications (marked as
not lightweight in the table) because they address in detail the whole development and
deployment process, including packaging issues. On the other hand, academic models
tend to be more specialized. For example OpenCOM is oriented towards reflectivity
and adaptation, while SOFA is oriented towards behavioral specifications. Academic
models are usually more easily extensible, because they are not proprietary nor require
a complex standardization process. Table 2.1 also highlights the general properties of
the Fractal model, which is not surprising as Fractal was indeed designed to be a general
component model. On the contrary, CCA cannot be characterized as a general purpose

Section 2.6. Context: a model based on active objects 33

component model, because it lacks core features such as standardized description or
reflection.

Properties of
component models .Net EJB CCM OpenCOM SOFA Fractal CCA Iceni GridCCM ODP

Lightweight - - - - - -

Extensible - -

Hierarchical - - - - - -

Standard composition
description ? - -

Non-functional
adaptivity - - - - - - - -

Reflective ? - - - - -

Explicit API ? -

Dynamic
reconfiguration - -

Sharing - - - - - - - - -

Packaging / repository ? ? ? ?

- no yes ? unspecified or unknown

Table 2.1: Evaluation of the general properties of evaluated component models

A component model suitable for Grid computing should also answer the require-
ments of Grid computing: this is studied in table 2.2, where we consider the issues of
deployment, heterogeneity, interoperability, high-performance, parallelism (and collec-
tive communications) and scalability7, presented in the introduction of the document.

Industrial component frameworks are not oriented towards Grid computing because
they lack parallel features, high performance codes encapsulation, and they do not man-
age entities on numerous remote locations. Furthermore, some of these frameworks,
such as EJBs or .Net, are usually designed to run on a single administrative domain.

Considering how the component models we presented fulfill Grid requirements, the
most adequate candidates for a component model for Grid computing are GridCCM,
CCA and ICENI, however, table 2.1 shows that they are not satisfactory as general
purpose component models. In particular, CCA lacks static typing, which prevents the
use of ADLs; GridCCM does not offer hierarchical structuration, sharing, or reflective
capabilities; ICENI components do not offer reflective features nor hierarchical designs,
and they depend on a complex framework. For these reasons, we propose to use Fractal,
the most general model according to table 2.1, as a basis for this work, and to define
extensions to fulfill the missing requirements of Grid computing.

2.6 Context: a model based on active objects

ProActive is an open source Java library for Grid computing. It allows concurrent and
parallel program and offers distributed and asynchronous communications, mobility,
and a deployment framework. With a reduced set of primitives, ProActive provides

7Here, scalability must be understood as the ability to handle a large number of distributed entities.

34 Chapter 2. Positioning and State of the Art

Requirements of Grid
computing .Net EJB CCM OpenCOM SOFA Fractal5 CCA Iceni GridCCM ODP

Deployment
framework - ? -

Multiple deployment
protocols N/A - - - ? ? -

Heterogeneity1 - -

Interoperability WS WS CORBA ? ? ? CCA -
CCA CORBA -

Legacy software ? ? ? ? -

HPC2 - - - - - - -
Collective

communications 3
- - - - - - PRMI XML

data -

MxN facilities - - - - - - - -

Scalability4 - - ? - - -

- no yes ? unspecified or unknown

1 hardware and operating system
2 targets high performance computing applications

4 capability to handle a large number of distributed entities
5 Fractal implementations, except ProActive/Fractal

3 excluding publish-subscribe or queuing mechanisms, where sender does not know the receivers

Table 2.2: Fulfillment of Grid computing requirements in studied component models

an API allowing the development of parallel applications which may be deployed on
distributed systems and on Grids.

The active object model and the ProActive library are used as a basis in this thesis
for developing a component framework and performing large scale experiments.

2.6.1 Active objects model

ProActive is based on the concept of active object, which can be seen as a fine to medium-
grained entity with its own configurable activity.

Sequential Multithreaded Distributed

Threaded object Passive object Java virtual machine

Figure 2.12: Seamless sequential to multithreaded to distributed objects

Section 2.6. Context: a model based on active objects 35

A distributed or concurrent application built using ProActive is composed of a num-
ber of active objects (figure 2.12). Each active object has one distinguished element, the
root, which is the only entry point to the active object. Each active object has its own
thread of control and is granted the ability to decide in which order to serve the incom-
ing method calls that are automatically stored in a queue of pending requests. Method
calls sent to active objects are asynchronous8 with transparent future objects and syn-
chronization is handled by a mechanism known as wait-by-necessity [CAR 93]. A future
is a placeholder for the result of an invocation, which is given as a result to the caller,
and which is transparently updated when the result of the invocation is actually com-
puted. This whole mechanism results in a data-based synchronization. There is a short
rendez-vous at the beginning of each asynchronous remote call, which blocks the caller
until the call has reached the context of the callee, in order to ensure causal dependency.

Explicit message-passing based programming approaches were deliberately avoided:
one aim of the library is to enforce code reuse by applying the remote method invocation
pattern, instead of explicit message-passing.

The active object model of ProActive guaranties determinism properties and was
formalized with the ASP (Asynchronous Sequential Processes) calculus [CAR 04].

2.6.2 The ProActive library: principles, architecture and usages

The ProActive library implements the concept of active objects and provides a deploy-
ment framework in order to use the resources of a Grid.

2.6.2.1 Implementation language

Grids are inherently heterogeneous environments, which usually gather several flavors
of processors and operating systems. In this context, using a language which relies
on a virtual machine allows maximum portability. ProActive is developed in Java, a
cross-platform language and the compiled application may run on any operating system
proposing a compatible virtual machine. Moreover, ProActive only relies on standard
APIs and does not use any operating-system specific routine, other than to run daemons
or to interact with legacy applications. There are no modifications to the JVM nor to
the semantics of the Java language, and the bytecode of the application classes is never
modified.

2.6.2.2 Implementation techniques

ProActive relies on an extensible meta-object protocol architecture (MOP), which uses
reflective techniques in order to abstract the distribution layer, and to offer features
such as asynchronism or group communications.

The architecture of the MOP is presented in figure 2.13. An active object is concretely
built out of a root object (here of type B), with its graph of passive objects. A body object
is attached to the root object, and this body references various features meta-objects,
with different roles. An active object is always indirectly referenced through a proxy
and a stub which is a sub-type of the root object. An invocation to the active object is
actually an invocation on the stub object, which creates a reified representation of the
invocation, with the method called and the parameters, and this reified object is given to
the proxy object. The proxy transfers the reified invocation to the body, possibly through

8provided they fulfill minimum conditions, such as reifiable return type and no declared exceptions in
the method

36 Chapter 2. Positioning and State of the Art

stub_B

proxy body

B

reified
invocation

. . .

meta level

base level

network

features meta objects

passive objects

root objectA

service thread

Figure 2.13: Meta-object architecture

the network, and places the reified invocation in the request queue of the active object.
The request queue is one of the meta-objects referenced by the body. If the method
returns a result, a future object is created and returned to the proxy, to the stub, then
to the caller object.

The active object has it own activity thread, which is usually used to pick-up reified
invocations from the request queue and serve them, i.e. execute them by reflection on
the root object. Reification and interception of invocations, along with ProActive’s cus-
tomizable MOP architecture, provide both transparency and the ground for adaptation
of non-functional features of active objects to fit various needs. It is possible to add
custom meta-objects which may act upon the reified invocation, for instance for provid-
ing mobility features, or as we will see in chapter 5, to provide an implementation of a
component model.

Active objects are instantiated using the ProActive API, by specifying the class of the
root object, the instantiation parameters, and a possible location information:

// instantiate active object of class B on node1 (a possibly remote location)
B b = (B) ProActive.newActive(’’B’’, new Object[] {aConstructorParameter}, node1);

// use active object as any object of type B
Result r = b.foo();

// possible wait-by-necessity
System.out.println(r.printResult());

2.6.2.3 Semantics of communications

In ProActive, the distribution is transparent: invoking methods on remote objects does
not require the developer to design remote objects with explicit remoting mechanism
(like Remote interfaces in Java RMI). Therefore, the developer can concentrate on the
business logic as the distribution is automatically handled and transparent. Moreover,
the ProActive library preserves polymorphism on remote objects (through the reference

Section 2.6. Context: a model based on active objects 37

stub, which is a subclass of the remote root object).
Communications between active objects are realized through method invocations,

which are reified and passed as messages. These messages are serializable Java objects
which may be compared to TCP packets. Indeed, one part of the message contains
routing information towards the different elements of the library, and the other part
contains the data to be communicated to the called object.

Although all communications proceed through method invocations, the communica-
tion semantics depends upon the signature of the method, and the resulting communi-
cation may not always be asynchronous.

Three cases are possible: synchronous invocation, one-way asynchronous invocation,
and asynchronous invocation with future result.

• Synchronous invocation:

– the method return a non reifiable object: primitive type or final class:
public boolean foo()

– the method declares throwing an exception:
public void bar() throws AnException

In this case, the caller thread is blocked until the reified invocation is effectively
processed and the eventual result (or Exception) is returned. It is fundamental to
keep this case in mind, because some APIs define methods which throw exceptions
or return non-reifiable results. This is the case of the Fractal API, which was
implemented during this thesis using the ProActive library.

• One-way asynchronous invocation: the method does not throw any exception and
does not return any result:
public void gee()
The invocation is asynchronous and the process flow of the caller continues once
the reified invocation has been received by the active object (in other words, once
the rendez-vous is finished).

• Asynchronous invocation with future result: the return type is a reifiable type, and
the method does not throw any exception:
public MyReifiableType baz()
In this case, a future object is returned and the caller continues its execution flow.
The active object will process the reified invocation according to its serving pol-
icy, and the future object will then be updated with the value of the result of the
method execution.

If an invocation from an object A on an active object B triggers another invocation
on another active object C, the future result received by A may be updated with another
future object. In that case, when the result is available from C, the future of B is au-
tomatically updated, and the future object in A is also update with this result value,
through a mechanism called automatic continuation [CAR].

2.6.2.4 Features of the library

As stated above, the MOP architecture of the ProActive library is flexible and config-
urable; it allows the addition of meta-objects for managing new required features. More-
over, the library also proposes a deployment framework, which allows the deployment
of active objects on various infrastructures.

The features of the library are represented in figure 2.14.

38 Chapter 2. Positioning and State of the Art

ASP formal model

Groups

Asynchronism Component-based
programming

OOSPMD

Fault tolerance

Exceptions management Legacy code wrapping

Mobility Load balancing Security

Deployment framework P2P Monitoring

Multiple network
protocols Web services

programming
model

deployment

communication

middleware
services

File transfer

Figure 2.14: Layered features of the ProActive library

The active object model is formalized through the ASP calculus [CAR 05], and ProAc-
tive may be seen as an implementation of ASP. The library may be represented in three
layers: programming model, non-functional features and deployment facilities.

The programming model consists of the active objects model which offer asynchronous
communications, typed group communications [BAD 02] and the object-oriented SPMD
programming paradigm [BAD 05b]. In the context of this thesis, we propose a new pro-
gramming model for ProActive: component-based programming.

Non-functional features include a transparent fault-tolerance mechanism based on
a communication-induced checkpointing protocol [BAU 05], a security framework for
communications between remote active objects [ATT 05], migration capabilities for the
mobility of active objects [BAU 00], a mechanism for the management of exceptions,
and a mechanism for wrapping legacy code, notably as a way to control and interact
with MPI applications.

The deployment layer includes a deployment framework [BAU 02]; it is detailed in
the next section, and it allows the creation of remote active objects on various infras-
tructures. A peer-to-peer infrastructure is also available; it allows the acquisition of
objects distributed within the infrastructure, in order to use them for peer-to-peer com-
putations. The load balancing framework uses the migration capabilities to optimize
the placement of the distributed active objects.

In the communication layer several protocols are provided for the communication
between active objects: Java RMI as the default protocol, HTTP, tunneled RMI. It is
also possible to export active objects as web services, which can then be accessed using
the standard SOAP protocol. A file transfer mechanism is also implemented; it allows
the transfer of files between active objects, for instance to send large data input files or
to retrieve results files [BAU 06].

2.6.2.5 Deployment framework

The deployment of Grid applications is too often done manually, using remote shells for
launching the various virtual machines or daemons on remote computers and clusters.
The commoditization of resources through Grids and the increasing complexity of ap-
plications are making the task of deploying central and harder to perform. ProActive
succeeds in completely avoiding scripts for configuration, getting computing resources,
etc. It provides, as a key approach to the deployment problem, an abstraction from the
source code so as to gain in flexibility. We hereby describe the fundamental principles of

Section 2.6. Context: a model based on active objects 39

the deployment framework, and more information and examples are available from the
official ProActive documentation [PRO].

Principles A first key principle is to fully eliminate from the source code the following
elements:

• machine names,

• creation protocols,

• registry and lookup protocols.

The objective is to deploy any application anywhere without changing the source code.
Deployment sites are called nodes, and correspond for ProActive to JVMs which contain
active objects. A second key principle is the capability to abstractly describe an applica-
tion, or part of it, in terms of its conceptual activities. In other words, to abstract away
the underlying execution platform, and to allow a source-independent deployment the
framework must provide the following elements:

• an abstract description of the distributed entities of a parallel program or compo-
nent,

• an external mapping of those entities to real machines, using actual creation, reg-
istry, and lookup protocols.

XML deployment descriptors To answer these requirements, the deployment frame-
work in ProActive relies on XML descriptors. These descriptors introduce the notion of
virtual node (VN):

• a VN is identified as a name (a simple string),

• a VN is used in a program source,

• a VN, after activation, is mapped to one or to a set of actual ProActive Nodes,
following the mapping defined in an XML descriptor file.

A virtual node is a concept of a distributed program or component, while a node
is actually a deployment concept: it is an object that lives in a JVM, hosting active ob-
jects. There is of course a correspondence between virtual nodes and nodes: the function
created by the deployment, the mapping. This mapping is specified in the deployment
descriptor. There is no automatic mapping between virtual nodes and active objects: the
active objects are deployed by the application on the infrastructure nodes mapped by a
virtual node. By definition, the following operations can be configured in the deployment
descriptor:

• the mapping of VNs to nodes and to JVMs,

• the way to create or to acquire JVMs,

• the way to register or to lookup JVMs.

Figure 2.15 summarizes the deployment framework provided by the ProActive mid-
dleware. Deployment descriptors can be separated in two parts: mapping and infras-
tructure. The VN, which is the deployment abstraction for applications, is mapped to
nodes in the deployment descriptors, and nodes are mapped to physical resources, i.e.
to the infrastructure.

40 Chapter 2. Positioning and State of the Art

Application code

Deployment descriptor

Nodes

Connection

Creation

Acquisition

VN

Physical infrastructure

mapping

infrastructure
description

Figure 2.15: Descriptor-based deployment

Retrieval of resources In the context of the ProActive middleware, nodes designate
physical resources from a physical infrastructure. They can be created or acquired.
The deployment framework is responsible for providing the nodes mapped to the virtual
nodes used by the application. Nodes may be created using remote connection and cre-
ation protocols. Nodes may also be acquired through lookup protocols, which notably
enable access to the ProActive peer-to-peer infrastructure.

Creation-based deployment : Machine names, connection and creation protocols
are strictly separated from the application code, and ProActive deployment descriptors
provide the ability to create remote nodes (remote JVMs). For instance, deployment
descriptors are able to use various protocols:

• local,

• ssh, gsissh, rsh, rlogin,

• lsf, pbs, sun grid engine, oar, prun,

• globus (GT2, GT3 and GT4), unicore, glite, arc (nordugrid).

Deployment descriptors allow to combine these protocols in order to create remote JVMs,
e.g. log on a remote cluster frontend with ssh, and then use pbs to book cluster nodes to
create JVMs on each. In addition, the JVM creation is handled by a special process, lo-
calJVM, which starts a JVM. It is possible to specify the classpath, the Java install path,
and all JVM arguments. It is in this process that the deployer specifies which transport
layer the ProActive node uses. For the moment, ProActive supports as transport layer:
RMI, HTTP, RMIssh, Ibis, and SOAP.

Section 2.7. Conclusion 41

Acquisition-based deployment The main goal of the peer-to-peer (P2P) infras-
tructure is to provide a new way to build and use Grids. The infrastructure allows ap-
plications to transparently and easily obtain computational resources from Grids com-
posed of both clusters and desktop machines. The application deployment burden is
eased by a seamless link between applications and the infrastructure. This link allows
applications to be communicant, and to manage the resources volatility.

2.6.2.6 Large scale experiments and usages

It would be difficult to qualify a middleware as a Grid middleware without demonstrat-
ing its Grid capabilities: deployment on a large number of hosts from various organiza-
tions, on heterogeneous environments and using different communication and connec-
tion protocols.

We outline two series of events which illustrate the capabilities of ProActive for large
scale deployments.

First, the n-queens computational problem was solved for n=25 using a distributed
peer-to-peer infrastructure on about 260 desktop machines in INRIA Sophia Antipolis,
with an idle cycle stealing approach. The n-queens problem is a classical computational
problem which consists of finding the placements of n non-attacking queens on a n*n
chessboard. It is a NP-hard problem, which means that high values of n require years
of computation time on a single machine, making this problem ideal in the context of
challenge for Grid computing.

The peer-to-peer infrastructure was highly heterogeneous: Linux, Windows, various
JVMs, Pentium II to Xeon bi-pro from 450 Mhz to 3.2 GHz, etc, and the total duration
time was slightly over 6 months (4444h 54m 52s 854), starting October 8th until June
11th, using the spare CPU cycles of about 260 machines. The cumulative computing
time was over 50 years.

Second, the Grid PlugTests events held at ETSI in 2004 and 2005 demonstrated the
capacity of the ProActive library to create virtual organizations and to deploy applica-
tions on various clusters from various locations. The first Grid PlugTests event [GPT05]
gathered competing teams which had to solve the n-queens problems by using the Grid
built by coordinating universities and laboratories of 20 different sites in 12 different
countries, resulting in 900 processors and a computing power of 100 Gigaflops (SciMark
2.0 benchmark for Java). In the second Grid PlugTests [GPT] event, a second compu-
tational problem was added: the permutation flow-shop, in which the deployment of an
optimal schedule for N jobs on M machines must be computed. Heterogeneous resources
from 40 sites in 13 countries were federated, resulting in a 450 Gigaflops grid, with a
total of 2700 processors.

2.7 Conclusion

In this chapter, we positioned the work of this thesis in the context of Grid computing:
we focus on programming models and tools. We demonstrated the validity and ade-
quacy of a component-based approach. We explained why the Fractal component model
is the most appropriate candidate for a Grid component model, provided we address
the missing requirements for Grid computing. Then we introduced the ProActive Grid
middleware.

A programming framework for Grid computing comprises a programming model and
design and assembly tools, and a middleware layer to access the Grid infrastructure.

42 Chapter 2. Positioning and State of the Art

Some of the requirements for Grid computing exposed in chapter 1 should be fulfilled by
the middleware layer: distribution, heterogeneity, interoperability and multiple admin-
istrative domains. Another part of the requirements should be fulfilled by the program-
ming model and programming tools: complexity. The remaining requirements should
be addressed by both the programming layer and the middleware layer: the deployment
process relies on a deployment framework provided by the Grid middleware, and on a
deployment model provided by the programming model. Dynamicity is addressed by
the programming layer, through applicative adaptability, and by the middleware layer,
through load balancing and code mobility. Scalability is addressed by the programming
layer by providing design facilities for collective interaction and parallelism, and by la-
tency management. High performance depends on both the programming model and
the middleware efficiency.

We argue that the Fractal component model and the ProActive middleware can be
extended and combined in order to provide a comprehensive framework for Grid com-
puting. In this thesis, we focus on the definition of a programming model based on
component-based programming and we describe the general principles of this model in
the following chapter.

Chapter 3

A Component Model for
Programming Grid Applications

In this chapter, we propose a component model for programming Grid applications,
named ProActive/Fractal. The proposed model extends the Fractal component model
and combines it with an active object model.

In chapter 1, we identified the specificities of Grid computing. A programming model
and framework for Grid computing must be able to address these specificities: distribu-
tion, deployment (across multiple administrative domains, with security constraints),
scalability, heterogeneity, interoperability and legacy software, high performance, com-
plexity and dynamicity.

A programming model based on the component paradigm must also fulfill a number
of requirements specific to component models, so that it may suit the various kinds of
applications which may be used on Grids.

3.1 Requirements for the component model

In this section, we evaluate the choice of Fractal as a general component model.
We list these requirements as follows:

• It must be extensible, in order to add non-functional features or communication
paradigms that may be added for specific needs.

• It must be lightweight, so that several implementations may be developed follow-
ing different approaches and objectives.

• It must have well-defined semantics, through a clear specification and an API.

• It must provide extensible system description configuration, preferably through an
ADL, so that graphical tools may be built to help the design of the systems.

• It must provide room for packaging mechanisms, so that component systems may
be encapsulated and retrieved from repositories.

• It must provide a clear separation between functional and non functional concerns.

• It must be reflective, so that introspection and intercession techniques may be
used for dynamic adaptation and reconfiguration.

In chapter 2, we showed that the Fractal component model fulfills all of these re-
quirements. As a consequence it appears well suited as a general purpose component

43

44 Chapter 3. A Component Model for Programming Grid Applications

model which may be specialized to fulfill custom requirements, such as those of a Grid
computing framework. We also showed that the Fractal model is more general than
CCA or GridCCM. This is why we decided to further investigate the opportunity of us-
ing Fractal in the context of Grid computing.

3.2 Adequacy of the Fractal model for the Grid

In this section, we evaluate whether the Fractal component model is a suitable pro-
gramming model in the context of Grid computing. For each of the requirements we
listed for Grid computing in chapter 1, we verify there is no incompatibility with the
Fractal model. Table 2.2 showed that Fractal does not currently fulfills or does not ad-
dress Grid requirements, and we investigate whether Fractal can be extended to answer
these issues. In addition, we identify which Grid requirements should be handled by the
underlying Grid middleware, and which ones should be handled by an extension of the
Fractal model.

3.2.1 Distribution

The Fractal component model does not impose any locality constraint, and rather states
that:

coupled with the use of meta-programming techniques, component-based
programming can hide to application programmers some of the complexities
inherent in the handling of non-functional aspects in a software system, such
as distribution [FRAa].

Therefore Fractal components may be distributed entities. These managed entities can
be deployed and communicate through an underlying Grid middleware.

Besides, we argue that latencies inherent to large scale distribution can be handled
thanks to asynchronous communications and a model which offers a control over the
localization of the distributed entities, so that highly communicating components can be
closely located, in the same subnetwork for instance. This is related to the deployment
capabilities, evaluated in the next paragraph.

3.2.2 Deployment

In the definition of components we adopted in 2.1.2.6, a component is a unit of deploy-
ment. We consider deployment as a two-phase process: first, the acquisition of Grid
resources, and second, the instantiation and assembly of component systems on these
resources.

Although the deployment process is a fundamental part of the lifecycle of a software
product, it is not part of the Fractal specification. In a Grid environment, it must be
considered thoroughly and addressed in a proposal of a component model for Grid com-
puting.

Fortunately, Fractal proposes a standardized description of component systems in
the form of an Architecture Description Language (the Fractal ADL), and this ADL may
serve as a basis for the specification of a deployment process.

The Fractal Architecture Description Language allows the specification of compo-
nent assemblies in a flexible and extensible manner. Therefore it should fit most of the
specific needs of Grid applications.

Section 3.2. Adequacy of the Fractal model for the Grid 45

ADL may also be used for ensuring the correctness of a composed system. The type
system of Fractal allows syntactic verifications, but semantic verifications are only pos-
sible through the specification of behaviours. Fortunately, the extensiveness of the ADL
should allow the addition of such behavioral specifications. In [BAR 05] for instance,
the idea is to extend the ADL to specify behavioural properties of components, then
to generate automatas from both the behavioural specification and the architecture of
the system, and finally to use model checking tools to verify the automatas, hence the
design.

3.2.3 Heterogeneity

The Fractal model has been implemented in different programming languages (Java
[BRU 02, SEI 06], Smalltalk [BLO , BLO , fractalk] C [FAS 02], C++ [LAY 04]), and
notably defines an API in Java. The Java language runs on most environments, as
demonstrated during the Grid PlugTests events (section 2.6.2.6).

Heterogeneity is therefore not an issue for the Fractal model, it is allowed by the
model and handled by the underlying middleware.

3.2.4 Interoperability and legacy software

Some pieces of a Grid application, such as numerical solvers or graphical control inter-
faces, are highly optimized pieces of software. They are programmed with the language
and framework which are the most appropriate for the intended work (for example For-
tran/MPI for numerical analysis), and compiled for specific architectures. There are
three approaches to integrate such software into a componentized Grid environment.

The first approach is to rewrite the application into the language of the component
framework, so that the framework can directly interact with this piece of software. How-
ever, this task is: expensive, may not match the performance of the initial software, and
can be avoided.

Indeed a second approach is to wrap the legacy application into components which
are able to translate invocations on component interfaces to invocations on the legacy
software, and vice-versa, for example as proposed in [HUA 03], or with the Babel frame-
work of CCA [KOH 01]. This approach is a first step towards code coupling (for example,
an acoustics code with an aerodynamics code, both developped for MPI and wrapped as
Fractal or CCA components).

A third approach is to access legacy software through web services: this way in-
teroperability is guaranteed no matter which technology the legacy software is using.
In this approach, providers of components expose their components in a standardized
way through web services, whereas in the second approach we presented, components
are encapsulated in an ad-hoc manner. The Grid community, which is very concerned
with interoperability, is promoting the use of web services as a communication protocol
between software components in a Grid. This corresponds to a general trend towards
service oriented architectures, that are very much advocated these days and well suited
for linking coarse-grained components.

These three approaches are valid in the Fractal model, because Fractal allows any
programming language, architecture or communication standard.

46 Chapter 3. A Component Model for Programming Grid Applications

3.2.5 High performance

In a Grid application, particularly in scientific computing, some parts of the system need
high performance in terms of computation and of communications, while other parts,
which rely on user input for instance, do not have high-performance requirements.

Computation efficiency usually depends on both the programming language and the
hardware resources. Although Java has been proven an efficient programming lan-
guage for scientific applications [BUL 03] - with performance still improving -, many
applications still rely on highly optimized libraries in FORTRAN and use the SPMD
programming paradigm. Wrapping legacy code as exposed above is a way to reuse these
optimized codes. However, considering that high-performance computing is generally
associated with SPMD programming and parallel communications, offering SPMD ap-
proaches with parallel communications could be addressed by the component model.
Components provide a higher level of abstraction and a more simple way to design
SPMD applications, as we will show in section 4.3.

Multi-physics applications usually involve code coupling between parts of the ap-
plication which perform different specific tasks, but need to communicate efficiently
during execution. The MxN problem is an example of such coupling problematics. The
Fractal component model proposes the encapsulation of components inside composite
components, and communications are not supposed to cross directly the membranes of
composites (for direct communications between encapsulated parallel component for in-
stance).

3.2.6 Complexity

We consider three ways of handling the complexity at the level of the component model:
hierarchical composition, sharing, and collective communications.

3.2.6.1 Hierarchical composition

Most component models, including those used in the context of Grid programming (e.g.
CCA, GridCCM or ICENI), only allow flat compositions. We advocate that a hierarchical
structuration is a valuable means to tackle the complexity of Grid systems, by allowing
the definition and organization of sub-systems, and we outline two clear advantages.

First, hierarchical structuration facilitates the identification of architectural units of
various granularities. Grid systems indeed are usually composed of many different and
heterogeneous software units. Each software unit may itself integrate other software
units.

An illustration is given by the NAS Grid benchmarks (NGBs) [FRU 01b], a set of
benchmarks specified by the NASA, which are designed to be representative of some
typical usages of Grids (regarding the needs of the NASA). They use some applications
specified by the NAS parallel benchmarks (NPBs). NPBs define a set of kernels, which
are typical computational problems, and a set of applications that use some of these
kernels. NGBs are designed as data flow graphs whose nodes are very coarse-grained
computation units. These nodes encapsulate applications specified in NPBs, and that
may individually run on a whole dedicated cluster. As represented on figure 3.1, several
levels of hierarchies are clearly identifiable: this kind of design is very well suited for a
hierarchical component composition.

Second, this hierarchical structuration facilitates the identification of the roles of
human actors upon the system. For example, the end user of an experiment is interested

Section 3.2. Adequacy of the Fractal model for the Grid 47

cluster
infrastructures

component

communication

a kernel is a composition
of components

a NAS application is a composition of
kernels and other components

a NAS Grid application
is a composition

of NAS applications

Figure 3.1: A conceptual view of the hierarchical structuration of a NAS Grid benchmark

in the top level functionnalities, and see the application as one big piece of software. The
user of a Grid portal wants to define or customize her application by composing high-
level subsystems in a workflow. A developer trying to optimize the access to databases
within a computational unit focuses on a specialized subsystem.

Hierarchical composition presents some drawbacks: hierarchies can be extremely
costly in the context of highly distributed applications. Geographically speaking, a com-
posite component may have its membrane hosted on a given host, but the components it
contains can be located on different sites. If those contained components are themselves
hierarchical components, they may also present the same kind of geographical distribu-
tion. This means that for a given message to eventually reach its target, it may have
to cross several membranes, and therefore pay for the cumulative cost of each remote
communication between membranes. Because this is not acceptable, shortcut facilities
should be provided in a distributed context. Another solution could be to use sharing,
presented in the next paragraph. For instance, sharing could help address the MxN
problem presented in 2.4.1 by providing direct communications between encapsulated
or wrapped components.

3.2.6.2 Sharing

A Fractal component can be shared among several components. The Fractal specifica-
tion suggests using shared components as “undo” actions of graphical user interfaces,
for common loggers, or for the representation of resources. Grid applications can benefit
from sharing some of their components, particularly when these are exposed as Grid
services, that can be accessed from virtually anywhere. Grid services are defined in
the Open Grid Services Architecture (OGSA) [FOS 02]. In this architecture, each ser-
vice is offered as a web service, and Grid services include data services (management
of replicated copies, query execution and updates, transformation of data into new for-
mats), security services (enforcement of security policies within a virtual organization,
authentication and authorization of users), computational services (scheduling of units
of work on the hardware infrastructure) or messaging services (subscription to event no-
tifications from other applications or from the infrastructure). While the OGSA defines
a programming model based on services, it was originally based on the OGSI (Open Grid
Services Infrastructure) as the underlying infrastructure. OGSI has now evolved into
WSRF (Web Services Resource Framework) [WSR04], a lighter and clearer specification

48 Chapter 3. A Component Model for Programming Grid Applications

which is closer to web services and defines stateful services. In the Fractal model one
could conveniently represent such stateful services as shared components.

In the model we propose based on active objects, sharing is possible however the
ProActive/Fractal framework does not yet implement sharing.

3.2.6.3 Parallelism

Parallelism is a key feature in Grid computing. In order to use most of the available
computing power, (long) computations are usually parallelized: a master component
sends simultaneously a set of tasks to a set of remote components, that will process
these tasks in parallel. Parallelism is usually used in specific parts of a Grid applica-
tion, which require high performance and perform parallel computation on dedicated
machines (or peer-to-peer infrastructures), but it may also be generalized within the ap-
plication, for building parallel workflows for instance, and for managing a large number
of distributed entities.

Collective communications - one-to-many, many-to-one or many-to-many communi-
cations - are a way to express parallelism, but they are not considered in the Frac-
tal specification, and rather delegated to binding components such as in the DREAM
framework. We consider collective communications as a fundamental paradigm to han-
dle complexity and provide parallelism programming facilities, and therefore we propose
in chapter 4 an extension of the Fractal specification that defines collective communica-
tions at the level of interfaces.

3.2.7 Dynamicity

When a system is constituted of a large number of machines (Grid systems range from
a few to several thousand hosts), and when computations can last for days, failures
must be considered. These failures are not bugs of the application: they are bugs of the
underlying operating system, or hardware failures. In some cases, parts of the system
are not available anymore, because for example the connection to some clusters is lost,
or because all the machines were busy, the jobs cannot be run in the place and time they
were scheduled, and a timeout is reached. The system needs to be able to reorganize to
cope with these kinds of failures. This implies detecting the problem (this needs to be
addressed by the application functional or non-functional code), and then replacing or
redirecting the bindings to the components that failed. The dynamic capabilities of the
Fractal model can help tackle these kinds of issues. Besides, reconfigurations can also
help the system to adapt to the environment, which may be evolving over time: a cluster
may be overloaded, in which case the work would better be done somewhere else, or an
end user may want to change the configuration during runtime (to change the dataset
of a given computation for example).

More generally, in Fractal foundation paper [BRU 02], the authors identify mobility
(in the sense of dynamicity) as a requirement for component models:

Containment and resource dependencies among components should be al-
lowed to change and evolve over time, whether spontaneously or in reaction
to interactions amongst components or between components and their exter-
nal environment. Such a facility is crucial to avoid architectural erosion,
whereby run-time system structures diverge from architecture descriptions,
and to model complex reconfiguration processes.

Section 3.3. A component model based on the active object model 49

Dynamicity is therefore a strong requirement, and we want to combine the benefits
of hierarchical structuration with the benefits of dynamicity.

3.2.8 Conclusion and role of the underlying middleware

As we have shown in this section, the Fractal model is a programming model that can be
adapted for Grid computing. It can directly or indirectly (through extensions), address
the issues of: system description, distribution, scalability, interoperability, complexity
and dynamicity.

We identified two main areas where the Fractal component model must be enhanced
or specialized for Grid computing: deployment and collective communications.

The role of the underlying middleware on which the Fractal model relies is funda-
mental in the context of Grid computing, as this middleware provides the distribution
(across administrative domains) , deployment and non-functional services which are
specific to Grid computing.

In the next section, we define a specialization of the Fractal model based on the active
object model, which fulfills the identified shortcomings of the current Fractal component
model.

3.3 A component model based on the active object model

We propose a specialization of the Fractal component model in which a component is
an active object and as such inherits from the properties of the active object model.
Our model is articulated around four core concepts: components are independent activ-
ities, communications are asynchronous whenever possible, collective communications
are defined at the core of the programming model, and a deployment model is provided.
Interoperability is not addressed in this proposal, however it may be easily achieved by
exporting component interfaces as web services.

3.3.1 A component is an active object

In our model, a component is constituted of at least one active object, and may contain
other active objects, either as internal references in the case of a primitive component,
or as enclosed components in the case of a composite component.

A composite component does not define any functional activity, and a primitive com-
ponent may redefine its functional activity, as what can be done with standard active
objects. The functional activity of a component is encapsulated: it starts when the life-
cycle of the component is started and stops when the lifecycle is stopped.

Because Fractal components may be compositions of components and active objects
may have variable levels of granularity, components in ProActive/Fractal may be con-
sidered as distributed entities of variable granularity. In that sense, they fit in the
definition proposed by Laforenza in [LAF 02]:

a Grid programming model can be seen as the cooperation of a set of
coarse-grained communicating processes.

Furthermore, these coarse-grained entities may themselves be constituted of dis-
tributed entities, as in the NAS Grid applications, and the ProActive/Fractal model also
addresses the design of these coarse-grained entities.

50 Chapter 3. A Component Model for Programming Grid Applications

ProActive/Fractal components do not share memory and they interact through typed
method invocations. Components receive incoming invocations as reified invocation ob-
jects which are queued and processed in a sequential and non-preemptive manner, ac-
cording to a configurable policy (FIFO is the default and recommended one for compo-
nents).

A component in our model may be seen as an independent configurable activity,
which may be moved around for balancing or colocation purposes, and which is remotely
accessible in a transparent way.

3.3.2 Communication paradigm

Key challenges for Grid computing applications are to master the network latency and
the scalability. The Fractal model opens different strategies to overcome this challenge.
One of them is to use binding components to implement sophisticated message-passing
mechanism, such as publish/subscribe or pulling. Such mechanisms are useful when
defining compositions in time (workflows), where the logic is driven by a sequence of
events. Another strategy is to use asynchronous invocations, which also making possible
an overlapping between computation and communications, and which can be realized
without binder components.

We provide the second strategy in our model: inter-component communications are
typed method invocations through component references and may be asynchronous and
offer data-based synchronization capabilities (wait-by-necessity, first class futures).

3.3.2.1 Asynchronous and synchronous communications

As specified in 2.6.2.3, communications are asynchronous if the invoked method does
not declare throwing any exception and does not return a primitive type or a final class.

In the Fractal API, most control methods declare throwing exceptions, which means
that invocations on standard controllers are synchronous, and one must be careful in a
context of hierarchical components with independent activities, in order to avoid dead-
locks. We later study the implications on dynamic reconfiguration in this context.

3.3.2.2 Optimizations

We propose two optimizations for the communications between components.
The first one tackles the problem mentioned earlier of invocations crossing several

membranes before reaching a given component, and therefore paying the cost of possi-
ble distributed communications. In the case that communications are not intercepted,
then it is possible to provide short cuts within a context of asynchronous communi-
cations and distributed components. This feature is provided in our implementation
and described in chapter 5. One implementation principle that we followed is to use a
tensioning mechanism by extending the rendez-vous of the invocation so that causally
ordered communications are still guaranteed. This optimization however comes at the
expense of dynamicity of the component assembly, similarly to the compromises due to
short cuts made in the Julia [BRU 04a] synchronous and local implementation.

The second optimization is actually an extension of the programming model: collec-
tive communications, and more specifically in the context of optimizations, multicast
communications with parallel invocations. The next chapter provides detailed informa-
tion on the topic.

Section 3.3. A component model based on the active object model 51

3.3.3 Deployment model: a virtualization of the infrastructure

The deployment phase is fundamental in the component-based programming paradigm.
It consists of several activities, and usually involves first a packaging activity, where all
artifacts and configuration descriptions are integrated (release step). Related activities
involve the configuration of the system and components so that the components can be
instantiated on selected resources, and the selection and allocation of suitable resources.

3.3.3.1 General model

The deployment model is based on:

• the description of the application using the Fractal ADL,

• the abstraction of the physical infrastructure through the concept of virtual nodes,

• the mapping of the virtual infrastructure to the physical infrastructure.

A simplified representation of the general deployment process is given in figure 3.2
and features three main roles: the designer, the integrator and the deployer. The design-
er/developer creates the code and assembles components with an ADL. The integrator
gathers the code and description of components into packages. The components exhibit
virtual nodes names, and the deployer is responsible of mapping these virtual nodes on
the available physical infrastructure.

Packaged component
Available
physical

infrastructure

Deployer

writes

Deployment descriptor
(Virtual Nodes mapping)

Application
description

ex : ADL

Deployment

Designer

considers

code

writes

virtual nodes

Integrator

packages

Figure 3.2: Overview of the component deployment process and roles

The deployer may be assisted by deployment tools for the discovery and selection of
the most suitable resources, according to user constraints (that may be specified in the
description of virtual nodes, as we proposed in [CAR 06]). Therefore this deployment
model is compatible with other proposals that, based on the application design, the
user constrains, the resource static information, and the resource runtime information,
establish a deployment plan for an optimal allocation of the resources; examples include
ICENI (figure 2.7), GrADS [BER 01], and in [COP] the authors describe a common
approach between existing deployment planners for ASSIST and GridCCM, respectively
named GEA [DAN 05] and Adage [LAC 04b].

52 Chapter 3. A Component Model for Programming Grid Applications

3.3.3.2 Cardinality of virtual nodes

Virtual nodes also have a cardinality property which may be either single or multiple. If
it is multiple, then the virtual node must be mapped to several nodes on the deployment
infrastructure. A primitive component located on a multiple virtual node is - unless
explicitly specified otherwise - instantiated on each of the underlying nodes. This is a
convenient way to deal with multiple instances, and it can be combined with a more
explicit design using parameterizable patterns in the ADL (see section 7.2).

Composed virtual nodes inherit the cardinality property: a virtual node composed of
at least one virtual node of cardinality multiple is itself multiple. The multiplicity prop-
erty is verified at deployment time, when performing the mapping of the components.

As we demonstrated, the composition of virtual nodes allows a control over the dis-
tribution at design-time. We envisage in a future version to constrain the deployment by
specifying constraints on the virtual nodes themselves [CAR 06]. These deployment con-
straints may be used by resource traders, matchmaking of resources such as in Condor
[RAM 98] and automatic deployment frameworks1 such as GADe [LAC 04a], or ICENI’s
deployment framework. As a result, combining both design-time and deployment-time
control over distribution will ensure an optimal distribution of the components within
the Grid.

Further investigations on deployment in the context of Grid computing include pattern-
based deployment and are discussed in chapter 7.

3.3.3.3 Controlled deployment through the composition of virtual nodes

The mapping of the virtual nodes to the physical infrastructure can be done with colo-
cation or on the contrary disjoint location purposes. Unfortunately the deployer who is
in charge at this step may not be aware of the architectural specificities of the compo-
nent system, necessary for correctly applying such kind of optimizations. This is why
we propose the composition of virtual nodes as a means to control the distribution of
the components at the design level. This mechanism may also benefit from cost-based
scheduling strategies based on static or runtime analysis of the Grid resources and par-
ticularly of the latency such as in [DUM 06].

Deployment abstractions can be included within the ADL, such as virtual nodes. Vir-
tual nodes are virtual locations of the components, that are later mapped to an available
physical infrastructure (see 2.6.2.5). This allows a given component configuration to be
deployed on different infrastructures, without having to modify the design of the com-
ponents. Moreover, these deployment abstractions can help tackle performance issues
through coallocation or disjoint allocation of nodes to components. Coallocation usually
makes components closer: this is beneficial if some components communicate a lot to-
gether and if these communications are a performance bottleneck because of the latency
of the network. As a disclaimer to the difficulties of distributed computing [WAL 94],
researchers at Sun Microsystems noted that:

Ignoring the difference between the performance of local and remote invo-
cations can lead to designs whose implementations are virtually assured of
having performance problems [...] A properly designed application will re-
quire determining, by understanding the application being designed, what
objects can be made remote and what objects must be clustered together.

1Automatic deployment frameworks try to optimize deployments based on application requirements and
infrastructure information.

Section 3.3. A component model based on the active object model 53

In Grid computing these considerations are valid and applicable at different scales: com-
municating entities may be located on the same machine, on the same dedicated cluster,
on the same subnetwork, or widely distributed.

In order to provide control at design time over the deployment of components that
are themselves made of other components, we extended the ADL so that virtual nodes
are also composable. This allows co- or disjoint- location strategies when assembling
existing components.

We assume the assembly of components is described in an ADL2 (although the same
concepts may apply for a programmatic description): each component is associated to
a named virtual node, for instance here the primitive component A is associated the
virtual node VN1.

<definition name="A">
<content class="AImpl"/>
<controller desc="primitive"/>
<virtual-node name="VN1"/>

</definition>

Components must export their virtual nodes so that virtual nodes can be composed
when the component is integrated within a broader system. As a result, the description
of a component system exposes all the virtual nodes used in the system, and they have
been composed in the most adequate manner by designers of enclosed components.

Exportation of virtual nodes is defined in the ADL as in the following example, which
describes the exportation of the virtual nodes VN(1) and VN(2) in the description of the
composite component F:

<exportedVirtualNodes>
<exportedVirtualNode name="VN(1,2)">

<composedFrom>
<composingVirtualNode component="B" name="VN(1)"/>
<composingVirtualNode component="C" name="VN(2)"/>

</composedFrom>
</exportedVirtualNode>

</exportedVirtualNodes>

The composition is actually a renaming which is performed by the designer of the
enclosing system definition. The designer may optimize the organization of component
within a virtual architecture, so that highly communicating component may be colocated
for instance (colocated either on the same host, or on the same cluster for instance).

An example of virtual node composition is given in figure 3.3: we can see that virtual
nodes are renamed, and that VN(1), VN(2), VN(3) and VN(4), independently defined in
the ADLs of composing components, are eventually mapped on the same infrastructure,
for instance here a cluster of machines.

Figure 3.4 shows a corresponding component system which exports virtual nodes.
Thanks to the mapping, all the components B, C, D, E, F, G and H, which are part
of the same subsystem, are mapped on the same virtual node. Therefore, they can be

2In order to keep ADL files coherent with the code of primitive components, it is possible, during the
development phase, to automatically generate ADL files from annotations in the code, thanks to standard-
ized annotations and an annotation processing framework called fraclet-annotation [ROU 06], to which we
contributed by beta-testing and providing feedback. Fraclet-annotation also automatically creates the code
required by the Fractal framework for applying dependency injection; this helps separating functional from
non-functional code.

54 Chapter 3. A Component Model for Programming Grid Applications

VN(1)

VN(2)

VN(3)

VN(4)

VN
(1,2)

VN(3)

VN(4)

VN
(3,4)

VN
(1,2)

VN(5)

VN
((1,2),
(3,4))

hierarchical levels

mapping to physical infrastructure

Figure 3.3: Composition of virtual nodes in a hierarchical architecture

colocated on the same dedicated cluster or subnetwork of desktop machines for instance.
Component F may be a pre-packaged component which exposes VN(1,2), so that it may
be integrated within the whole system and benefit from the virtual node composition.

H

A
G

F

B

C

D

VN(1)

VN(3)

VN(2)

E

VN(4)

VN(1,2)

VN((1,2),(3,4))

VN(5)

VN(1,2) VN(3,4)

these components are all mapped to same virtual node

Figure 3.4: Composition of virtual nodes and components

3.3.3.4 Collective operations for deployment

The deployment of a Fractal component system involves: the creation of remote compo-
nents, the assembly and the connections between the components. Grids are environ-

Section 3.3. A component model based on the active object model 55

ments where the number of components may be high (hundreds, thousands), and there-
fore it is beneficial to provide parallelization primitives for the deployment process, so
that deployment time is optimal.

For this purpose, we use a combination of the ProActive Typed Groups mechanism
and of extensions to the Fractal API. These extensions were used in the Jem3D applica-
tion described in section 6.2, in order to deploy in parallel a large number of components
on a Grid.

Creation of components We added the following primitives to the component factory
(see section 2.2.7) of ProActive/Fractal:

List<Component> newFcInstanceAsList(
Type type, ControllerDescription controllerDesc,
ContentDescription[] contentDesc, VirtualNode virtualNode)
throws InstantiationException;

List<Component> newFcInstanceAsList(
Type type, ControllerDescription controllerDesc,
ContentDescription contentDesc, Node[] nodes)
throws InstantiationException;

List<Component> newFcInstanceAsList(
Type type, ControllerDescription controllerDesc,
ContentDescription contentDesc, VirtualNode virtualNode)
throws InstantiationException;

// contentDesc is a table as content may vary for each node
List<Component> newFcInstanceAsList(

Type type, ControllerDescription controllerDesc,
ContentDescription[] contentDesc, Node[] nodes)
throws InstantiationException;

These methods explicitly return lists of components, which can be created in par-
allel, using multithreading. If a virtual node is given as the location parameter, these
components are instantiated on the infrastructure mapped to the virtual node, with one
instance of component per underlying node. If a list of nodes is given as the location
parameter, one instance of component is created on each node.

Assembly of components The assembly process consists of putting components inside
composite components; it is realized by invoking the content controller. For parallelizing
this process, we extended Fractal’s ContentController into ProActiveContentController,
which adds the following operations:

public void addFcSubComponent (List<Component> subComponents)
throws ContentControllerExceptionListException;

public void removeFcSubComponent (List<Component> subComponents)
throws ContentControllerExceptionListException;

When invoking these methods, assembly operations are performed in parallel using
multithreading.

56 Chapter 3. A Component Model for Programming Grid Applications

Binding of components The binding process uses binding controllers. So far, we did
not extend the binding controller, as we do not intend to parallelize the binding process
of a given component to several others, but rather to parallelize the binding process
of several components of the same type to a given component. This is done using the
standard group mechanism: the list of components created in the creation operation
may be seen as a typed group using the following operation:

Component typedGroupOfComponents = (Component)((ProxyForComponentGroup)
myListOfComponents).getGroupByType();

Then the binding process uses the standard mechanism of Typed Groups:

Fractal.getBindingController(typedGroupOfComponents).bindFc("i1", serverInterface);

The result of this operation is a binding from the interface i1 of all components of the
group, to the serverInterface given as a parameter. The binding process is parallelized
through the standard multithreading mechanism of the ProActive Groups.

ADL integration Some of these collective operations for deployment are already inte-
grated in the deployment process specified by ADLs, and we intend to integrate all of
them in a near future; this task is part of the ADL pattern-based deployment proposal
in section 7.2.

3.3.4 Dynamic configuration

Arbitrary changes in configurations of components and component assemblies are ad-
dressed in the Fractal specification by defining factories and configuration controllers
for attributes, life-cycle, bindings and content, which can all be accessed at runtime.

In the Java API of Fractal, most methods of the standard control interfaces used
for dynamic reconfigurations declare throwing exceptions, therefore in our model which
relies on active objects, calls on these methods generate synchronous invocations.

Unfortunately, dynamic reconfigurations with synchronous invocations is a source
of locking or deadlock situations. In this section, we focus on the life-cycle of compo-
nents: we identify the possible locking situations and propose solutions to avoid these
problems.

3.3.4.1 Locking issues in synchronous systems

To our knowledge, in the other implementations of Fractal, invocations are synchronous.
Unfortunately, even in simple cases, reconfigurations are lock- or even deadlock-prone.
An elementary example is given in figure 3.5. In this example, two components are to be
stopped, as commonly required when reconfiguring a system. We can observe that for
stopping the two components A and B (for instance because they are part of the same
composite), the ordering of request is fundamental, as shown in the following scenario:

1. B receives a stop request: it stops.

2. A calls the foo method on B, either because A defines its own activity, or because it
is processing an invocation from a tier component.

3. A receives a stop request.

Section 3.3. A component model based on the active object model 57

The Fractal specification intentionally does not specify the behavior of a functional invo-
cation on a stopped component: this is left to specify in either a model extension or the
implementation. If the invocation is suspended - as in the Julia reference implementa-
tion - the presented scenario is a locking situation. As shown in figure 3.5, the foo()
invocation cannot proceed, therefore A cannot be stopped, as it is currently calling B.

A B

1. stopFc()! 3. stopFc()

! 2. foo()

Figure 3.5: A simple locking situation when stopping two components

In a framework such as DREAM, based on the Julia implementation, component
systems may be multithreaded as components may define their own activity (thus A
may proactively call foo() on B after B is stopped). Locking problems are addressed
when stopping subsystems which contain active components, as in [LAU 04], by defining
stopping policies in the configuration of the component system. These policies specify
the order in which components must be stopped: either with a programmed algorithm,
with a sequential list, or by implementing custom life-cycle controllers. Unfortunately,
this solution appears quite complex, especially in systems with many active components.
Moreover, specifying the stopping policy in a configuration file is not valid anymore when
the system is reconfigured.

In the component model we propose, each component is active, therefore the locking
problem identified in DREAM in the specific case of subsystems which may contain an
active component is generalized in our model.

3.3.4.2 Locking issues with active components

In our model, the locking problem described above remains. Because incoming invo-
cations are processed sequentially and non-preemptively, A needs to finish the current
service that generated the foo() invocation before processing the stopFc() invocation,
but it cannot finish the current service as B is stopped.

We propose to avoid this situation by:

• managing reconfigurations from a unique place, so that reconfiguration calls do
not interfere, and

• properly scheduling the stop operations from the component which manages the
reconfiguration; this must be done programmatically in the reconfiguration entity,
and requires knowledge of the components involved in the reconfiguration.

Recursive stopping issues Because composite components are active components, re-
cursive assemblies of components may lead to deadlocking situations. For instance, if
stopping is performed recursively, we cumulate the potential locking problem raised
above with the problem of pending communications from the inside towards the outside
of the composite, as shown in figure 3.6.

58 Chapter 3. A Component Model for Programming Grid Applications

C

BA

1. stopFc()

stopFc()

bar()

Figure 3.6: Recursive stop operation leading to a deadlock

C A

stopFc()

B

stopFc()

bar()

Figure 3.7: Recursive stop operation leading to a deadlock: involved active objects

A different view representing the active objects involved is provided in figure 3.7.
Indeed, if the stop operation is recursive, C starts processing the stop request, and

sends a stop request to the components it contains, in this case A. However A is still busy
processing some pending requests, and one of them requires a communication with B,
which goes through C. In our model, as C is an active object, it enqueues the request
from A. As requests are sequentially processed, C cannot serve the request from A before
finishing processing the stop request. The stop request involves a synchronous request
to stop A, which cannot be processed until A terminates processing its current service.
This is a deadlock situation.

Other problematic situations occur when relationships between components create
cycles. It is generally admitted, as pointed out in [HER 00], that software systems
should avoid circularities and be designed as Directed Acyclic Graphs (DAGs). Hier-
archical composition and injection dependencies however hinder the enforcement of this
pattern.

The Fractal specification does not require composite components to have a recursive
stopping algorithm. This is left for the implementation to specify. In Julia for instance,
the algorithm is not recursive, because of possibly shared components.

How to overcome the deadlock problem? One solution, although arguably not a very
efficient one, is to avoid using recursive stops, and instead, individually stop each com-
ponent in the correct order. Another one would be, as in our model there are no shared
components so far, to modify the life-cycle control API, so that stop invocations are fully
asynchronous, in other words, that the stop method does not declare throwing any ex-
ception. This is however a modification with implications on the Fractal API itself, and
should probably be generalized: in an asynchronous system, is it possible to have an
asynchronous API for controlling components, in which methods would never declare
throwing any exception?

Section 3.4. Conclusion 59

Another approach to investigate, along with the asynchronous API, is the use of
domain-specific languages to define reconfigurations. In [DAV 06], the authors propose
FScript, a language which allows the definition of structural reconfigurations applicable
to a running application in a consistent manner.

3.4 Conclusion

In this chapter we defined a component model applicable for Grid computing, based on
the Fractal component model and the active objects model.

We motivated the choice of Fractal as a basis for our component model by considering
its properties as a component model, and by evaluating its adequacy in the context of
Grid computing. We identified three main areas we contributed to in order to suit Grid
computing requirements:

• the definition of components as independent distributed entities of variable gran-
ularities,

• the specification of collective interfaces,

• the specification of a deployment model.

After a presentation of the specificities related to the underlying active object model, we
presented the proposed deployment model and the facilities provided for the control of
the distribution and the parallelization of deployment.

We identified issues related to the combination of hierarchical systems and syn-
chronous API invocations with a model based on active components, including active
composite components. We proposed general solutions to avoid these issues. We pointed
out that these are complex distributed synchronization problems, and raised the ques-
tion of defining an asynchronous control API.

Regarding the requirements of Grid computing as laid out at the beginning of this
chapter, the component model we propose handles or facilitates distribution, deploy-
ment, complexity and dynamicity. Requirements of heterogeneity, legacy software distri-
bution, multiple administrative domains with security constraints, heterogeneity, legacy
software are left to the underlying middleware; in our implementation we use the ProAc-
tive middleware for these purposes.

Managing collective interactions between the components is our third main contri-
bution and it is detailed in the next chapter.

60 Chapter 3. A Component Model for Programming Grid Applications

Chapter 4

Collective Interfaces

Simple things should be simple and
complex things should be possible.
Unless simple things are simple,
complex things are impossible.

Alan Kay

Collective communications provide facilities to manage interactions between dis-
tributed entities. Computational patterns extensively use collective communications,
such as in master-slave, divide-and-conquer or SPMD models. In this work we are inter-
ested in the parallelism and synchronization properties offered by collective communi-
cations, and we want to express collective behaviors in the definition of the components.
Publish-subscribe or event-reaction models, which are commonly implemented by using
message-oriented middleware (such as JMS in Java), are out of scope because they use
intermediate components.

In order to simplify the programming model and the assembly of component systems,
we want to integrate collective communications in the specification of the component
model.

In this section, we describe our proposal for adding collective interfaces to the pro-
posed component model based on Fractal, by introducing multicast and gathercast in-
terfaces. Moreover, we demonstrate how these collective interfaces can be used as a
basis for facilitating the design of SPMD programs, and how they can model the MxN
redistribution problem.

4.1 Motivations

4.1.1 On the current cardinalities of component interfaces in the Fractal
model

In the type system of the Fractal model, a component type is just a set of interface
types. The type of the component is given by the types of its external interfaces, and
a component of type T must have as many external interfaces as described in the type
T. If the component exposes its content, in other words if it is a composite component,
then the component must also have - at most - as many internal functional interfaces as
described in T. This implies that each internal functional interface has a complementary
external interface of the same name, signature, contingency and cardinality, of opposite
role.

61

62 Chapter 4. Collective Interfaces

This chapter focuses on the cardinality of the interfaces. In the current Fractal
specification, the cardinality is a property of an interface type that indicates how many
interfaces of this type a given component may have. Currently, the Fractal model defines
two kinds of cardinalities for interfaces: singleton and collection.

• Interfaces of cardinality singleton are unique and exist at runtime. Single inter-
faces can have a server role (Fig. 4.1.a), or a client role (Fig. 4.1.b). Fig 4.1.c
and Fig 4.1.d show respectively a singleton server interface and a singleton client
interface for primitive components. In the case of composite components, there is
a complementary internal interface of opposite role associated with each external
interface: Fig 4.1.e shows a single client interface along with its complementary
internal single server interface, while Fig 4.1.f shows a singleton server interface
along with its complementary internal singleton client interface.

single client interfacesingle server interface
a. b.

c. d.

e. f.

complementary internal
single client interface

complementary internal
single server interface

single server
interface

single client
interface

Figure 4.1: Single interfaces for primitive and composite components

• Interfaces of cardinality collection represent collections (i.e. an arbitrary number
of lazily created interfaces) of interfaces of the same type, with a common prefixed
name. One can define collection server interfaces (Fig. 4.2.a), or collection client
interfaces (Fig. 4.2.b). A collection interface does not exist at runtime, only the
lazily created interfaces that are part of the collection are accessible at runtime
(see Fig 4.2). In the case of composite components, there is a complementary in-
ternal interface associated with each lazily created interface (Fig. 4.2.e and 4.2.f),
which is not the case for primitive components (Fig. 4.2.c and 4.2.d). In order to
perform an invocation on all of the interfaces connected to a collection interface,
it is necessary first to get a reference on each of the interfaces, and second per-
form the invocation on each of these references. Collection interfaces only provide
one-to-one bindings. In this current work, we intend to provide a mechanism for

Section 4.1. Motivations 63

performing collective invocations without having to refer to each of the interfaces
successively.

collection server interface collection client interface

c.

a.

d.

b.

e. f.

dynamically created

Figure 4.2: Collection interfaces for primitive and composite components

4.1.2 Rationale for collective interfaces

As we can see, the current cardinalities of Fractal interfaces allow only one-to-one com-
munications. It is possible though to introduce binding components, which act as bro-
kers and may handle different communication paradigms. Using these intermediate
binding components, it is therefore possible to achieve one-to-n, n-to-one or n-to-n com-
munications between components. It is not possible however for an interface to express
a collective behavior: explicit binding components are needed in this case.

In response to some of the specific requirements and conditions of Grid computing,
namely complexity and performance, we propose the addition of new cardinalities in the
specification of Fractal interfaces, namely multicast and gathercast.

Multicast and gathercast interfaces give the possibility to manage a group of inter-
faces as a single entity (which is not the case with a collection interface, where the user
can only manipulate individual members of the collection), and they expose the collective
nature of a given interface. Specific semantics for multiway invocations can be config-
ured, providing users with flexible communications to or from gathercast and multicast
interfaces (see section 2.4). Moreover, the specification of a component includes commu-
nication semantics when they are specified at the level of interfaces. Finally, avoiding

64 Chapter 4. Collective Interfaces

the use of explicit intermediate binding components simplifies the programming model
and type compatibility is automatically verified.

The role and use of multicast and gathercast interfaces are complementary. Multi-
cast interfaces are used for parallel invocations and data distribution, whereas gather-
cast interfaces are used for synchronization, gathering or redispatching purposes.

This proposal is intended to be both general and clear: general enough so that it is
not tied to any implementation, and clear enough so that there is no ambiguity and that
all implementations work the same way.

4.2 Proposal for collective interfaces

We propose to integrate the notion of collective interfaces into the component model, in
order to expose a specific collective behavior at the level of an interface.

Collective interfaces correspond to new kinds of cardinalities1 interfaces: multicast
and gathercast (with gather-multicast as a perspective). Each of these cardinalities
provides facilities for collective communications, and their behavior is customizable.

In this section, we present multicast and gathercast interfaces. For each one, we de-
tail their specificities, in terms of data distribution and method invocation, and discuss
their specific properties.

Preliminary notes:

• The examples provided in this section use the Java language, but the proposal is
not tied to this language.

• In the sequel, we use the term List to mean ordered set of elements of the same
type (modulo sub-typing). This notion is not necessarily linked to the type List in
the chosen implementation language; it can be implemented via lists, collections,
arrays, typed groups, etc. To be more precise, we use List<A> to mean “list of
elements of type A”.

4.2.1 Multicast interfaces

Multicast interfaces provide abstractions for one-to-many communications. After a gen-
eral definition of multicast interfaces, we clarify the distinction between multicast
server and client interfaces, then we describe the mechanisms of the invocations, by
showing the different types of invocations, the management of the results and the dis-
tribution of the parameters. An illustration is eventually provided through some pro-
gramming examples.

4.2.1.1 Definitions

The following definitions characterize external interfaces (which define the type of a
component).

Definition 4.2.1 A multicast interface transforms a single invocation into a list of invo-
cations.

1The term cardinality is extended from the original Fractal specification: in this proposal, the cardinal-
ity of an interface also designates 1-to-n and n-to-1 connections with specific semantics

Section 4.2. Proposal for collective interfaces 65

When a single invocation is transformed into a list of invocations, these invocations
are forwarded to a set of connected server interfaces. A multicast interface is unique
and it exists at runtime (it is not lazily created). The semantics of the propagation of
the invocation and of the distribution of the invocation parameters are customizable,
and the result of an invocation on a multicast interface - if there is a result - is always
a list of results. Invocations forwarded to the connected server interfaces may occur in
parallel, which is one of the main reasons for defining this kind of interface: it enables
parallel invocations.

multicast server interface multicast client interface
a.

c. d.

e. f.

b.

internal multicast
client interface

internal multicast
server interface

Figure 4.3: Multicast interfaces for primitive and composite components

4.2.1.2 Multicast client interfaces vs multicast server interfaces

On one hand, a multicast client interface distributes invocations to connected server
interfaces. On the other hand, a multicast server interface explicitly exposes a multicast
behavior (notably the fact that a result is actually a list of results), and forwards a single
invocation either to a complementary multicast client interface in the case of a composite
component (Fig. 4.3.e), or to a contractually defined implementation code in the case of
a primitive component (Fig. 4.3.c).

4.2.1.3 Signatures of methods

Multicast interfaces may distribute data in different manners, and may receive results
from several connected interfaces. This has a consequence on the signature of the meth-
ods of multicast interfaces.

66 Chapter 4. Collective Interfaces

Return type For each method invoked and returning a result of type T, a multicast
invocation returns an indexed aggregation of the results: a list, and if the language
allows it, a list of T.
There is a type conversion, from return type T in a method of the server interface, to
return type list of T in the corresponding method of the multicast interface (as repre-
sented in figure 4.4.a). The framework must transparently handles the type conversion
between return types, which simply corresponds to an aggregation of elements of type T
into a structure of type list of T.

To sum-it up, consider the signature of a server interface:

public interface I {
public void foo();
public A bar();

}

A multicast interface can be connected to the server interface with the above signature
only if the signature of this multicast interface is the following:

public interface J {
public void foo();
public List<A> bar();

}

Parameters types Parameters may be distributed in various manners, but signatures
are impacted in only two possible ways. If a given parameter is broadcasted, the signa-
ture for this parameter must be compatible on both sides (the parameter on the client
side must be of the same type, or a subtype of the parameter on the server side). How-
ever if a given parameter is to be scattered, this implies it is fed to the multicast in-
terface as a list of T and the server interfaces receive parameters of type T, as repre-
sented in figure 4.4.b). Impact of distribution on method signatures is further detailed
in this chapter, but to introduce the concept, consider the signature of a client multicast
interface:

public interface J {
public void foo(List<A> la); // parameter to be scattered
public void bar(List lb); // parameter to be broadcasted

}

This multicast interface with the above signature and properties (concerning param-
eters distribution) may be connected to a server interface only if the signature of this
server interface is the following (modulo subtyping):

public interface I {
public void foo(A a);
public void bar(List lb);

}

An illustration of the compatibility of signatures for component systems using a mul-
ticast interface is presented in figure 4.4: a focuses on the return types, whereas b illus-
trates a multicast interface with a scatter distribution mode.

Section 4.2. Proposal for collective interfaces 67

 T foo()

 List <T> foo()

 T foo()

 void bar(List <A>)

 void bar(A)

 void bar(A)

a. b.

Figure 4.4: Component systems using multicast interfaces

4.2.1.4 Invocation forwarding

A multicast invocation leads to the invocation of a method offered by one or several
connected server interfaces. The communications may be synchronous or asynchronous,
and can be performed in parallel. We consider a multicast invocation as a one-to-many
communications, i.e. from a caller interface to all connected interfaces. Other dis-
patch modes, such as one-to-some or one-to-one, similar to ICENI’s dispatch tee (section
2.4.3.3), are not considered in this proposal, but they are envisaged in section 7.4.

When performing an invocation to or from a multicast interface, the transfer of
the invocation - from client to connected server interfaces - occurs according to a user-
defined policy, and lets the possibility for users to define custom communication modes2

. Therefore, the communication scheme policy must be part of the definition of the mul-
ticast interface. It is convenient to specify it in the signature of the interface.

Dynamic dispatch We consider the common situation where:

1. a multicast interface is bound to several server interfaces,

2. the invocations can be distributed regardless of which component will process the
invocation,

3. inter-component communications are asynchronous.

This situation corresponds for example to the case of stateless server components (more
generally when the processing of invocations is independent from previous invocations),
or to the case of embarrassingly parallel computations. In order to improve the global
performance of a computation in this configuration, it is possible to use techniques such
as dynamic dispatch of invocations to connected server components. The idea is to send
more invocations to faster server components than to slower components. The conse-
quence is that the overall computation time is reduced because the invocations (which
are the jobs to compute) are distributed more wisely. This principle is notably proposed
in [BAD 05a].

4.2.1.5 Distribution of invocation parameters

If some of the parameters are defined as lists of values, these values can be distributed
in various ways through method invocations to the server interfaces connected to a mul-
ticast interface. The default behavior - broadcast - is to send the same parameters to

2The behavior of the interface may be configured in several manners; in the Java language, one of them
is through annotations on the methods or interfaces.

68 Chapter 4. Collective Interfaces

each of the connected server interfaces. In the case some parameters are lists of values,
copies of the lists are sent to each receiver3. However, similar to what SPMD program-
ming offers, it may be adequate to strip some of the parameters so that the bound com-
ponents work on different data. In MPI for instance, this can be explicitly specified by
stripping a data buffer and using the scatter primitive.

Multicast interfaces provide the possibility to automatically strip and distribute pa-
rameters to bound components. We now discuss the possible configurations, then we
explain the technique we use to specify these configurations.

Distribution policies What are the possible distributions of the parameters of the in-
vocations which are generated and forwarded from a multicast interface? Many con-
figurations are possible, depending on the number of parameters that are lists and the
number of members of these lists. The applicability of a redistribution depends on the
types of the parameters of the methods of the interface. Table 4.1 indicates under which
conditions a redistribution can be applied. It shows that the types of the parameters
(thus the signature of the interfaces) may be different between the server interface and
the multicast interface, but only in the conditions presented here. It also shows that
scattering of a given parameter may only occur from a list of elements of type T to ele-
ments of type T. Note that the table only considers one parameter of one method of the
interface, and that all parameters of all methods of the involved interfaces must verify
the applicability conditions. The cases not marked as valid are also cases where the
connection between interfaces is simply not possible (for this kind of binding), because
at least the types of two parameters are incompatible. When the parameters are of the
same type in the multicast interface and in the connected server interface, then the
considered parameter is copied (broadcast).

✔
broadcast

✔
scatter

-

type of ith parameter
of a method

in server interface

type of ith
parameter of
a method in

multicast
interface

T

T

List<T>

A

-

✔
broadcast

-

List<T>

Table 4.1: Applicability of a distribution function depending on the type of the ith parameter of
method of the multicast interface vs. the type of the corresponding parameter in the corresponding
method of its connected server interfaces. A and T are incompatible types.

Once identified adequate situations for the distribution of invocation parameters,
one can define a distribution function. Modulo reordering of the parameters, we can
consider that the signature of a method of the multicast interface is as follows:

• List < A > foo(T1, ...Tm, list < T ′
1 >, ...list < T ′

l >) on the multicast interface,

• A foo(T1, ...Tm, T ′
1, ..., T

′
n, list < T ′

n+1 > ..., list < T ′
l >) on the connected server

interface
3This is a good place for optimization by preserializing data to be sent.

Section 4.2. Proposal for collective interfaces 69

where:

• foo is the method which is invoked and where n ≤ l. If l = n, then the signature
becomes foo(T1, ...Tm, T ′

1, ..., T
′
n) on the server interface side,

• n is the number of parameters that will be scattered,

• m is m the number of non-list parameters,

• l − n the number of list parameters that are broadcasted as full lists, l being the
number of lists on the multicast interface.

The order of the parameters does not correspond to the actual signature of the methods
and is just a way to simplify the representation. Depending on the configuration of
the interface, some of the lists have their elements broadcast, and others have their
elements scattered.

In other words, method calls on a multicast interface of the form foo(a1, ...am, L1, ...Ll)
are forwarded as several method calls of the form foo(a1, ...am, a′

1, ...a
′
n, Ln+1, ...Ll) where

ai and a
′
i are not (necessarily) lists, and Li are lists.

Parameters a1, ...am that are not lists of values in methods of the multicast interface
are systematically copied in each invocation which is generated (broadcast). Parameters
Ln+1, ...L

′
l that are lists but correspond to lists on the connected server interfaces are

also systematically copied in each invocation (broadcast). Parameters L1, ...Ll that are
lists of values of type T and correspond to arguments of type T on the connected server
interfaces are distributed (scattered) according to the following transformation, which
provides the different combinations for the parameters: f ⊆ Nn or more precisely, f ⊆
[1..k1] × [1..k2]... × [1..kn] where f is the (multi)set of the combinations of parameters,
n is the number of parameters of the invoked method which are lists of values, and
ki, 1 ≤ i ≤ n the number of values for each list parameter.

Three cases are of particular interest to us in the context of parallel computing. The
first one corresponds to ∀i, j ∈ [1..n], card(Li) = card(Lj): all list parameters have the
same number of values. A straightforward redistribution gives for the ith invocation:
foo(a1, ...am, L1i , ...Lni). In this case, n invocations are generated and forwarded.

The second notable case is the one that explores all combinations: f = [1..k1] ×
[1..k2]... × [1..kn], which results in invocations like foo(a1, ...am, L1i1

, ..., Lnin
) where ij ∈

[1..card(Lj]). It is a cartesian product, and
∏n

i=1 card(Li) gives the number of invocations
that are generated and forwarded. There may be more invocations than the number of
connected server interfaces.

The third interesting case is the one where all the parameters are simply copied and
sent to each receiver. It corresponds to the case where n = 0 in the above description
of the signature of the method in the server interface. Each receiver receives the same
parameters; this corresponds to the broadcast mode. The ith invocation therefore cor-
responds to: foo(a1, ...am, L1, ...Ll): the parameters are identical in the method of the
multicast interface and in the one of the bound server interfaces, and the number of
invocations is the number of bound server interfaces.

Specification of distribution policies Each eligible parameter (according to table 4.1)
may be subject to a distribution operation, therefore it must be possible to specify a
distribution policy for each eligible parameter of each method of a multicast interface.
The distribution policy may be defined globally for all the parameters of all the methods
of a given interface, or more specifically at the level of the methods, in which case the

70 Chapter 4. Collective Interfaces

policy is applied for all the parameters of this method. For these globally specified
policies, the number of elements must be the same in each scattered list.

The distribution policy may also be specified individually for each eligible parameter.
In that case of course the different distribution policies among the parameters must
be compatible: the resulting number of dispatched entities should be the same for each
stripped parameter. This must be verified at runtime and depends on the number of
connected server interfaces, on the number of elements for each scattered list, and on
the distribution policies for each parameter. Contrarily to globally specified policies, this
does not imply that the number of elements must be the same in each scattered list.

a. b. scattered
invocation parameterinvocation parameter

broadcasted invocation parameter
received in server component

Figure 4.5: Broadcast and scatter of invocations parameters

4.2.1.6 Distribution of invocations

Once the distribution of the parameters is determined, the invocations that will be for-
warded are known. A new question arises: how are these invocations dispatched onto
the connected server interfaces? This is determined by another function d, which, know-
ing s the number of server interfaces bound to the multicast interface, and g the number
of invocations that have been generated (from the previous function f), is defined as fol-
lows: d : [1, g] −→ [1, s].

When s = g, d can correspond to the identity function I: the generated invocation of
index i is sent to the bound interface of index i.

When s < g, invocations may be distributed in a round-robin fashion among the
available links to server interfaces. Another possibility is the dynamic dispatch of invo-
cations, optimizing the distribution of tasks based on the responsiveness of each server
component.

When s > g, some of the bound interfaces do not receive any invocation, but it is
possible to keep an internal state for the invocations, so that those interfaces will be
selected first when dispatching new invocations.

4.2.1.7 Management of results

An invocation on a multicast interface usually generates several forwarded invocations.
If the invoked method returns a value, then the invocation on the multicast interface
returns an ordered collection of result values: a list, as mentioned in 4.2.1.3. This
implies that, for the multicast interface, the signature of the invoked method has to

Section 4.2. Proposal for collective interfaces 71

explicitly specify list as a return type. This also implies that each method of the interface
returns either nothing, or a list.

In object-oriented languages, the type of the elements of the list may be specified
using generics programming such as templates in C++ or Generics in Java 1.5.

It is possible to use typed lists, such as for examples typed groups in the ProActive
library [BAD 05a].

Some implementations of these proposals may use arrays, in which case the term
list refers to a one-dimensional array.

When manipulating multicast interfaces, users know that they have to expect lists of
results from invocations on these interfaces, and therefore they must handle these lists
of results accordingly.

We envisage, in a future extension of this proposal, to propose a reduction mecha-
nism that would return one (or several) reduced value(s) instead of systematically re-
turning a list of aggregated values. Reduction would therefore have an incidence on
the signature of the multicast method, which may not return a list, but rather a single
reduced element.

4.2.1.8 Programming example

A multicast client interface of signature MyInterface, named “myMulticastInterface",
that is defined in the type of the component, exists at runtime as a collective interface
named “myMulticastInterface", of cardinality “multicast”. The type of this interface is
defined as follows:

InterfaceType itfType = typeFactory.createFcItfType(
"myMulticastInterface",
MyInterface.class.getName(),
TypeFactory.CLIENT,
TypeFactory.MANDATORY,
TypeFactory.MULTICAST

)

The management policy for the collective interface is specified at the construction
of the component, in an implementation specific way. One way to specify the manage-
ment policy is by using attribute-oriented programming, annotating program elements
(interfaces, methods or parameters in this case) with metadata information. In our im-
plementation, described in section 5.3, the distribution policy is specified in the Java
interface, using Java annotations, a mechanism for adding metadata, which was intro-
duced in the Java language in version 5.

In this example, we would have the MyInterface interface defined as:

@ClassDispatchMetadata(
mode=@ParamDispatchMetadata(mode=ParamDispatchMode.ONE_TO_ONE))

public interface MyInterface {

public List<A> foo(List, C);

}

The dispatch mode is defined at the level of the declaration of the interface and there-
fore applied to all eligible parameters of all methods of the interface. The distribution
mode is one-to-one, meaning that List must contain as many elements as connected

72 Chapter 4. Collective Interfaces

server interfaces. B elements are scattered and dispatched to the connected server in-
terfaces, and a copy of C is received by each connected server interface.

The different modes and configurations available in our implementation are de-
scribed in details in section 5.3.

Multicast interfaces are bound to interfaces of compatible types using the standard
binding mechanism:

bindingController.bindFc(
"myMulticastInterface",
serverItf1
);

Provided serverItf1 is of a compatible type, this adds the serverItf1 interface to the
group of interfaces managed by the multicast interface.

4.2.1.9 Application to the master-worker pattern

The master worker pattern is suitable for embarrassingly parallel problems, commonly
used for many of scientific areas, as demonstrated by the variety of projects (from ge-
nomics to the search of extraterrestrial intelligence) using the BOINC infrastructure
[AND 04], or the network enabled server environments (see section 2.1.2.4). This pat-
tern is trivially designed using multicast interfaces, and custom distribution patterns
may be specified at ease. In [BOU 06], the authors propose to design master-worker pat-
terns using intermediate components for handling the distribution. In our proposal, the
distribution is handled at the level of the component interface, in the control membrane,
and therefore does not require any intermediate component. Moreover, we clearly define
the semantics of the collective communications, so that the necessary 1-to-n communi-
cations are properly specified. The authors of the aforementioned paper also propose
to specify and parameterize the master-worker pattern in the ADL. We concur with the
idea of taking advantage of ADLs to specify common assembly patterns that simplify de-
sign tasks, and one of our current investigation topics is to offer facilities for specifying
distributed component assemblies and communication patterns in ADLs, as described
in section 7.2.

4.2.2 Gathercast interfaces

Gathercast interfaces provide abstractions for many-to-one communications. In this
section, after a general definition of gathercast interfaces, we clarify the distinction be-
tween multicast server and client interfaces, we consider the binding mechanisms for
this type of interfaces, and we describe the synchronization and data gathering capabil-
ities. An illustration is eventually provided through some programming examples.

4.2.2.1 Definition

The following definition characterizes external interfaces.

Definition 4.2.2 A gathercast interface transforms a list of invocations into a single
invocation.

The gathercast term originates from previous works on IP networks [BAD 00], where
the authors proposed a mechanism for aggregating IP packets. Our current study some-
how proceeds from these previous works, though it does not only address data aggre-
gation, but also process coordination. Indeed, a gathercast interface can coordinate

Section 4.2. Proposal for collective interfaces 73

incoming invocations before continuing the invocation flow: it can define synchroniza-
tion barriers and gather incoming data. Invocation return values are also redistributed
to the invoking components.

A gathercast interface is unique and it exists at runtime. Synchronization barriers
and gathering operations are customizable, as well as redistribution policies for invoca-
tions return values.

4.2.2.2 Gathercast client interfaces vs gathercast server interfaces

The comparison between gathercast client and gathercast server interfaces is similar to
the comparison between multicast client and multicast server interfaces. Note that we
always consider external interfaces, unless explicitly mentioned otherwise.

Gathercast server interfaces gather invocations from multiple client interfaces (fig-
ure 4.6), but client interfaces can also have a gathercast cardinality. Gathercast client
interfaces transform gathercast invocations (with gathering and synchronization opera-
tions) into a single invocation which is transferred to a bound server interface, and client
gathercast interfaces also explicitly expose their gathercast nature, indicating that in-
vocations coming from this client interface contain gathered parameters: parameters
of the forwarded invocation are typed lists. In primitive components, the purpose of a
gathercast client interface is solely to expose the gathercast nature of this interface.

gathercast server interface gathercast client interface
a.

c. d.

e. f.

b.

internal gathercast
client interface

internal gathercast
server interface

Figure 4.6: Gathercast interfaces for primitive and composite components

74 Chapter 4. Collective Interfaces

4.2.2.3 Bindings to gathercast interfaces

The Fractal model defines a binding as a link between two interfaces. It does not ex-
plicitly specify the link as unidirectional, though one could interpret the specification as
stating that a binding is a link from an interface i1 to an interface i2, whose only goal is
to provide an access to i2 from i1 in order to invoke operations on i2.

The general idea of our proposal is to manage the semantics and behavior of the
collective communication at the level of the interface itself. Gathering operations re-
quire knowledge of the participants (i.e. the clients of the gathercast interface) of the
collective communication. Therefore, the binding mechanism, when performing a bind-
ing to a gathercast interface, must make the gathercast interface aware of this binding.
This awareness must be handled transparently by the framework, while keeping the
standard Fractal binding operations: binding operations to gathercast interfaces can
be detected by the framework and handled in such a way that the gathercast interface
receives a reference on the interface which is being bound to it.

As a consequence, in the context of gathercast interfaces, we have to explicitly state
that bindings to gathercast interfaces are bidirectional links, in other words: a gather-
cast interface is aware of which interfaces are bound to it.

4.2.2.4 Synchronization operations

Synchronization operations can be based on the data (messages) or on the processes.
Gathercast interfaces provide message-based synchronization capabilities: the mes-

sage flow can be blocked on user-defined message-based conditions. Synchronization
barriers can be set on specified invocations, for instance the gathercast interface may
wait - with a possible timeout - for all its clients to perform a given invocation on it
before forwarding the invocations. It is also possible to define more complex or specific
message-based synchronizations, based on the content of the messages or based on tem-
poral conditions, and it is possible to combine these different kinds of synchronizations.

4.2.2.5 Data operations

The gathercast interface aggregates parameters from method invocations, therefore the
parameters of an invocation coming from a gathercast (client) interface are actually lists
of parameters. The result of the invocation may be a simple result, or a list of results,
in which case a redistribution of the enclosed values may occur.

Gathering of parameters When several components invoke a given method on a gath-
ercast interface, it is possible to aggregate the arguments of the method invocations
(figure 4.7). In implementations of Fractal using an object-oriented language, the aggre-
gation structure should be a list (java.util.List in Java) so that elements are indexed.
This list is passed to the interface bound to the gathercast client interface.

Redistribution of results The distribution of results for gathercast interfaces is symmet-
rical with the distribution of parameters for multicast interfaces, and the configuration
of the distribution may be handled in a similar manner, provided each client interface
participating to the gather operation receives a single result.

For multicast interfaces, the redistribution function only deals with parameters which
are lists of parameters. Parameters which are not lists are systematically copied in each
invocation. In the case of gathercast interfaces, a similar reasoning applies to results, as

Section 4.2. Proposal for collective interfaces 75

list of
aggregated parameters

invocation parameter

Figure 4.7: A simple example of the aggregation of invocation parameters for a gathercast inter-
face

opposed to invocation parameters: it depends on the type of the result in the signature
of the invoked method (table 4.2).

A redistribution function is only applicable if two conditions are fulfilled. The first
one is a condition on the type of the results, and the following table considers the return
types for a given method. All methods of the interfaces must verify these conditions.

List<T>

-✔ -

- ✔
(broadcast)

return type for a method
in client interface

return type for
a method in
gathercast
interface

void T

void

T

List<T> - ✔
❨scatter❩

-

✔
❨broadcast❩

- -A -

Table 4.2: Applicability of a redistribution function depending on the return types of the methods
of the gathercast interface vs. the return types of the methods of its client interfaces. A and T are
incompatible types

As we can see, the redistribution function is only applicable when the return type
for the gathercast interface method is a list of elements of type compatible with the
return type of the client interface method. We can also observe a symmetry between
the signatures compatibility of multicast and gathercast interfaces. Indeed, scatter and
broadcast distribution modes are available for the distribution of results for gathercast
interfaces.

In the scatter mode, the redistribution function determines which client of the gath-
ercast interface receives a given member of the list of results. In the broadcast mode,
every client receives the same result.

The second condition for a redistribution function to be applicable depends on the
number of elements in the list of results: it must be equal to the number of client inter-
faces participating in the gathercast communication. Indeed, if there are less elements
in the list of results, that would mean some clients never receive any result, which is not
acceptable. If there are more elements in the list of results, some invocations would re-
ceive two results, which is not possible. The consequences on dynamicity are discussed

76 Chapter 4. Collective Interfaces

in the next paragraph.
An illustration of a component system which respects those conditions with a gath-

ercast interface is given in figure 4.8

 T foo(V)

 T foo(V)

 T foo(V)

 List<T> foo(List<V>) List<T> foo(List<V>)

same signatures

compatible signatures

Figure 4.8: A component system using a gathercast interface

In conclusion, the redistribution function, applicable under the conditions stated
above, is the following: f being the redistribution function, Li the ith element of the list
of results, ri the result for the client interface connected to the gathercast interface with
the ith index, and n the number of participating interfaces, we have: n = card(L) and
∀i, j ∈ [1, n], f : L(i) −→ rj

Redistribution functions may be configured using meta-data information, for exam-
ples Java annotations as in our implementation of multicast interfaces.

4.2.2.6 Implications on dynamicity

We note that gathercast interfaces constrain dynamicity, and this must be handled by
the framework. If results of invocations are expected, and that clients connect or dis-
connect from the gathercast interface, the redistribution must still be coherent. There
is no problem if invocations are synchronous, however, if invocations are asynchronous,
then the framework must specify a policy. One possible policy is to forbid unbinding
from gathercast interfaces. Other policies may be implemented by keeping a reference
to unbound interfaces.

4.2.2.7 Programming example

A gathercast server interface of signature MyInterface, named "myGathercastInterface",
that is defined in the type of the component, exists at runtime as a collective interface
named "myGathercastInterface". The type of this interface is defined for instance as
follows:

InterfaceType itfType = typeFactory.createFcItfType(
"myMulticastInterface",
MyInterface.class.getName(),
TypeFactory.SERVER,
TypeFactory.MANDATORY,
TypeFactory.GATHERCAST
);

Section 4.3. SPMD-based component programming 77

It is possible to bind interfaces of compatible type to this gathercast interface, using
the standard binding mechanism:

bindingController.bindFc("myInterface1", gathercastServerItf);

Provided "myInterface1" is of a compatible type, this adds the "myInterface1" interface
to the group of interfaces managed by the gathercast interface.

4.3 SPMD-based component programming

The objective of this section is to show how gathercast and multicast may be combined
in order to realize applications in a SPMD programming style.

4.3.1 SPMD programming concepts

SPMD is a programming model for parallel computing, and arguably the most widely
used pattern in High Performance Computing. It stands for Single Program Multiple
Data, as each task executes the same program (which may contain conditional branch-
ing statements depending on the process ID) but works on different data. It is commonly
used on clusters and parallel machines: a single program is written and loaded onto each
node. Each copy of the program runs independently, on different data, and synchroniza-
tion is provided through explicit messages. Each copy of the program is ranked with a
unique ID. Traditionally, the language itself does not provide implicit data transmission
semantics, and the communications patterns use explicit message-passing implemented
as library primitives. This simplifies the task of the compiler, and encourages program-
mers to use algorithms that exploit locality.

The SPMD models maps easily and efficiently on distributed and parallel applica-
tions and distributed memory computing. It is the paradigm of choice for scientific
parallel computing, with popular programming environments available for developers,
such as MPI (Message Passing Interface) and PVM (Parallel Virtual Machines).

4.3.2 From message-based SPMD to component-based SPMD

The popularity of object-oriented programming led research teams to experiment the
combination of object-oriented and SPMD programming paradigms. The MPI 2 specifi-
cation was a first step, defining most of the library functions as class member functions,
although at a fairly low-level. Further studies such as Object-Oriented MPI [SQU 96]
provide mechanisms to build user-defined data types in accordance with the MPI spec-
ification, and communicate with them; OOMPI encapsulates the functionalities of MPI
into a hierarchy of classes in order to provide a simple and intuitive interface, especially
suitable for C++ bindings, but with a more general vision.

With the success of the Java language and its potential for high performance comput-
ing [BUL 03], four approaches were undertaken so as to bring the SPMD programming
style to Java.

• Wrapping of the MPI library, and delegating invocation to an underlying MPI im-
plementation, such as mpiJava [BAK 99] and JavaMPI [MIN 97].

• Implementations in Java of message-passing specifications like MPI, written in
Java, such as MPJ [CAR 00], which proposes notions such as communicators or
datatypes originating from MPI.

78 Chapter 4. Collective Interfaces

• Group method invocations: instead of using explicit message passing, some propos-
als are based on group method invocations, which allow the exchange of typed data
with a group of remote processes. This suits better the object-oriented paradigm
than explicit message passing, where send and receive primitives must be ex-
plicitely programmed in matching pairs. CCJ [NEL 01] is a communication library
that adds MPI-like collective operations to Java, by creating groups of threads
(equivalent to MPI communicators), and using RMI for communicating with these
groups of threads. As a consequence, every collective operation needs a group of
threads as a parameter, similarly to passing a communicator in MPI collective
operations.

• Object-oriented SPMD with active objects (OOSPMD) is an approach proposed in
[BAD 05b]. It grounds up on the concepts of active objects and typed group commu-
nications. Active objects alleviate the burden of explicitly managing synchroniza-
tion issues for collective communications, and typed group communications proved
adequate for easily building non-embarrassingly parallel applications. OOSPMD
offers SPMD capabilities by considering groups of objects participating in a SPMD
computation, by providing identification of SPMD group members, and by pro-
viding collective operations for communication and global synchronization among
SPMD group members using explicit synchronization barriers.

In the context of Grid computing, the interaction between parallel codes, the deploy-
ment issues and the complexity of coupled applications led to consider more adequate
programming models, such as software components, in the light of the advantages pre-
sented in 2.2. Two examples of this approach are CCA’s CCAFFEINE implementation
[ALL 02] and GridCCM [PÉR 03].

CCAFFEINE is an implementation of the CCA specification aiming at composing
SPMD application from CCA components. It introduces the notion of SCMD (Single
Component Multiple Data) components. Component communicate via ports with other
components in the same address space and communicate via a process-to-process pro-
tocol (e.g. MPI) within their cohort, the SCMD set of corresponding components on all
distributed processors.

As data may need to be redistributed during communications, the GridCCM model
supports it as transparently as possible. The client only needs to describe how its data
are locally distributed and the data is automatically redistributed accordingly to the
server’s preferences. Similarly to CCAFFEINE’s philosophy, where all component in-
teractions behave as if it were a serial application, a GridCCM component appears as
close as possible to a sequential component. For example, a sequential component may
connect itself to a parallel component without noticing it is a parallel component.

4.3.3 Component based SPMD with gathercast and multicast interfaces

We propose a novel approach for bringing the SPMD programming model into the compo-
nent-based programming paradigm, using collective interfaces.

4.3.3.1 Principles

The basic requirements of the SPMD model may be listed as follows:

1. Distributed replicated software entities.

Section 4.3. SPMD-based component programming 79

2. Asynchronous communication between these entities, either through message pass-
ing or remote method invocation.

3. Collective communications: broadcast, scatter, gather.

4. Synchronization capabilities between distributed entities.

5. Identification of entities for selective synchronization.

Our approach relies on distributed components and multicast and gathercast inter-
faces. The requirements of the SPMD model listed above are answered as follows:

1. ProActive/Fractal components are inherently distributed entities.

2. Components communicate through asynchronous method invocations.

3. Collective communications are provided through multicast and gathercast inter-
faces.

4. Synchronization is provided by gathercast interfaces, and the active object model
with futures guarantees a sequential and deterministic processing of invocations.

5. Components are assembled by dependency injection; currently, ranking of compo-
nent references is provided programmatically, though ADL patterns will allow an
automatization of the process.

4.3.3.2 Usage and benefits

SPMD capabilities are easy to implement in our model, however the philosophy is a
bit different than with standard SPMD programming. Indeed, all SPMD features are
specified outside of the functional code, through the gathercast, multicast and collection
interfaces. SPMD groups are defined by the assembly of the components, following the
inversion of control pattern of Fractal binding mechanism. This brings flexibility and
reuse for SPMD programs.

After the assembly is completed, the computation begins once the components are
started (a “start computation” request is sent to the components, followed by a “startFc”
lifecycle request). There is neither any explicit loop nor any explicit barrier: synchro-
nization is automatic when invoking gathercast interfaces, and the computing process
iterates by recursion triggered by neighbors: invoking the gathercast interface triggers
the computation once the synchronization is complete, then results are sent by invoking
the gathercast interface on neighbors, as represented for a typical algorithm in figure
4.9.

The assembly using gathercast interfaces provides an automatic logical synchroniza-
tion (in Lamport’s terms), therefore the global state of the application is always coherent
at the end of the computation, even though some components may compute more rapidly
than others. Figure 4.10 illustrates an SPMD system where components are linked
through gathercast interfaces. The computation time for a given iteration varies among
components (component 2 computes significantly faster in this example), and we can
observe the effect of gathercast synchronizations: for a given component, all neighbors
must send the awaited call before the computation can continue. We also represented
the global logical synchronization which takes place among components, thanks to the
gathercast interfaces.

In usual SPMD algorithms, the code of the application needs to explicitly handle the
synchronization. The number of neighbors may vary and depends on the SPMD entity,
for instance in a 2D grid like in the Jacobi example presented in 6.3.1, the entities may

80 Chapter 4. Collective Interfaces

integrate data from
neighbors

compute using fresh
data

send data to
neighbors

exit upon
termination condition

startmulticast invocations
are sent to

connected gathercast interfaces

gathercast synchronization:
wait for all neighbors to send data to me

multicast invocation:
data sent to all neighbors

Figure 4.9: A typical algorithm for SPMD components

COMPONENT 1 COMPONENT 2 COMPONENT 3

go go go

gathercast synchronization
(waiting for invocations from all clients)

computation

data exchange (requests sent
and enqueued)

logical synchronization

Figure 4.10: Synchronization between components in a SPMD computation

have 2, 3 or 4 neighbors. The synchronization between neighbors requires tedious cod-
ing efforts. One way is to use master-driven synchronization, in which the computation
is driven by a master entity, paying the cost of many extra messages. Another way is

Section 4.4. Towards automatic MxN redistributions 81

to use synchronization barriers, for which a mechanism is available for active objects
[BAD 05b], unfortunately barriers complexify the code and require extra synchroniza-
tion messages which may harm performance. A usually more efficient technique is to
use data synchronization, through data buffering techniques, such as odd-even schemes,
although the code is generally more complex hence error-prone.

In the approach we propose, the synchronization between components is automati-
cally and transparently handled, through a buffering mechanism. There is no need to
write tedious synchronizations in the code of the SPMD entities, provided the functional
code follows a standard algorithm such as the one exposed in figure 4.9.

4.4 Towards automatic MxN redistributions

The MxN problem, as defined in section 2.4, refers to the problem of communicating
and exchanging data between parallel programs, from a parallel program that contains
M processes, to another parallel program that contains N processes. The combination
of gathercast and multicast interfaces provides a simple solution to this problem, as
exposed in figure 4.11. This solution is a non-optimal one because communications are
indirect and data suffers redundant copies.

M components
N components

Figure 4.11: A non-optimized solution to the MxN problem

The MxN problem is more efficiently addressed in frameworks such as PAWS or
GridCCM by implementation-specific means. [RIB 04] explicitely defines an abstract
model which describes the sequence of operations required by the framework for provid-
ing efficient connection between parallel components. Parallel components contain a set
of identical components which communicate through an efficient communication layer
(either because they are on a same cluster or by using low-level specialized middleware
such as MPI). Coupling two parallel components requires first a connection phase, han-
dled by specialized controllers (binding controllers in the case of Fractal). Then a second
phase establishes direct communications between internal components of the two par-
allel components, possibly through a tier communication middleware such as CORBA.
A third phase computes the communication schedules for optimizing data redistribu-
tion communications using third-party libraries. As a result, the exchange of data is
optimized and there is no bottleneck or extra copy and aggregation of parameters.

This abstract model can be projected into the Fractal/ProActive framework by tak-
ing advantage of the multicast and gathercast interfaces, and a resulting efficient im-
plementation is modeled in figure 4.12. The implementation would be based on the
capabilities of local multicast and gathercast interfaces in order to automatically han-
dle redistribution. The configuration of local multicast and gathercast interfaces could

82 Chapter 4. Collective Interfaces

M components
N components

Figure 4.12: An optimized implementation for the MxN problem based on local multicast and
gathercast interfaces

be automatically inferred from the configuration of the collective interfaces involved in
the coupling.

We have yet to formally defined gather-multicast interfaces, which offer the features
of both gathercast and multicast interfaces, but we note that gather-multicast interfaces
would also be an approach to MxN problems with a different set-up (only one side of the
participating components are encapsulated in a composite component), as represented
in figure 4.13.

M components
N components

gather-multicast interface

Figure 4.13: A gather multicast interface for the MxN problem

4.5 Conclusion

In this chapter, we have proposed a specification for multicast and gathercast collective
interfaces. These interfaces may be used for the design of loosely-coupled systems, no-
tably workflows as in Iceni, and we also illustrated how they can leverage component
programming by facilitating the design of tightly-coupled applications (SPMD program-
ming style and MxN data redistribution).

As pointed out in various articles [KIE 99, LEE 03], when looking for the best per-
formance, the relationship between the topology of the infrastructure and the collective
communications must be taken into account. The combination of virtual node composi-
tion and collective interfaces is an attractive and simple way to make sure communica-
tions are optimal.

Collective interfaces allow us to refine our previous definition of Grid components.

Section 4.5. Conclusion 83

At the beginning of this thesis, we had envisioned three types of Grid components: prim-
itive, composite, and parallel components. We had defined parallel components as com-
posite components redispatching calls to their external server interfaces towards their
inner components. The Fractal specification subsequently introduced this notion as an
option to the model:

A Fractal component may even define a new semantic for the communica-
tion between its sub components: instead of specifying that operation invoca-
tions follow bindings, [...] it can for example specify that operation invocations
are broadcasted to all the sub components, in order to model an asynchronous,
reactive "space". Bindings are then useless (another possiblity is to define par-
allel components, where all the sub components have the same type as the
enclosing component, and where each operation invocation received on this
component is executed in parallel by all its sub components). [BRU 04b].

However, the semantics of parallel components were not properly specified until the
introduction of multicast interfaces, that explicitly define one-to-many typed commu-
nications between components. We can now reformulate the definition of a parallel
component as follows:

A parallel component is a composite component with at least one multicast
server interface.

Invocations received on a multicast server interface of the composite are transformed
and redispatched to connected sub-components for a parallel execution. Dispatch can
also occur in parallel.

Gathercast interfaces are advantageously used in parallel components to collect and
redistribute outputs of the inner components.

We also propose an implementation of collective interfaces: in chapter 5, we describe
our implementation of collective interfaces, and in chapter 6, we demonstrate their us-
ability and performance through a series of benchmarks on an SPMD application.

84 Chapter 4. Collective Interfaces

Chapter 5

A Component Framework Based on
Active Objects

One of the objectives of this thesis is to propose a framework for developing and deploy-
ing component-based applications on Grids. We therefore developed an implementation
of the component model described in chapter 3 and 4, based on the ProActive library.
Concretely, we implemented the Fractal component model with extensions for parallel
computing and specificities related to the active object model. The implementation is
named ProActive/Fractal.

5.1 Design goals

This framework was designed following five main objectives:

1. Base the implementation on the concept of active objects. The components in this
framework are implemented as active objects, and as a consequence benefit from
the properties of the active object model.

2. Leverage the ProActive library by proposing a new programming model which may
be used to assemble and deploy active objects. Components in the ProActive library
therefore also benefit from the underlying features of the library as described in
figure 2.14.

3. Provide a component framework suitable for Grid computing, that is, a framework
that would answer the requirements as stated in section 1.1. Basing the frame-
work on the ProActive library already allows to fulfill many of these requirements,
such as distribution, deployment, scalability and heterogeneity. Bringing the com-
ponent programming paradigm to the library is a way to tackle the complexity and
dynamicity of Grid applications, and to provide higher level concepts for parallel
programming.

4. Provide a customizable framework, which may be adapted by the addition of non
functional controllers and interceptors for specific needs, and where the activity of
the components is also customizable.

5. Implement collective interfaces.

We also propose some optimizations, and as in the Julia implementation, they are
achieved to the expense of a trade-off between dynamicity (the possibility to dynami-

85

86 Chapter 5. A Component Framework Based on Active Objects

cally reconfigure the applications, or parts of the applications) and efficiency (direct or
multithreaded invocations).

5.2 Architecture

The ProActive/Fractal framework is an implementation of the Fractal 2 specification.
It follows the general model described in the Fractal specification and implements the
Fractal Java API. The Fractal specification defines conformance levels for Fractal im-
plementation, categorized from 0 to 3.3. The proposed implementation is conformant up
to level 3.3., which means that :

• Components provide a Component interface.

• Component interfaces are castable to Interface.

• Components with configurable attributes provide the AttributeController inter-
face, components with client interfaces provide the BindingController interface,
components that expose their content provide the ContentController interface,
and components that expose their life cycle provide the
LifeCycleController interface.

• A bootstrap component is accessible from a "well-known" name. This bootstrap
component provides a GenericFactory and a TypeFactory interface. Moreover, the
GenericFactory interface is able to create components with any control interfaces
in the set of basic control interfaces (AttributeController,
BindingController, ContentController, LifecycleController); it can thus create
both primitive and composite components. Finally, this interface is also able to cre-
ate primitive components for which invocations are delegated to the encapsulated
implementation code. Note however that some features specific to ProActive are
handled in a specific way, notably the lifecycle, detailed later in this chapter.

• The GenericFactory interface of the bootstrap component is able to create primi-
tive and composite template components; this is realized by using ADL definitions.

5.2.1 An architecture based on ProActive’s Meta-Object Protocol

Our implementation of Fractal relies on ProActive’s Meta-Object Protocol architecture.

5.2.1.1 Component instance

A ProActive/Fractal component is an active object. The implementation of a ProAc-
tive/Fractal component therefore follows the general architecture represented in figure
2.13. As we stated in the presentation of the ProActive library, the reflective framework
may be customized by adding or specializing meta-objects. This allowed us to implement
Fractal components using a reflective framework.

A component is instantiated using the standard Fractal API:

// get bootstrap component
Component boot = Fractal.getBootstrapComponent();
// get type factory
TypeFactory tf = Fractal.getTypeFactory(boot);
// get generic component factory
GenericFactory gf = Fractal.getGenericFactory(boot);

Section 5.2. Architecture 87

// define component type
ComponentType type = tf.createFcType(....);
// define controller description
ControllerDescription controllerDesc = new ControllerDescription(name,

hierarchicalType);
// define content description
ContentDescription contentDesc = new ContentDescription(implementationClass,

constructorParameters);

// instantiate component
Component c = gf.newFcInstance(type, controllerDesc, contentDesc);

The bootstrap component is retrieved by checking the fractal.provider java property
(in our implementation,
org.objectweb.proactive.core.component.Fractive). The controller part of the com-
ponent is described in a ControllerDescription object. The content part of the compo-
nent is described in a ContentDescription object.

The instance of a component is represented in figure 5.1. The newFcInstance method
on the component factory returns a Component object. It is a remote reference of type
Component on the active object which implements the component.

Before describing the architecture of a component in the ProActive library, we first
need to clarify the terminology concerning the typing, between objects and components.
In the Java language, which follows the object paradigm, the live entities are objects.
An object is an instance of a class. The services offered by the class are defined by
the methods of this class. In Fractal, which follows the component paradigm, the live
entities are instances of components. The services offered by the component are defined
by its server interfaces. These server interfaces themselves define methods. Methods
are the actual services invoked in implementations of Fractal based on object-oriented
languages.

As a consequence, in the object paradigm, an instantiation returns an object of a
type compatible with the specified class, whereas in the component paradigm, an in-
stantiation returns a component of type compatible with the specified component type.
In the Fractal Java API, a reference on a component is a reference on an object of type
Component.

Figure 5.1 represents an instance of a ProActive/Fractal primitive component and
figure 5.2 represents a composite one.

The design of the implementation of ProActive/Fractal components relies on the
general design of active objects represented in figure 2.13. It however exhibits three
main specificities. First, a reference on a component from an object A is a reference
on a Component object, which we can clearly see on the bottom left of the figure. This
Component object acts as a stub in the standard ProActive architecture, although for per-
formance reasons, a smart proxy pattern is implemented so that common operations,
such as getting a reference on a component interface, are performed locally. Using the
services of a component implies getting a reference on a given named interface (using
the getFcInterface method), then invoke methods on this interface. The instance of
the Component object holds references on local representatives of the functional and non-
functional interfaces. These representatives act as stub objects, as they reify invocations
and transmit these reified invocations to the proxy. The interfaces representatives are
generated dynamically at the creation of the component, or when retrieving a reference
on this component through a lookup mechanism. For the sake of clarity, only one of
these Interface object is represented on this figure, although all functional and non-

88 Chapter 5. A Component Framework Based on Active Objects

functional interfaces are dynamically created locally when creating the reference to the
component.

The controller part of the component is implemented as meta-objects as can be seen
on the top right of the figures. These meta-objects implement the different controllers,
in particular the basic controllers (binding, lifecycle etc...).

Component

proxy body

B

reified
invocation

meta level

base level

network

primitive component
implementation

A Interface

controller objects

Component
object

. . .

component
meta-objects

references on the component

dynamically generated object

Figure 5.1: ProActive Meta-Object architecture for primitive components

Primitive components In a primitive component, the content of the component corre-
sponds to an implementation class, which in ProActive is the root object of the active
object, as represented on the bottom right of the figure. Following the Fractal speci-
fication, the primitive class may have to implement some callback interfaces such as
BindingController or AttributeController, which are invoked from the meta-level for
performing operations which are dependent on the applicative implementation code.

Composite components Figure 5.2 represents an instance of a composite component.
A composite component is a structuring component which does not have any business
code. Hence the empty composite object as the root of the active object. However, a
composite component still offers and requires functional services, and the interfaces
objects corresponding to these services are implemented as meta-objects, as represented
on the top right of the figure. They may represent internal client interfaces or external
client interfaces. A composite component also offers a ContentController interface and
implementation as a meta-object, for controlling the components it may contain.

Section 5.2. Architecture 89

Component

proxy body

reified
invocation

meta level

base level

network

composite root object
A Interface

controller objects

Component
object

. . .

component
meta-objects

references on the component

. . .

functional interfaces

dynamically generated object

Figure 5.2: ProActive Meta-Object architecture for composite components

5.2.1.2 Configuration of controllers

The control part of the component is fully customizable, and the configuration is spec-
ified in an XML file, which specifies which control interfaces are offered, and which
control classes implement the control interfaces. The default configuration file is the
following:

<?xml version="1.0" encoding="UTF-8"?>
<componentConfiguration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="component-config.xsd"
name="defaultConfiguration">
<!-- This is the default configuration file for the controllers and interceptors of

a component in the proactive implementation.-->
<controllers>

<controller>
<interface>org.objectweb.proactive.core.component.controller.

ProActiveBindingController</interface>
<implementation>org.objectweb.proactive.core.component.controller.

ProActiveBindingControllerImpl</implementation>
</controller>
<controller>

<interface>org.objectweb.proactive.core.component.controller.
ComponentParametersController</interface>

<implementation>org.objectweb.proactive.core.component.controller.
ComponentParametersControllerImpl</implementation>

</controller>
<controller>

<interface>org.objectweb.proactive.core.component.controller.
ProActiveContentController</interface>

90 Chapter 5. A Component Framework Based on Active Objects

<implementation>org.objectweb.proactive.core.component.controller.
ProActiveContentControllerImpl</implementation>

</controller>
<controller>

<interface>org.objectweb.proactive.core.component.controller.
ProActiveLifeCycleController</interface>

<implementation>org.objectweb.proactive.core.component.controller.
ProActiveLifeCycleControllerImpl</implementation>

</controller>
<controller>

<interface>org.objectweb.proactive.core.component.controller.
ProActiveSuperController</interface>

<implementation>org.objectweb.proactive.core.component.controller.
ProActiveSuperControllerImpl</implementation>

</controller>
<controller>

<interface>org.objectweb.fractal.api.control.NameController</interface>
<implementation>org.objectweb.proactive.core.component.controller.

ProActiveNameController</implementation>
</controller>
<controller>

<interface>org.objectweb.proactive.core.component.controller.
MulticastController</interface>

<implementation>org.objectweb.proactive.core.component.controller.
MulticastControllerImpl</implementation>

</controller>
<controller>

<interface>org.objectweb.proactive.core.component.controller.
GathercastController</interface>

<implementation>org.objectweb.proactive.core.component.controller.
GathercastControllerImpl</implementation>

</controller>
<controller>

<interface>org.objectweb.proactive.core.component.controller.
MigrationController</interface>

<implementation>org.objectweb.proactive.core.component.controller.
MigrationControllerImpl</implementation>

</controller>
</controllers>

</componentConfiguration>

We can see the standard required controller interfaces (or extensions of the standard
Fractal API control interfaces) for binding, content, name, super. The binding controller
is actually only instantiated in case of client interfaces, and the content controller is only
instantiated for composite components. The ComponentParametersController allows the
set-up of specific parameters for this implementation. Some other controllers are related
to the features offered by this implementation: migration, management of gathercast
and multicast interfaces.

5.2.2 Lifecycle

The lifecycle of components is implemented by customizing the activity of the active
objects.

ProActive offers the possibility to customize the activity of an active object; this is

Section 5.2. Architecture 91

actually a fundamental feature of the library, as it allows to fully specify the behavior of
active objects. In the context of components, we distinguish the non-functional activity
from the functional activity. The non-functional activity corresponds to the manage-
ment of component requests when the lifecycle of the component is stopped (i.e. only
control requests). The functional activity is encapsulated and starts when the lifecycle
is started. This is illustrated in figure 5.3. The default behavior is to serve all control
requests in a FIFO order until the component is started, then serve all requests in a
FIFO order, until the lifecycle is stopped. The functional activity is encapsulated in the
component activity.

It is possible to fully customize this behavior.
First, the functional activity may be customized by implementing the InitActive,

RunActive and EndActive interfaces. Two conditions must be respected though, for a
smooth integration with the component lifecycle:

1. The control of the request queue must use the org.objectweb.proactive.Service
class.

2. The functional activity must loop on the body.isActive() condition (this is not com-
pulsory, but it allows to automatically end the functional activity when the lifecycle
of the component is stopped. It may also be managed with a custom filter on the
request queue).

By default, when the lifecycle is started, the functional activity is initialized, run, then
ended upon the !isActive() condition (this method is overriden if the active object is a
component, so that this condition is valid when the lifecycle is set to stopped).

Second, the component activity itself may be customized, by implementing the
ComponentInitActive, ComponentRunActive and ComponentEndActive interfaces.

5.2.3 Interception mechanism

The Fractal specification states that a component controller can intercept incoming and
outgoing operation invocations targeting or originating from the component’s sub com-
ponents. This feature is provided in the ProActive/Fractal implementation, and it allows
an interception at the meta-level, of reified invocations, with configurable pre and post
method processing. It is an easy way of providing AOP-like features, in order to deal no-
tably with non functional concerns. Interceptors may intercept incoming and outgoing
invocations, and they are sequentially composable.

An input interceptor is a controller which must implement the
org.objectweb.proactive.core.component.interception.InputInterceptor interface,
which defines the following methods:

public void beforeInputMethodInvocation(MethodCall methodCall);
public void afterInputMethodInvocation(MethodCall methodCall);

The MethodCall object represents the reified invocation in the ProActive library.
Similarly, an output interceptor must implement the

org.objectweb.proactive.core.component.interception.OutputInterceptor interface,
which defines the following methods:

public void beforeOutputMethodInvocation(MethodCall methodCall);
public void afterOutputMethodInvocation(MethodCall methodCall);

92 Chapter 5. A Component Framework Based on Active Objects

Component activity initialization

Component activity execution

Functional activity initialization

Functional activity execution

Functional activity end

Component activity end

Serve control request in FIFO

LC started?

Serve any request in FIFO

yes

yes

yes

no

no

no isActive?

LC stopped?

creation of active object

termination of active object

related to component activity

related to encapsulated functional activity

Figure 5.3: Default encapsulation of functional activity inside component activity

The input interception mechanism occurs at the service of the request: the reified
request is delegated to the input controllers before and after the method is processed.

The output interception mechanism occurs in the interface representative (whose
code is dynamically generated) when the invocation is reified: before and after transfer-
ring the invocation to the connected component, the reified request is delegated to the
output interceptors. The output interception is realized by replacing, during a binding
operation, the server interface representative by a server interface representative of the
same type, containing the interception code.

Interceptors are configured in the controllers XML configuration file, by simply adding
input-interceptor="true" or/and output-interceptor="true" as attributes of the con-
troller element in the definition of a controller (provided of course the specified inter-

Section 5.2. Architecture 93

ceptor is an input or/and output interceptor). For example a controller that would be an
input interceptor and an output interceptor would be defined as follows:

<componentConfiguration>
<controllers>
....
<controller input-interceptor="true" output-interceptor="true">
<interface>InterceptorControllerInterface</interface>
<implementation>ControllerImplementation</implementation>

</controller>
...

For input interceptors, the beforeInputMethodInvocation method is called sequen-
tially for each controller in the order they are defined in the controllers configuration
file. The afterInputMethodInvocation method is called sequentially for each controller
in the reverse order they are defined in the controllers configuration file.

If in the controller config file, the list of input interceptors declares first,
InputInterceptor1, and second, InputInterceptor2. This means that an invocation on
a server interface will follow the path described in figure 5.4. For output interceptors,

caller

InputInterceptor1 (beforeInputMethodInvocation)

InputInterceptor2 (beforeInputMethodInvocation)

callee

InputInterceptor2 (afterInputMethodInvocation)

InputInterceptor1 (afterInputMethodInvocation)

Figure 5.4: Execution sequence of an input interception

the beforeOutputMethodInvocation method is called sequentially for each controller in
the order they are defined in the controllers configuration file. The
afterOutputMethodInvocation method is called sequentially for each controller in the
reverse order they are defined in the controllers configuration file.

If in the controller config file, the list of output interceptors declares first
OutputInterceptor1 and second OutputInterceptor2. This means that an invocation on
a client interface will follow the path described in figure 5.5.

caller

OutputInterceptor1 (beforeOutputMethodInvocation)

OutputInterceptor2 (beforeOutputMethodInvocation)

callee

OutputInterceptor2 (afterOutputMethodInvocation)

OutputInterceptor1 (afterOutputMethodInvocation)

Figure 5.5: Execution sequence of an output interception

94 Chapter 5. A Component Framework Based on Active Objects

An interceptor being a controller, it must follow the rules for the creation of a cus-
tom controller (in particular, extend AbstractProActiveController). Input interceptors
and output interceptors must implement respectively the interfaces InputInterceptor
and OutputInterceptor, which declare interception methods (pre/post interception) that
have to be implemented.

Here is a simple example of an input interceptor:

public class MyInputInterceptor extends AbstractProActiveController
implements InputInterceptor, MyController {
public MyInputInterceptor(Component owner) {
super(owner);

}

// some init code
...

// foo is defined in the MyController interface
public void foo() {
// foo implementation

}
public void afterInputMethodInvocation(MethodCall methodCall) {
System.out.println("post processing an intercepted an incoming functional

invocation");
// interception code

}
public void beforeInputMethodInvocation(MethodCall methodCall) {
System.out.println("pre processing an intercepted an incoming functional

invocation");
// interception code

}
}

The controller is included in the configuration of a given component as follows:

<componentConfiguration>
<controllers>

....
<controller input-interceptor="true">
<interface>MyController</interface>
<implementation>MyInputInterceptor</implementation>

</controller>
...

5.2.4 Communications

Communications between components in ProActive/Fractal occur through interface ref-
erences, and rely on the standard ProActive communication mechanism. They may
therefore use any underlying protocol supported by ProActive (RMI, RMIssh, http...),
and the semantics of invocations are kept, which means that some conditions must be
respected for an invocation to be asynchronous. In particular, if the invoked method
throws any exception, the invocation is synchronous. This must be considered when
using the Fractal API, as most methods of the API declare throwing exceptions. The as-
sembly operations in particular are synchronous operations (although some parallelism

Section 5.2. Architecture 95

may be provided).

Optimization with short cuts Communications between components in a hierarchical
model may involve crossing several membranes of enclosing composite components, and
therefore paying the cost of several indirections. If the invocations are not intercepted
in the membranes, then it is possible to optimize the communication path by short cut-
ting: communicating directly from a caller component to a callee component by avoiding
indirections in the membranes.

shortcuts

b. some composite components are distributed, 5 remote communications

c. optimization through shortcuts: 2 local communications

a. all components are colocated: 5 local communications

Figure 5.6: Using short cuts for minimizing remote communications

In the Julia implementation, a short cut mechanism is provided for components in
the same JVM, and the implementation of this mechanism relies on code generation
techniques.

We provide a short cut mechanism for distributed components, and the implementa-
tion of this mechanism relies on a tensioning technique: the first invocation determines
the short cut path, then the following invocations will use this short cut path. This
mechanism requires composite components to be passive components: objects that aug-
ment a root object with a MOP, but do not have any request queue. As a consequence,

96 Chapter 5. A Component Framework Based on Active Objects

the rendez-vous of the communication between a client and a server interface, which
guarantees causally ordered communications, does not end until the effective server
interface has been reached (and the calling thread has returned).

For example, in figure 5.6, a simple component system, which consists of a composite
containing two wrapped primitive components, is represented with different distribu-
tions of the components. In a, all components are located in the same JVM, therefore all
communications are local communications. If the wrapping composites are distributed
on different remote jvms, all communications are remote because they have to cross
composite enclosing components. The short cut optimization is a simple bypassing of
the wrapper components, which results in 2 local communications for the sole functional
interface.

Short cuts are available when composite components are synchronous components
(this does not break the ProActive model, as composite components are structural com-
ponents). Components can be specified as synchronous in the ControllerDescription
object that is passed to the component factory:

ControllerDescription controllerDescription =
new ControllerDescription("name", Constants.COMPOSITE, Constants.SYNCHRONOUS);

When the system property proactive.components.use_shortcuts is set to true, the com-
ponent system automatically establishes short cuts between components whenever pos-
sible.

Of course, a trade-off is required between performance and flexibility, similarly to
the Julia implementation: optimized communications in ProActive/Fractal come at the
expense of dynamic reconfigurability.

5.3 Implementation of collective interfaces

In order to provide facilities for parallel programming, ProActive/Fractal proposes an
implementation of the proposal of collective interfaces described in chapter 4. To sum it
up, the idea is to introduce multicast and gathercast interfaces: multicast interfaces are
used for parallel invocations and data redistribution, and gathercast interfaces are used
for synchronization and data gathering. The configuration of the collective interfaces
policies employs annotations in Java interfaces.

5.3.1 Adaptation of the signatures of methods

As explained in chapter 4, the signatures of methods of client and server interfaces are
different when using collective interfaces. For list parameters and return types, the
possibilities in our implementation are summarized in table 5.1. Broadcast mode is not
yet supported for the redistribution of results in gathercast interfaces.

The framework provides transparent adaptation of method invocations and distribu-
tion of parameters, through proxies and controllers. Compatibilities of client and server
interfaces are checked at runtime, though if using assembly tools this could be checked
at design-time.

5.3.2 Multicast interfaces

Our implementation of multicast interfaces does not currently provide dynamic dis-
patch. The other features described in chapter 4 are available, and in particular, distri-

Section 5.3. Implementation of collective interfaces 97

List<A> foo (List)

A bar (B)
List<A> bar (List)

client interface server interface

A foo (List)

A foo (B)

(broadcast mode)

(scatter mode)
multicast

gathercast

(scatter mode)

List<A> bar (B) (broadcast mode)

Table 5.1: Adaptation of method signatures, with list parameters or return types, between client
and server interfaces for collective interfaces in the proposed implementation

bution policies are customizable.

5.3.2.1 Principles

The implementation of multicast interfaces relies on two principles: first, reuse the ex-
isting mechanism for typed group communications, and second use a delegation mech-
anism for adapting the signatures of the interfaces. Therefore, two group proxies are
used for a multicast invocation: the first proxy corresponds to the signature of the client
interface, and the second to the signature of the server interfaces. Bindings are trans-
parently handled so that the client component receives a reference on a group proxy of
the type of the client interface.

This mechanism is illustrated in figure 5.7, which corresponds to the design repre-
sented in figure 5.8.

When an invocation is performed, a reified invocation is first created (here on method
void bar(List<A>)), given to the first group proxy, which delegates it to a second proxy
of the type of the server interfaces (for invocations on method void bar(A)). Parameters
are then automatically distributed according to the distribution policy specified as an
annotation, and the second proxy transfers the new reified invocations to connected
server interfaces in a parallel manner (using the standard multithreading mechanism of
ProActive typed groups). This delegation and adaptation process between group proxies
is implemented by extending the standard group proxy, the ProxyForGroup class, into
the ProxyForComponentInterfaceGroup.

5.3.2.2 Configuration

The distribution of parameters in our framework is specified in the definition of the
multicast interface, using annotations. Elements of a multicast interface which can be
annotated are: interface, methods and parameters. The different distribution modes are
explained later. The examples in this section all specify broadcast as the distribution
mode.

Interface annotations A distribution mode declared at the level of the interface defines
the distribution mode for all parameters of all methods of this interface, but may be
overriden by a distribution mode declared at the level of a method or of a parameter. The
annotation for declaring distribution policies at level of an interface is @org.objectweb.

98 Chapter 5. A Component Framework Based on Active Objects

body

B

. . .

invocation adaptation
and delegation

between group proxies

interface representative
void bar(List<A>)

interface group
proxy representative

void bar(List<A>)

delegatee interface group
proxy representative

void bar(A)

interface representative
void bar(A)

void bar(List <A>)

void bar(A)

void bar(A)

reified invocations

Figure 5.7: Adaptation and delegation mechanism for multicast invocations

 void bar(List <A>)

 void bar(A)

 void bar(A)

Figure 5.8: An example of multicast interfaces: the signature of an invoked method is exposed,
and in this case exhibits a scattering behavior for the parameters

proactive.core.component.type.annotations.multicast.ClassDispatchMetadata and
is used as follows:

@ClassDispatchMetadata(mode=@ParamDispatchMetadata(mode=ParamDispatchMode.BROADCAST)
)

interface MyMulticastItf {
public void foo(List<T> parameters);
}

Method annotations A distribution mode declared at the level of a method defines the
distribution mode for all parameters of this method, but may be overriden at the level
of each individual parameter. The annotation for declaring distribution policies at level
of a method is @org.objectweb.proactive.core.component
.type.annotations.multicast.MethodDispatchMetadata and is used as follows:

@MethodDispatchMetadata(mode = @ParamDispatchMetadata(mode =ParamDispatchMode.
BROADCAST))

public void foo(List<T> parameters);

Section 5.3. Implementation of collective interfaces 99

Parameter annotations The annotation for declaring distribution policies at level of a
parameter is @org.objectweb.proactive.core.component.type.annotations
.multicast.ParamDispatchMetadata and is used as follows:

public void foo(@ParamDispatchMetadata(mode=ParamDispatchMode.BROADCAST) List<T>
parameters);

For each method invoked and returning a result of type T, a multicast invocation re-
turns an aggregation of the results: a List<T>. There is a type conversion, from return
type T in a method of the server interface, to return type List<T> in the corresponding
method of the multicast interface. The framework transparently handles the type con-
version between return types, which is just an aggregation of elements of type T into a
structure of type List<T>.

Available distribution policies 3 modes of distribution of parameters are provided by
default, and define distribution policies for lists of parameters:

• BROADCAST copies a list of parameters and sends a copy to each connected server
interface. The distribution of parameters corresponds to the following transforma-
tion for all invocations (one for each connected server interface):
foo(a1, ...am, L1, ...Ll) −→ foo(a1, ...am, L1, ...Ll)

• ONE-TO-ONE sends the ith parameter to the connected server interface of index i.
This implies that the number of elements in the annotated list must be equal to the
number of connected server interfaces. The distribution of parameters corresponds
to the following transformation for the ith invocation, sent to the ith connected
server interface:
foo(a1, ...am, L1, ...Ll) −→ foo(a1, ...am, L1i , ...Lli)

• ROUND-ROBIN distributes each element of the list parameter in a round-robin fash-
ion to the connected server interfaces. The distribution of parameters corresponds
to the following transformation:
0 ≤ i ≤ n : foo(a1, ...am, L1, ...Ll) −→ foo(a1, ...am, L1card(L1)mod(i)

, ...Llcard(Ll)mod(i)
)

with n the number of connected server interfaces.

It is also possible to define custom distributions by specifying the distribution algo-
rithm in a class which implements the org.objectweb.proactive.core.component.type.
annotations.multicast.ParamDispatch interface, thereby defining the distribution al-
gorithm which will be used during the dispatch phase. There are only three methods to
implement:

public List<Object> dispatch(Object inputParameter, int nbOutputReceivers) throws
ParameterDispatchException;

public int expectedDispatchSize (Object inputParameter, int nbOutputReceivers)
throws ParameterDispatchException;

public boolean match(Type clientSideInputParameter, Type serverSideInputParameter)
throws ParameterDispatchException;

Then the custom dispatch mode is used as follows:

@ParamDispatchMetadata(mode =ParamDispatchMode.CUSTOM,
customMode=CustomParametersDispatch.class))

100 Chapter 5. A Component Framework Based on Active Objects

5.3.3 Gathercast interfaces

The implementation of gathercast interfaces in our framework is restricted to the man-
agement of a basic synchronization. Synchronization policy is not configurable, except
for a timeout which can be specified if the method returns a result. Data redistribu-
tion policies for results are not configurable and the redistribution of results occurs in a
one-to-one manner to the client interfaces.

5.3.3.1 Principles

Bindings to gathercast interfaces are bi-directional (see section 4.2.2.3), which means
that the server gathercast interface holds a reference to its clients. This is used for syn-
chronization: once an invocation on a given method foo1 comes from a client interface,
the gathercast interface will create the corresponding request to be processed by the
server component until all clients have sent an invocation on this method foo1. Until
this condition is reached, the requests are queued in a special queue.

At the moment the reified invocation on method foo1 from the last connected client is
served, the synchronization condition is reached, and a new reified invocation is created
by gathering all parameters from all client invocations. The new reified invocation is
then served by the server component.

The data structures representing the queues of requests (reified invocations) is illus-
trated in figure 5.9. In the figure, we can see the enqueued requests for one gathercast
interface (gathercastItf1) and two different methods. Suppose we have three clients,
and Ri is an incoming request from client i. In the case of foo1, when the request on
this method coming from client 3 will be served, then a new request will be created and
served by the component, and the queue will be emptied of the corresponding requests.
We can also observe that client 1 invoked foo1 twice, but the mechanism waits for the
first queue to be full until processing any other queue, even though they are full. This
is a way to guarantee causal dependency.

 gathercastItf1

gathercast interface name invoked method requests from clients

 foo1

 foo2

foo1
client1

foo1
client2

foo1
client1

. . .

foo2
client3

. . .

foo1
client2

Figure 5.9: Data structure for the buffering of requests in gathercast interfaces

Section 5.3. Implementation of collective interfaces 101

5.3.3.2 Asynchronism and management of futures

A fundamental feature of the library is the asynchronism of method invocations: we
want to preserve it in the context of gathercast interfaces, not only between client and
server gathercast interface, but also for the transformed invocation in the gathercast
interface.

When the invoked method returns void, there is no problem as this is considered as
a one way invocation in ProActive, no future result is expected. If the invoked method
returns a result however, the method returns a future, although the invocation has
not been processed yet (an invocation on a gathercast interface will not proceed until
all client interfaces invoked the same method). We faced a complex problem: how to
return and update futures of client invocations on gathercast interfaces? We considered
two strategies. The fist one was to customize the request queue so that a local data
structure (similar to the one described in figure 5.9) would handle the incoming requests
for gathercast interfaces. A second option was to use a dedicated tier active object for
handling futures.

As we did not want to intervene in the core of the ProActive library by modifying the
request queue, we selected and implemented the second option, which not only works
but also provides an example of the management of futures and automatic continuations
with active objects.

The mechanism is illustrated in figure 5.10. One futures handler active object is
created for each gathercast request to be processed. It has a special activity, which only
serves distribute requests once it has received the setFutureResult request.

When a request from a client is served by the gathercast interface, it is enqueued in
the queue data structure, and the result which is return is the result of the invocation
of the distribute method (with an index) on the futures handler object. This result is
therefore a future itself.

When all clients have invoked the same method on the gathercast interface, a new
request is built and served, which leads to an invocation which is performed either on
the base object if the component is primitive, or on another connected interface if the
component is composite. The result of this invocation is sent to the futures handler
object, by invoking the setFutureResult method. The futures handler will then block
until the result value is available. Then the distribute methods are served and the
values of the futures received by the clients are updated.

Although this mechanism fulfills its role using the standard mechanism of the li-
brary, we observed that it does not scale very well: one active object for managing fu-
tures is created for each gathercast request, and even though we implemented a pool
of active objects, there are too many active objects created when stressing the gather-
cast interface. Therefore, the first approach envisaged above should be preferred in the
future (we unfortunately did not have time to implement it, as it is quite complex and
deals with sensitive parts of the library).

5.3.3.3 Timeout

It is possible to specify a timeout, which corresponds to the maximum amount of time
between the moment the first invocation of a client interface is processed by the gath-
ercast interface, and the moment the invocation of the last client interface is processed.
Indeed, the gathercast interface will not forward a transformed invocation until all in-
vocations of all client interfaces are processed by this gathercast interface. Timeouts

102 Chapter 5. A Component Framework Based on Active Objects

1

2

4

5

7f3

8

1 4

2 5

3 6

7

8

requests on gathercast interface

futuresHandler.distribute(id)

result of futuresHandler.distribute(id)

3

6

conditions reached: serving gathercast request

futures handler gets the future from 7

gathercast clients

gathercast server component

tier component to which is
delegated the gathercast request

gathercast futures handler active object

Figure 5.10: Management of futures for gathercast invocations

for gathercast invocations are specified by an annotation on the method subject to the
timeout, the value of the timeout is specified in milliseconds:

@org.objectweb.proactive.core.component.type.annotations.gathercast.MethodSynchro(
timeout=20)

If a timeout is reached before a gathercast interface could gather and process all incom-
ing requests, a org.objectweb.proactive.core.component.exceptions.
GathercastTimeoutException is returned to each client participating in the invocation.
This exception is a runtime exception. Timeouts are only applicable to methods which
return a non-void value: there is no simple way otherwise to inform the client that the
timeout has been reached: the client would need to provide a callback interface, which
does not fit well with a simple invocation-based programming model.

5.4 Deployment

The deployment process is based on both the Fractal ADL capabilities and the ProAc-
tive deployment framework. A component system is usually described using an ADL,
and the location of the components are specified in the ADL using the virtual node ab-
straction. Virtual nodes are then mapped to the physical infrastructure by using the
standard ProActive deployment mechanism as described in 2.6.2.5.

5.5 Conclusion

During this thesis, we developed a implementation of the Fractal model based on the
ProActive library; this implementation supports extensions for parallel computing, and

Section 5.5. Conclusion 103

is highly configurable. It offers some optimizations and facilities for parallel computing
which address specificities of Grid computing.

This framework is the result of several years of developments and experiments. It is
quite complex and uses many engineering techniques such as bytecode generation, syn-
chronization, multithreading, code annotations and reflection. The core of the ProAc-
tive/Fractal framework contains around 17000 lines of code, located in 164 classes in the
package org.objectweb.proactive.core.component and sub-packages. There is mini-
mal intrusion in the core of the ProActive library. The framework is thoroughly tested
through 22 regression tests of fine and medium grain size.

The framework is extensible, and it is released in open-source as part of the ProAc-
tive library: it may be freely downloaded and used. It is distributed with user docu-
mentation, developer documentation as javadoc, and a number of examples, including
a version of the Hello World example from the Julia implementation incremented with
deployment features.

The next chapter describes some of the applications developed with this framework:
it discusses methodology for component-based programming and presents some applica-
tions that were used to evaluate usability, scalability and performance of the framework.

104 Chapter 5. A Component Framework Based on Active Objects

Chapter 6

Methodology and Benchmarks

This chapter relates our experiments with the ProActive/Fractal framework; it is di-
vided in three sections. First, we evaluate the feasibility of transforming existing ap-
plications with an object-oriented design towards a component-oriented design. Second,
we outline the benefits of such a refactoring, and considering a relatively complex appli-
cation, we describe a methodology for refactoring existing applications, and we evaluate
the performance of the resulting component-based version with respect to the object-
oriented one. We finish in the third section, by evaluating the usage of collective inter-
faces for SPMD programming.

6.1 C3D

The C3D benchmark is a Java benchmark application that measures the performance of
a 3D raytracer renderer distributed over several Java virtual machines using Java RMI.
This benchmark gives an indication of the performance of the serialization process and
of Java RMI itself.

Our C3D application is a user-driven version of the benchmark, and is both a collab-
orative application and a distributed raytracer: users interact through messaging and
voting facilities in order to choose a scene that is rendered using a set of distributed
rendering engines working in parallel.

We refactored the C3D application as a proof-of-concept for using a component-based
approach.

6.1.1 Methodology

The core idea was to minimize the modifications of the existing code. For this purpose,
we used inheritance and created the required explicit interfaces of a component-based
design when necessary. The approach taken is similar to the approach presented in
the Fractal tutorial [FRAb]. This experiment allowed us to experiment our framework
based on active objects with an existing interactive application.

6.1.2 Design

C3D is designed around three core entities: the first one is the users, which interact and
vote for updating a 3D scene, The second one is the dispatcher, which acts as the election
referee and delegates the update orders to available rendering engines. The third one is
the rendering engines, which perform a parallel computation of the scene to render, and

105

106 Chapter 6. Methodology and Benchmarks

send back the results to the dispatcher, which itself updates the users. Each one of these
entities is implemented as an active object, which we want to view as a component.

Dispatcher Engine User

C3DDispatcher C3DRenderingEngine C3DUser

DispatcherImpl EngineImpl UserImpl

interfaces

code logic

component logic

Figure 6.1: C3D component classes and interfaces

We chose a wrapping approach for refactoring the application, in order to keep the
original code. Wrapping consists in encapsulating the original classes. Instead of link-
ing the classes together by setting fields through the initial methods, this is done in
binding methods, using the inversion of control pattern. For this wrapping task, we
had to localize the assignation of references to the C3DRenderingEngine, C3DUser and
C3DDispatcher classes, and expose these assignations as component bindings. We also
need to identify and expose functional interfaces, hence the Dispatcher, Engine and User
interfaces which must be implemented by the wrapping classes. The resulting class de-
sign is represented in figure 6.1, and the components are described in ADL files. User
components can be instantiated and dynamically bound to the application through a
lookup mechanism.

6.1.3 Observations

Refactoring a basic application is a good proof of concept that provided us with prelimi-
nary feedback on the component framework implementation and usability. The immedi-
ate benefits that we identified are a better modularity thanks to the absence of explicit
dependencies between entities, as well as an enforced separation of interface and imple-
mentation, a requirement for easily updating or replacing code.

We also identified the C3D application as a promising candidate for experimenting
gathercast selection strategies in the context of collaborative applications. The current
C3D application performs a selection of the inputs of users based on a voting mecha-
nism, which is entangled with the functional code of the dispatcher. Further refactoring
will connect the users and dispatcher components with a gathercast interface. Using
selection strategies with gathercast interfaces will separate the voting logic and allow a
customization of the selection parameters.

6.2 Jem3D

In this experiment, we refactored an existing application towards a component-oriented
design and evaluated qualitatively and quantitatively (through benchmarks) the result-
ing implementation.

Section 6.2. Jem3D 107

6.2.1 The Jem3D application

Jem3D is a numerical solver for the 3D Maxwell’s equations modelling the time do-
main propagation of electromagnetic waves. It relies on a finite volume approximation
method designed to deal with unstructured discretization of the computation domain. A
domain is divided into tetrahedra where local calculation of the electromagnetic fields
is performed. More precisely, the balance flux is evaluated as the combination of the
elementary fluxes computed through all four facets of a tetrahedron. After each com-
putation step, the local values calculated in a tetrahedron are passed to its neighbours
and a new local calculation starts.

The intensity of the computation can be changed by modifying the number of tetrahe-
dra in the domain. This is done by setting the mesh size, that is, the triplet (m1;m2;m3)
that determines the number of points on the x, y, and z axis used for the building of the
tetrahedral mesh. The higher the mesh size, the higher the number of tetrahedra, and
the more computation intensive the application.

Parallelization in Jem3D relies on dividing the computational domain into a number
of subdomains; this division is specified by another triplet that determines the number
of subdomains on the x, y, and z axis. Since some facets are located on the boundary be-
tween subdomains, neighbouring subdomains must communicate to compute the values
of those border facets. More details on Jem3D can be found in [HUE 04].

Figure 6.2 shows the runtime structure of the original Jem3D (a 2*2*1 division into
subdomains is assumed); the main elements of the architecture are outlined next.

MainCollector Launcher

SubDomain SubDomain

SubDomain SubDomain

SteeringAgent

A

partial solution sending
from subdomains
and steering from main collector
subdomain border exchange

distributed object creation

distributed object

Figure 6.2: Original Jem3D architecture following an object-oriented design

Subdomains correspond to partitions of the 3D computational domain; they perform
electromagnetic computations and communicate with their closest neighbours in the 3D
grid. Moreover, they send partial solutions with a predefined frequency to the main col-
lector. The main collector is responsible for monitoring and steering the computation by
interacting with the subdomains. The monitoring and steering functionality is used by
one or more steering agents, which are dynamically registered with the main collector.

108 Chapter 6. Methodology and Benchmarks

The application includes a command-line agent and a graphical agent with visualisation
capabilities. Steering agents communicate with each other to ensure that only a single
agent at a time has the right to control the computation. Finally, the launcher is re-
sponsible for obtaining the input data, creating the main collector and the subdomains,
setting up the necessary connections between them, initialising them with the neces-
sary information, and starting the computation. Communication between the entities
relies on the asynchronous remote invocation and group communication mechanisms
provided by ProActive.

6.2.2 Problem statement

The original Jem3D application suffers from limited modifiability and limited reusabil-
ity of its parts, which can be largely attributed to two factors.

First, the application lacks reliable architectural documentation, which is essential
for understanding and enhancing complex software systems. Jem3D has been subjected
to successive changes by multiple people without corresponding updates to the archi-
tectural information, which has thus become obsolete. Since the original object-based
design enforced neither separation of interfaces from implementation, nor separation of
concerns, the software architecture suffered from erosion.

Second, the application parts are tightly coupled together. Indeed, as in most object-
oriented applications, the code includes hard-wired dependencies to classes, which limits
their reusability, increases the impact of changes, and inhibits run-time variability. For
example, changing the subdomain implementation requires updating the source code
of both the main collector and the launcher and rebuilding the whole application. As
another example, although the Jem3D parallelisation follows a typical geometric de-
composition pattern, no part of the application can be reused in other contexts where
this pattern is applicable.

To address such modifiability and reusability limitations, Jem3D was re-engineered
into a component-based system.

6.2.3 Methodology

This section presents our approach for addressing the modifiability and reusability lim-
itations of Jem3D. The approach consists of a general componentization process and the
use of the Fractal/ProActive component technology, which are discussed in the following
two sections.

Componentization process The purpose of the componentization process is to trans-
form an object-based system into a component-based system. The process assumes that
the target component platform allows connecting components via provided and required
interfaces, and that it minimally supports the same communication styles as the object
platform (e.g., remote method invocation and events). Figure 6.3 shows the main activ-
ities and artefacts defined by the componentization process. Note that the activities do
not necessarily proceed sequentially. For example, the activity “Implement interface-
based version” may be performed when an initial component architecture is created and
revisited when an updated architecture is available. The activities of the process are
explained next.

A. Recovery of original architecture The goal of this activity is to produce an ar-
chitectural description of the original system, serving as the basis for understanding

Section 6.2. Jem3D 109

A. Original
architecture

recovery

B. Component
architecture design

C. Implementation of
interface-based

version

D. Implementation of
component-based

system

source code and documentation

Figure 6.3: Componentization process

and transforming the system. The activity uses as input the source code, documenta-
tion, build files, and any other software artefacts. It consists in analysing the source
system, extracting architecturally significant information, and documenting different
views of the architecture. As a minimal requirement, the documentation must include
a run-time view describing executing entities (e.g., objects or distributed objects), com-
munication paths, and interactions over those paths (e.g., sequences of remote method
invocations).

B. Component architecture design The goal of this activity is to design the target
component architecture using as input the original architecture. The component archi-
tecture specifies a set of components, their relationships, and the interactions among
them and builds on the target component model. The activity can be divided into four
steps:

• Define initial architecture. The executing entities of the original architecture are
used as candidate components to form an initial component architecture.

• Refine component selection. Candidate components are decomposed into smaller
components or integrated into larger components, and their relationships and in-
teractions are updated accordingly. These changes are driven by modifiability and
performance concerns. Decomposition is typically used to increase the reusability
of components and the flexibility of the architecture, whereas integration is used
to reduce performance overheads.

• Specify component interfaces. By analyzing and organizing the interactions be-
tween each component and its environment, this step identifies provided and re-
quired interfaces. Multiple interfaces for each component are defined in order to
reduce dependencies.

• Refine architecture using available component model features. The component
architecture is adapted to exploit all the available features provided by the tar-

110 Chapter 6. Methodology and Benchmarks

get component model, such as hierarchical composition in Fractal, or implicitly-
accessed, container services in CCM.

C. Implementation of interface-based version The goal of this activity is to imple-
ment and test an interface-based version of the system in which entities are connected
via provided/required interfaces. The activity involves restructuring the original code
without adding dependencies on the target component model. The motivation for this
activity is to validate an important part of the target component architecture at an ear-
lier time, before migrating the code to the component platform. Moreover, this activity
simplifies this migration because of the closer correspondence of the produced code to
the target architecture. The activity can be divided into the following steps:

• Align code with component architecture. This step ensures that the code includes
classes which correspond to all intended components, and that these classes im-
plement all interfaces provided by their corresponding components.

• Add dependency injection mechanism. Supporting configurable connections re-
quires a uniform mechanism for injecting references to required interfaces into
objects. Such mechanisms are provided by most component models, and are mani-
fested as standard methods for accepting and managing interface references. This
step ensures that all classes corresponding to intended components support an in-
jection mechanism, thus making their dependencies explicit and externally modi-
fiable.

• Use injection mechanism. This step modifies the classes so that they invoke collab-
orating classes only through injected references. Moreover, the step modifies any
“injector” code that supplies a class with references to required objects to use the
uniform injection mechanism.

D. Implementation of component-based system The goal of this activity is to
implement and test the new component-based system. It uses as inputs the com-
ponent architecture and the intermediate, interfacebased version. It typically in-
volves minor changes for repackaging classes as component implementations. It
may also involve changes for exploiting features of the component model that were
unavailable in the original object platform.

Most of the effort was spent on the architecture recovery activity because of the un-
documented and degraded structure of the system. The run-time view of the original
architecture is described in figure 6.2. During the component architecture design, the
launcher component was decomposed into a subdomain factory component and an acti-
vator component; the launcher is responsible for creating, initialising, and connecting
the subdomains, and the subdomain factory is responsible for obtaining the input data,
passing them to the factory, and starting the computation. The reason for the decompo-
sition was to make the factory reusable beyond Jem3D.

A later iteration of the activity grouped the factory and the subdomains into a com-
posite domain component, exploiting the hierarchical composition feature of Fractal/ProAc-
tive. Implementing the interface-based version served to increase confidence in the
new component architecture, and drastically simplified the final component-based im-
plementation. The component-based implementation involved wrapping classes to form
Fractal components and replacing a large part of injector logic with Fractal ADL de-
scriptions (see below).

Section 6.2. Jem3D 111

Domain

*

*

MainCollector

*

creates and
assembles

SubDomainFactory

Activator

SteeringAgent*

SubDomain*

Figure 6.4: Component-based Jem3D design

Figure 6.4 shows the static structure of the resulting component-based Jem3D using
a Fractal representation, which was modified to include cardinality attributes, as in
UML for instance. Indeed, the number of subdomains is variable and it would be clumsy
to represent without an abstraction for multiple instances. The runtime configuration
consists of multiple subdomains, logically arranged in a 3D mesh, with each subdomain
connected to its neighbours via multicast interfaces. The runtime configuration also
includes a dynamically-determined number of steering agents. The main collector is
connected to all agents via a multicast interface; agents are connected to each other via
multicast interfaces.

The initial configuration of Jem3D is described using Fractal ADL, and a version
written in pseudo-code is presented here:

component ConsoleSteeringAgent definition = SteeringAgentImpl
component MainCollector definition = MainCollectorImpl
component Activator definition = ActivatorImpl
component Domain

interface ... // interfaces definitions omitted
component SubDomainFactory definition=FactoryImpl (SubDomainImpl)
// bindings within composite
// interfaces names omitted
binding this --> SubDomainFactory

// bindings among top-level components
// interface names omitted
binding ConsoleSteeringAgent --> MainCollector
binding MainCollector --> ConsoleSteeringAgent
binding Activator --> MainCollector
binding Activator --> Domain
binding MainCollector --> Domain
binding Domain --> MainCollector

The ADL is not used to express the configuration of subdomains, which depends
on the dynamically-determined subdomain partitioning. Since allowable configurations
follow a fixed, canonical structure in the form of a 3D mesh, a parameterized description

112 Chapter 6. Methodology and Benchmarks

would be useful for automatically generating subdomain configurations. Currently, the
basic parameterization mechanism included in Fractal ADL is simply used to configure
the factory with the required subdomain implementation.

6.2.4 Evaluation of the new design

We now examine whether the new, component-based Jem3D addresses the modifiabil-
ity and reusability limitations of the original system. Owning to the componentization
process, the new system has a reliable architectural documentation, which facilitates
the understanding and the evolution the system. Moreover, an important part of the
architecture - i.e., the initial component configuration - is now captured in an ADL. As
a result, the component platform can automatically enforce architectural structure on
implementation, which helps reduce further architectural erosion. The use of provided
and required interfaces as specified by the component model minimizes inflexible, hard-
wired dependencies and allows flexible configuration after development time. Consider-
ing the scenario of changing the subdomain implementation, this can now be achieved
simply by replacing a name in the ADL description (i.e., the SubDomainImpl name in
Figure 4). Moreover, the domain component now serves as a reusable unit of function-
ality that supports the geometric decomposition pattern. Specifically, the component
accepts as input the subdomain implementation and the (x,y,z) division and embodies
the logic to create and manage the runtime subdomain configuration.

6.2.5 Benchmarks and analysis

6.2.5.1 Comparison between object-based and component-based versions

We first deployed the application on a single cluster so that measurements could be
realized in a stable and homogeneous environment, and so that comparison would be
possible.

We used a fixed mesh size of 121*121*121. The mesh was sufficiently small so that
the application could be deployed on a reduced number of nodes, and sufficiently large
so that communication time did not exceed computation time.

The deployment of the Jem3D application proceeds as follows: first, the collector is
instantiated on a single node. Second, a set of virtual machines is created according to
the deployment descriptor , and using the standard cluster scheduling protocols. Third,
active objects are instantiated on the virtual machines. For the component version,
once the components are instantiated (as active objects), there are also an assembly and
a binding phase to create the system dependencies.

We measured the initialization time as the time between the creation of all remote
virtual machines, and the beginning of the computation. We also measured the compu-
tation time for a fixed number of iterations with the Jem3d application.

The benchmarks took place on the azur cluster in INRIA Sophia-Antipolis, with ma-
chines equipped with Opteron processors at 2GHz and 2GB of RAM, and connected
through Gigabit Ethernet connections. The JVMs were deployed with an allocated heap
size of 1500MB.

The results are presented on figure 6.5.
We observe that:

• The computation times are similar for the component and the object based ver-
sion, which means that there is no significant overhead induced by the component
framework during the computation.

Section 6.2. Jem3D 113

object-based vs component-based jem3d computation
for a 121*121*121 mesh size

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70 80 90

number of machines

ti
m

e
 (

s)

component-based initialization time

component-based computation time

object-based initialization time

object-based computation time

insufficient memory

Figure 6.5: Performance comparison between object based and component based versions of
Jem3d

• The deployment time (referred to as initialization time in the figure) is a little
longer for the component-based version. This is due to a more elaborate deploy-
ment process, that not only creates component instances, but also assembles them
and binds them. The overhead for deployment seems very much acceptable.

• With a mesh size of 121*121*121, and with an available heap size of 1500Mo for
each computing entity, the computation needs to be distributed on a minimum of
15 machines so that the mesh data can be loaded in memory (the mesh is divided
among participants: the higher the number of participants, the smaller the size of
the mesh for each participant).

6.2.5.2 Grid scalability

We used the experimental french grid infrastructure Grid’5000 [CAP 05] for perfor-
mance measurements using several Grid’5000 clusters. The objective was to evaluate
the scalability of the component-based version.

We ran several experiments, increasing the mesh size and the number of machines
used. One subdomain component or object is deployed on each node. We report the
results in table 6.1, also describing the set-up of the different experiments. The param-
eters which varied were the mesh size and the distribution over the different clusters.

It is important to state that Jem3D does not offer control over the distribution of
the computation entities (the subdomains). This problem is only related to the original
Jem3D design, not to the component model. All subdomain entities are deployed on a
unique virtual node, which is later mapped onto the physical infrastructure. Using sev-
eral virtual nodes would allow a control over the virtual distribution, hence possibly a

114 Chapter 6. Methodology and Benchmarks

sophia.grid5000.fr

paravent-dev.rennes.grid5000.fr paraci-dev.rennes.grid5000.fr

toulouse.grid5000.fr

sophia.grid5000.fr

intensive communications

infrequent communications
(only 2 represented)

cluster site

Main
Collector

Sub
Domain

Sub
Domain

Sub
Domain

Sub
Domain

Sub
Domain

Sub
Domain

Sub
Domain

Sub
Domain

Figure 6.6: A possible distribution of Jem3D computation over Grid5000 clusters

control over the physical one, however this was not possible without completely chang-
ing the design of Jem3D. As a consequence, some highly communicating neighbors may
be located on separate clusters, in which case there is an induced latency overhead in
their communications. In the Grid’5000 infrastructure, which uses dedicated and op-
timized networks (such as RENATER), the latency between machines of a cluster is
about 0,05ms, while the latency between clusters can be up to 10ms (this is the case
between clusters in Sophia-Antipolis and clusters in Rennes): the latency is up to 200
times higher for inter-clusters than intra-clusters communications.

Measuring computation time in this context is very difficult for a highly coupled
application because of both the lack of control over deployment and the inherent insta-
bility of Grids. This is why we preferred to present the results from a few experiments,
without drawing any conclusion on the performance in this context.

Mesh size Total
Number of
Processors
Used

Computation
time (min)

Processors on
Sophia.grid5000.fr
Opteron 246 2GHz
Linux 2.4.21

Processors on
orsay.grid5000.fr
Opteron 246 2GHz
Linux 2.6.8

Processors on paraci-
dev.rennes.grid5000.fr
Xeon 2,4 GHz
Linux 2.6.11

Processors on parasol-
dev.rennes.grid5000.fr
Opteron 248 2,2 GHz
Linux 2.6.12

Processors on paravent-
dev.rennes.grid5000.fr
Opteron 248 2,2 GHz
Linux 2.6.13

Processors on
toulouse.grid5000.fr
Opteron 248 2,2 GHz
Linux 2.6.10

41*41*41 20 0,46 0 0 0 0 20 0
81*81*81 70 0,94 20 10 20 20 0 0
201*201*201 130 5,15 70 0 60 0 0 0
201*201*201 138 3,85 138 0 0 0 0 0
241*241*241 258 4,29 138 0 120 0 0 0
241*241*241 308 3,72 138 0 120 0 0 50

Table 6.1: Computational experiments with different Grid configurations

The results of the experiments as reported in figure 6.1 demonstrate the scalabil-
ity of the component framework that we developed: we managed to deploy and run a
component-based version of the jem3D application on more than 300 processors and up

Section 6.3. Component based SPMD : benchmarks and analysis 115

to 4 remote clusters. We were also able to compute with bigger meshes when increasing
the number of machines.

6.2.5.3 Discussion

From our experience with the deployment and benchmarking of the Jem3D application,
we can draw the following conclusions:

• The component framework does not induce any overhead during computation and
the initialization is only slightly longer than for the object-based version. We also
demonstrated that the framework is scalable.

• Computational benchmarks for tightly coupled and highly communicating applica-
tions need to be performed on homogeneous environments, such as a single cluster.
Otherwise performance measurements are unreadable, because inter-cluster com-
munications are several orders of magnitude longer than intra-cluster ones, and
because of the inherent instability of Grids: the more different administrative do-
mains involved, the higher the chances of some local disfunction.

• An application, to take advantage of a computational Grid, must provide a parti-
tioning method at design time, which at runtime creates partitions depending on
the application parameters and the runtime infrastructure. A partition identifies
tightly coupled entities which must be colocated, while the coupling between parti-
tions is more loose. Partitions can be attached to virtual nodes, which are mapped
on separate deployment infrastructures at deployment time, if needed, resulting
in an efficient distribution of the application. Components are a convenient way
to design partitioned applications and allow both loosely-coupled applications and
tightly-coupled applications. The next section describes how the design of tightly
coupled SPMD applications may be facilitated using a component-based approach.

• Grids, by providing large computational infrastructures, allow new categories of
problems to be solved. For instance, the Jem3D application can solve problems
with mesh sizes over 200*200*200, which is impossible on a single cluster with
machine equipped of 2GB RAM, because of memory problems.

6.3 Component based SPMD : benchmarks and analysis

6.3.1 Applicative example: Jacobi computation

This example demonstrates and evaluates the capabilities of multicast and gathercast
interfaces, as well as the SPMD programming possibilities provided by these interfaces.

For these purposes, we implemented a version of the Jacobi method for solving linear
matrix equations. The Jacobi method is an algorithm in linear algebra for determining
the solutions of a system of linear matrix equations with largest absolute values in each
row and column dominated by the diagonal element. Each diagonal element is solved for,
and an approximate value plugged in. The process is then iterated until it converges.
The original sequential version is solved by initializing a large matrix, performing a
computation on the matrix, then repeating this computation until convergence. It can
be easily refactored into a distributed application by partitioning the original matrix. It
is a simple example, easily implementable in a SPMD fashion, thanks to the decomposi-
tion into sub-matrixes, which compute locally their internal values and swap boundary

116 Chapter 6. Methodology and Benchmarks

values with their neighbors, as shown in figure 6.7. Moreover, this program already
served as a use case for previous work on OOSPMD programming, which provides us a
reference.

.

Figure 6.7: Jacobi computation: matrix elements exchange border data with their neighbors
during computation

For benchmarking purposes, we worked with a fixed number of iterations and fixed
matrix values, and we measured the corresponding execution time. We did not wait for
convergence.

6.3.2 Design

6.3.2.1 Typing

There is only one type of components in this application: the SubMatrix component.
It provides a mandatory gathercast server interface, and has optional multicast and
collection interfaces, depending whether borders data is sent using multicast (figure
6.8) or with successive invocations on interfaces of a collection interface (figure 6.8).
Border data values are encapsulated as LineData objects. The ADL corresponding to
this component is the following:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN" "classpath:

//org/objectweb/proactive/core/component/adl/xml/proactive.dtd">

<!-- arguments are passed as instantiation parameters-->
<definition name="SubMatrix" arguments="dimensions,coordinates,globalDimensions,

nbIterations" >

<interface name="main" role="server" signature="Main" cardinality="multicast"/>
<interface name="sender" role="client" signature="MulticastDataSender"

cardinality="multicast" contingency="optional"/>
<interface name="sender-collection-" role="client" signature="

CollectionDataSender" cardinality="collection" contingency="optional"/>
<interface name="receiver" role="server" signature="GathercastDataReceiver"

cardinality="gathercast"/>

<!-- this is a primitive component, and here is defined the implementation class
-->

<content class="SubMatrixComponent"/>

<!-- attributes are set right after instantiation of the component-->

Section 6.3. Component based SPMD : benchmarks and analysis 117

<attributes signature="SubMatrixAttributes">
<attribute name="dimensions" value="${dimensions}"/>
<attribute name="coordinates" value="${coordinates}"/>
<attribute name="globalDimensions" value="${globalDimensions}"/>
<attribute name="nbIterations" value="${nbIterations}"/>

</attributes>

<controller desc="primitive"/>

<!-- the distribution is abstracted in a virtual node, later mapped onto a
physical infrastructure using a ProActive deployment descriptor -->

<virtual-node name="matrixNode"/>

</definition>

6.3.2.2 Borders reception and synchronization

The server interface of cardinality gathercast is defined as follows:

public interface GathercastDataReceiver {

public void exchangeData(List<LineData> borders);

}

As we can see from the signature of the only method, a list of LineData elements is
expected from connected client interfaces. Once one of the clients has sent a LineData
element, the gathercast interface will not transfer the invocation until all LineData ele-
ments from all connected client interfaces are received. Once all LineData elements are
received, they are gathered into a list of LineData elements, and the method defined by
GathercastDataReceiver is invoked on the component.

6.3.2.3 Borders sending

Sending border values can be performed in two manners, and this is determined during
the binding process: either multicast or collection interfaces are used.

The multicast interface exhibits the following signature:

public interface MulticastDataSender {

@MethodDispatchMetadata(mode = @ParamDispatchMetadata(mode=ParamDispatchMode.
ONE_TO_ONE))

public void exchangeData(List<LineData> borders);

}

As we can see, a list of LineData elements is given as a parameter to the exchangeData
method. This list is built from the values of the borders of the current matrix. The dis-
tribution of the LineData elements among the connected server interfaces is specified by
the annotation: a one-to-one distribution, which means that the server interface of rank
i automatically receives the LineData element of rank i in the list. This communication
pattern is represented in figure 6.8.

118 Chapter 6. Methodology and Benchmarks

0;0

0;1

1;0

1;1

2;0

2;1

0;2

Figure 6.8: Jacobi computation: borders exchanges through multicast and gathercast interfaces
(communications are represented only for component (1;0))

Another mode for sending borders data is to use a collection of interfaces, where each
member of the collection is bound to a neighbor’s gathercast interface. In that case, the
collection interface has the following signature:

public interface CollectionDataSender {

public void exchangeData(LineData border);

}

In this case, the exchangeData method is sequentially invoked on each interface
member of the collection interface and sends the corresponding border to the connected
neighbor’s server interface.

This communication pattern is represented in figure 6.9.

0;0

0;1

1;0

1;1

2;0

2;1

0;2

Figure 6.9: Jacobi computation: borders exchanges through collection and gathercast interfaces
(communications are represented only for component (1;0))

6.3.2.4 Deployment and assembly

As shown in the ADL file above, the SubMatrix components are instantiated on ma-
trixNode virtual nodes, which are mapped onto remote nodes on remote machines in a
ProActive deployment descriptor , following the standard deployment model of ProAc-
tive.

Once instantiated, the connections between components must be established accord-
ing to a two-dimensional grid topology, as represented in figure 6.8. This is currently

Section 6.3. Component based SPMD : benchmarks and analysis 119

done programmatically, although we plan to provide ADL patterns for a topological au-
tomatic assembly.

Binding operations are performed in the following manner, so that the correct 2D
grid topology is built; there is a conditional if statement on the communication mode,
which determines whether bindings are established on collection interfaces or on multi-
cast interfaces.

// bind components
for (int x=0; x<nbMatrixX; x++) {

for (int y=0; y<nbMatrixY; y++) {
BindingController bc = Fractal.getBindingController(components[x][y]);
// bindings are performed in the following order : NORTH, EAST, SOUTH, WEST
if (y!=0) {
if (useMulticast) {
bc.bindFc("sender", components[x][y-1].getFcInterface("receiver"));

} else {
bc.bindFc("sender-collection-NORTH", components[x][y-1].getFcInterface("

receiver"));
}

}
if (x!=(nbMatrixX-1)) {
if (useMulticast) {
bc.bindFc("sender", components[x+1][y].getFcInterface("receiver"));

} else {
bc.bindFc("sender-collection-EAST", components[x+1][y].getFcInterface("

receiver"));
}

}
if (y!=(nbMatrixY-1)) {
if (useMulticast) {
bc.bindFc("sender", components[x][y+1].getFcInterface("receiver"));

} else {
bc.bindFc("sender-collection-SOUTH", components[x][y+1].getFcInterface("

receiver"));
}

}
if (x!=0) {
if (useMulticast) {
bc.bindFc("sender", components[x-1][y].getFcInterface("receiver"));
} else {
bc.bindFc("sender-collection-WEST", components[x-1][y].getFcInterface("

receiver"));
}

}
}

}

6.3.3 Benchmarks

The benchmarks intend to answer three questions:

• Is a component-based approach usable and scalable for solving SPMD-style prob-
lems?

120 Chapter 6. Methodology and Benchmarks

• What is the performance of the component-based approach compared to the
OOSPMD-based version?

• What is the performance of multicast communications against sequential one-way
invocations through collection interfaces?

The component based version uses the same computation algorithm than the
OOSPMD version, the only differences are a different deployment process, and the ab-
sence of explicit synchronization barriers.

The fixed parameters in the benchmark are:

• The size for the matrix: 10080*10080 (larger values causing out of memory errors
when the computation is only distributed on a small number of machines).

• The values for elements of the matrix: 1000000.

• The values for the (virtual) external border: 0.

• The number of iterations: 1000.

• The deployment was performed on the azur cluster in INRIA Sophia, which con-
sists of 105 processors of type AMD Opteron, CPU clock of 2GHz, and 2GB of RAM.
The Java Runtime Environment used was in version 1.5.0_04. The deployed Java
virtual machines are started with memory parameters -Xms=1000m -Xmx=1500m;
indeed the JVM has to cope with all the submatrix data which is loaded in mem-
ory: when less machines are used, the sizes of submatrixes are higher, therefore
more memory is used on each machine.

The parameters which vary are:

• The number of machines used for the computation: the global matrix is decom-
posed into submatrixes, and the distributed active objects or components each
work with a given submatrix.

• The kind of implementation: active objects (OOSPMD), or components.

• When using the component implementation, the communication mode for sending
borders data may be through multicast interfaces, or through sequential invoca-
tions to members of collection interfaces.

The results of these experiments are represented in figure 6.10. We also represented
the performance improvement between the OOSPMD version and the component ver-
sion using collection interfaces in figure 6.11.

6.3.4 Analysis

We draw three conclusions from this example, regarding respectively the applicability
of collective interface, the performance, and the generalization of the SPMD approach.

First, this benchmark is an excellent proof on concept of collective interfaces in Frac-
tal components: we managed to deploy and run an SPMD application on up to 100
machines and collective communications were extensively used.

Second, this benchmark demonstrates that our approach for SPMD programming us-
ing components and collective interfaces is valid, and even performant compared to the
existing OOSPMD-based implementation. The benchmark results in figure 6.10 show
that:

Section 6.3. Component based SPMD : benchmarks and analysis 121

Execution time for 1000 iterations

Matrix size = 10080*10080
Matrix initialized with all values = 1 000 000

Initial virtual borders initialized with all values = 0

0

50000

100000

150000

200000

250000

0 20 40 60 80 100

Number of machines

E
x
e
cu

ti
o

n
 t

im
e
 (

m
s)

oospmd with groups, no scatter

components, data sent through collection
interfaces
components, data sent through multicast
interfaces

Figure 6.10: Jacobi computation benchmarks: comparing ProActive OOSPMD, components us-
ing multicast and components using collection interfaces for sending data

• The global computation time decreases as the number of machines involved in-
creases, which is a normal behavior as the computation (whose execution time
is non-trivial considering the size of the global matrix) is parallelized. The per-
formance speedup decreases as the number of machines increases because the
speedup in pure computation is hindered by the larger number of communications.

• The component based versions are faster than the OOSPMD-based version. We ex-
plain this behavior by the explicit synchronization barriers used in the OOSPMD
version: setting barriers implies sending extra requests to the SPMD group mem-
bers; sending and processing requests require a complex and costly reification pro-
cess which harms performance. On the contrary, there are no explicit barriers in
the component version, therefore no extra requests. The process of gathering re-
quests and transforming them into a new invocation is still costly but as stated
in the implementation section, there is room for optimization, which means per-
formance can be further improved. We observe a performance gain of about 10%
between the OOSPMD version and the component version with collection inter-
faces, as shown in figure 6.11.

• We observe a slightly better performance when using multicast interfaces than
when making successive invocations on members of collection interfaces. We as-
similate this gain to the multithreaded mechanisms involved when using multicast
interfaces, although further investigation would be required to confirm this, using
different data size and distribution strategies.

Third, from a qualitative point of view, this example seems much easier to imple-

122 Chapter 6. Methodology and Benchmarks

performance comparison:
components version with collection

interfaces

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

number of machines

e
x
e
cu

ti
o

n
 t

im
e
 r

a
ti

o
 c

o
m

p
o

n
e
n

t
v
s

o
o

sp
m

d
 (

%
)

Figure 6.11: Jacobi computation benchmarks: performance gain of the component based version
using collection interfaces compared to the OOSPMD version

ment than the solution offered by OOSPMD programming: there is no explicit synchro-
nization barrier, and synchronization barriers in OOSPMD are only effective after the
end of the current method, which means one has to make sure no communication with
neighbors occurs between the barrier statement and the end of the method. Otherwise
another synchronization barrier is required.

6.4 Conclusions

The experiments we performed with our component framework highlight the potential
of a component-based approach for Grid computing.

From a qualitative point of view, the C3D and Jem3D experiments demonstrated
that component designs are clearer and more evolvable than object-based ones.

From a quantitative point of view, the Jem3D and Jacobi experiments demonstrated
that the component framework correctly works and that it does not introduce any sig-
nificant overhead.

In addition, we successfully developed a coupled and highly communicating SPMD
application using a novel approach based on collective interfaces, resulting in a complete
separation of synchronization concerns from functional ones.

Finally, based on our quantitative experiments, we emphasized the importance of
considering distribution at the applicative level, so that resources may be optimally
exploited.

Now that we have established the capabilities of our model and framework, we confi-
dently envisage tackling other categories of Grid problems, for which hierarchical com-

Section 6.4. Conclusions 123

ponent designs are very well suited, such as the NAS Grid benchmarks presented in
3.2.6.1.

124 Chapter 6. Methodology and Benchmarks

Chapter 7

Ongoing Work and Perspectives

7.1 CoreGrid’s Grid Component Model

This thesis contributes to the specification and implementation of the Grid Component
Model (GCM) defined by the CoreGrid project [COR]. CoreGrid is a european Network of
Excellence which gathers academics from 42 institutions in Europe. It aims at strenght-
ening and advancing scientific and technological excellence in the area of Grid and
Peer-to-Peer technologies. It is organized in working groups dealing with: knowledge
and data management, programming models, system architecture, Grid information,
resource and workflow monitoring services, resource management and scheduling, and
tools and environments.

The objective of the working group on programming models is to help reduce the com-
plexity of programming Grid applications, by defining a lightweight component model
(the GCM) for the design, implementation and execution of Grid applications. The key
problematics addressed by the GCM are programmability, interoperability, code reuse
and efficiency.

The GCM adopted Fractal as its base model, and the work of this thesis contributes
to the GCM by defining extensions to the Fractal component model with clear semantics
for defining collective operations, by proposing a deployment model that takes advan-
tage of virtual nodes to control deployment, and by identifying reconfiguration issues
related to the Fractal API.

We intend to complement our work by integrating other aspects of the GCM, in par-
ticular those related to autonomicity and interoperability, and we aim at providing an
interoperable implementation of the GCM based on the ProActive/Fractal implementa-
tion that we presented in this work. This implementation could serve as a reference
implementation; it will be named ProActive/GCM and will provide a component frame-
work addressing the needs of Grid programming.

7.2 Pattern-based deployment

Distributed computational applications are designed by defining a functional or do-
main decomposition, and these decompositions often present structural similarities. We
are interested in patterns that contain parameterizable numbers of identical compo-
nents. The master-workers structure for instance, is commonly used for embarrassingly
parallel problems and is implemented in many frameworks such as BOINC, etc.. Bi-
dimensional decomposition of a matrix, resulting in two-dimensional grid assemblies of

125

126 Chapter 7. Ongoing Work and Perspectives

identical computing entities, as shown in 6.3.1, is commonly used. Farm and pipeline
are also common structural patterns.

Assembling Grid component applications usually implies assembling a large number
of entities, hence performing a large number of assembly operations: remote instantia-
tion, hierarchical composition and bindings. Architecture Description Languages (ADL)
offer descriptions of the assembly of component systems and are usually coupled with
an ADL processor tool which automatically handles the deployment and assembly of
components.

In order to facilitate the design of complex systems with large number of entities,
we plan to propose a mechanism for defining parameterizable assembly patterns in the
Fractal ADL, which is an extensible and parameterizable ADL. The virtual node ab-
straction will help optimizing the distribution of the applications. Names of interfaces
to bind and number of component instances are parameters of the patterns.

There have recently been some proposals in the Fractal community to propose exten-
sions to the Fractal ADL based on AST transformations [FRA06] which would allow this
pattern-based configuration. This proves the feasibility of the pattern-based assembly
approach, but concrete implementations and examples are yet to be provided, hopefully
from our side.

A few examples of configurable patterns are given in figure 7.1, and one should be
able to redefine and compose its own configurable patterns.

2D Grid

Master-slaves Farm

Ring Something else

Pipe

Figure 7.1: A few assembly patterns

A typical configuration of a 2DGrid pattern is suggested in the following example,
where parameters are: the number of instances and the names of client and server
interfaces to be bound. The C component is instantiated nbInstances times and neigh-
bor instances establish bindings between the client interfaces and server interfaces,
according to the predefined patterns.grid2D assembly pattern. The 2DGrid is encap-
sulated in a composite which offers a multicast interface gridControl to all enclosed
components.

<pattern name="grid1" definition="patterns.grid2D(i, nbInstances)">
<interface cardinality="multicast" name="gridControl" signature="Control" role="

server"/>
<!-- the following is a ‘‘loop’’ structure that instantiates i components -->

Section 7.3. Graphical tools 127

<component name="C-%i">
<interface cardinality="singleton" name="server" signature="Control" role="

server"/>
<interface cardinality="multicast" name="client" signature="MulticastClient"

role="client"/>
<interface cardinality="gathercast" name="server" signature="MulticastServer"

role="server"/>
<content class="CImpl"/>
<controller desc="primitive"/>

</component>
<patternBinding clientItf="client" serverItf="server"/>
<patternBinding clientItf="this.gridControl" serverItf="control"/>
</pattern>

We note that a generic way to deal with parameterized configurations, without mod-
ifying the DTD of the FractalADL was recently proposed on the Fractal mailing list,
but complex configuration patterns such as the ones we mentioned probably require an
extension of the ADL.

7.3 Graphical tools

Graphical User Interfaces (GUI) are useful for design and assembly, and for monitoring
the runtime activity of component systems.

In an engineering activity as complex as software development, designers must be
able to rely on tools for automating as much as possible of the development process,
based on software design methods. These tools are usually referred to as Computer
Aided Software Engineering (CASE) tools. Some of the most popular CASE tools use
the Unified Modeling Language (UML) in order to graphically design software. Indeed,
graphical representations allow to rapidly understand the architecture of the software,
more easily than raw code. They are often used for sketching designs and ideas, but they
may also be used as a specification and for an automatic generation of implementation
code skeletons; this is the approach advocated by the Model Driven Architecture (MDA)
proposal from the OMG for generating Platform Independent Models (PIM).

Components are by nature very suitable for graphical design: they are independent
units of software with explicit and strictly defined interfaces. UML 2.0 introduces graph-
ical representation of components, and within the Fractal community, the FractalGUI
tool has been proposed for a graphical design of component systems. The FractalGUI is
able to generate ADL assembly files from a graphical design, and during this thesis we
extended FractalGUI so that it can also represent the composition of virtual nodes (see
section 3.3.3.3), and a snapshot is given in figure 7.2.

In the context of Grid computing however, numerous components may be instanti-
ated from parameterized configurations, and it is fundamental to control the geographi-
cal composition and the topology of the application. We therefore suggest two directions
for enhancing the graphical design of ProActive/GCM applications: the first one is to
introduce abstractions (graphical patterns) for the design of Grid component systems,
and the second one is to couple graphical representations of component assemblies with
distributed monitoring tools for runtime monitoring.

First, we propose to introduce explicit multiplicity of bindings and components with a
star symbol (*), which, as exemplified by figure 6.4, is easily understood. We also suggest
to integrate graphical representations of assembly patterns describe in 7.2 within the
graphical design.

128 Chapter 7. Ongoing Work and Perspectives

Figure 7.2: Graphical assembly of components using the FractalGUI

Second, we propose to couple the structural representation of component designs
with runtime monitoring capabilities. Several options are envisageable. The Fractal
community developed a tool, FractalExplorer, that provides a way for reconfiguring and
managing Fractal-based applications at runtime. It however only infers a tree-based
representation of the Fractal components. There are also a set of JMX1 components
that can expose Fractal components as JMX MBeans entities, which can be monitored
in a standardized way. Finally the FractalGUI itself also proposes some runtime moni-
toring capabilities, although we did not extend this feature so that it may handle Frac-
tal/ProActive components.

In the context of the ProActive/Fractal framework, we believe a convenient solution
would be to couple the extended design capabilities of the Fractal GUI with the runtime
monitoring capabilities of the IC2D GUI. IC2D offers a graphical representation of the
active objects with two possible views: either a representation of the distributed entities
and environments, and the communications between entities (figure 7.3), or a tree-based
view for monitoring large number of running jobs. IC2D is currently being refactored
with an Eclipse [ECL] plugin architecture, and an extended version of the Fractal GUI
could be conveniently integrated. We would therefore couple structural representation
with runtime monitoring of the distribution and activity of the components.

The development of the FractalGUI codebase in its current form is now discontinued;
a new version has been specified and is currently under development as an Eclipse2 IDE
plugin and for this reason we have not yet integrated the aforementioned proposals in
the existing tool. Fortunately, the GridComp project (see section 7.6) defines a working
group targeting the development of graphical interface for the design an monitoring of
Grid components, and we will push forward the concepts we introduced so that they can

1Java Management Extensions (JMX) is a Java technology standard for managing and monitoring ap-
plications, system objects, devices (e.g. printers) and service oriented networks. Those resources are repre-
sented by objects called MBeans (for Managed Bean)

2a popular development environment with a flexible plugin architecture

Section 7.4. Dispatch and reduction strategies for collective interfaces 129

Figure 7.3: A view of the distribution and communications of a Grid application with the IC2D
GUI

be integrated into the new tool.

7.4 Dispatch and reduction strategies for collective interfaces

In terms of data distribution, we restricted our proposal of collective interfaces (section
4) to data aggregation: either the aggregation of results in a Multicast interface, or the
aggregation of parameters for a Gathercast interface. In terms of service invocation,
we restricted our proposal to one-to-all and all-to-one invocations (“all” referring to “all
connected interfaces”). However, other kinds of distributions are envisageable: collec-
tive interfaces may be used for other kinds of data distribution and invocation dispatch.
Indeed, according to automatic and user-customizable rules, data could be subject to
reduction, invocations selected by an election process, and invocation dispatch could be
selective.

Data reduction corresponds to a transformation of data, according to a given trans-
formation operation, that could be provided by the framework, by the user, or by the
data structure itself (through methods of the data objects). For example, MPI defines
reduction operations such as MPI_MAX, MPI_MIN, for determining the minimum and maxi-
mum of parameters, or MPI_SUM for summing the parameters. However, MPI parameters
can only belong to MPI datatypes whereas in our proposal for collective interfaces, pa-
rameters may be of any type and could actually define their own reduction operations.
Object-defined reduction is useful for inferring reduced types, as in a component model
with explicit typed interfaces, data reduction influences the type compatibility of the in-
terface operations. Data reduction is applicable to invocation parameters, for gathercast
interfaces, or to results, for multicast interfaces.

In the case of multicast interfaces, selective invocations allow the selection of con-
nected server interfaces that should receive invocations. We note that, in this case,
the interface performing the dispatch is more appropriately named dispatch interfaces.

130 Chapter 7. Ongoing Work and Perspectives

The communications may be one-to-one3 , one-to-some or one-to-all, may be synchronous
or asynchronous, and may be performed in parallel. For example, one-to-some com-
munications may be proposed in the following way: the invocation is transformed and
forwarded to a subset of the connected server components, similarly to what offers the
ICENI dispatch tee (2.4.3.3). The anycast [PAR 93] communication mode is another ex-
ample, realized by delegating the invocation to the most appropriate of the connected
components. Other examples include quorumcast, which relies on a quorum consen-
sus synchronization, or probabilistic multicast, where target components are selected
through a probabilistic algorithm.

In the case of gathercast interfaces, selective invocation dispatch corresponds to the
selection of invocations, depending on their parameters. Selective dispatch for gath-
ercast interface can be based on voting mechanism (quorumcast for instance), with a
possible timeout. Voting selection can be customized and parameters such as minimum
number of voters, time to vote, minimum percentage etc.. can be specified. For multi-
cast interfaces, selective dispatch correspond to the dispatch of invocations to some of
the connected interfaces only, according to various possible selection parameters.

We argue that selective invocations and data reduction mechanisms are valuable for
a Grid component model, as they help separating non-functional aspects from functional
code, in a customizable manner. Moreover, reduction mechanism already proved useful
in MPI frameworks, and voting mechanisms also have pertinent use cases, starting with
user inputs in collaborative applications.

Additionally, all-to-all interactions, as proposed in section 4.4 with the notion of
gather-multicast interfaces may be further enhanced by integrating selective dispatch
(resulting in well-defined some-to-some interactions) and data reduction.

Of course, reduction and selective dispatch have incidences on interface typing, and
this must be considered thoroughly.

We therefore plan to clearly specify these extensions to collective interfaces, and
propose a reference implementation.

7.5 Adaptivity

One of the challenges of Grid computing is to handle changes in the execution environ-
ments, which are not predictable in systems composed of large number of distributed
components on heterogeneous environments.

7.5.1 Autonomic computing

The autonomic computing paradigm addresses this challenge by building applications
out of self-managed components. Components which are self-managed are able to mon-
itor their environment and adapt to it by automatically optimizing and reconfiguring
themselves. The resulting systems are autonomous and automatically fulfill the needs
of the users, but the complexity of adaptation is hidden to them.

The auto-adaptation features can be considered as non-functional features, which
may be complex to design and implement. Relying on a component-based design which
clearly separates functional and non-functional concerns, and organizes services in a
hierarchical manner is therefore a suitable way to design autonomic systems.

3A pure dispatch mode implies different signature compatibility conditions than with standard multicast
interfaces.

Section 7.5. Adaptivity 131

The Bionets project [BIO] is a european project which deals with networks and ser-
vices in a biologically inspired way. The objective is to provide a fully autonomic envi-
ronment for networked services, building on a novel approach to information diffusion,
communication and filtering that aims at replacing the conventional end-to-end Inter-
net approaches with localized service-driven communications. Bionets will build and
experiment with a bio-inspired platform centered around the concept of evolution for
the support of autonomic services. Experiments will be performed on a testbed provided
by emulating large-scale networks on Grids.

We offer our contribution to the Bionets project by providing a framework for build-
ing autonomic components in order to emulate such networks on Grids.

7.5.2 Towards autonomic ProActive/GCM components

Autonomic components are components with encapsulated rules, constraints and mech-
anisms for self-management and dynamic interactions with other components.

Conceptual view Implementation view

autonomic component

client control interface
(to specify)

global control
(application

runtime manager)

computational
component

local control
(component

runtime manager)

Application runtime
manager

Autonomic
controller

Binding
Controller

Controller
X

. . .

autonomic component

A

B

C

Figure 7.4: Autonomic components in ProActive/GCM

We distinguish two kinds of non-functional entities which are involved in autonomic
components: coarse-grained entities responsible for global supervision and adaptivity,
(Monitoring, Analysis, Planning and Execution, or MAPE, in IBM’s view [COR 04]), and
lighter-grained entities responsible for individual components. In the ProActive/GCM
model, the light-grained entities may be integrated in the membrane of the components,
providing pluggable non-functional services which can be adapted on-demand for ad-
dressing changes in the environment. This approach helps structuring the interactions
between non-functional components and it is similar to the micro-components design
proposed in [MEN 05], although a notable difference is that micro-components cannot
be dynamically modified.

We are currently investigating how the dynamically pluggable non-functional com-
ponents, acting as controllers in the membrane of ProActive/GCM components, may

132 Chapter 7. Ongoing Work and Perspectives

be implemented as Julia components: we are refactoring the current design of ProAc-
tive/GCM to evaluate the potential of this combination of a light-grained implemen-
tation of Fractal (Julia) in a coarser-grained implementation (ProActive/Fractal). The
targeted design is illustrated in figure 7.4: the local control is handled in the membrane
of the components.

The needed collaboration between non-functional services of components also points
out the need for client control interfaces and controller bindings, which are not yet spec-
ified in Fractal or in the GCM.

7.6 Industrial dissemination with the GridComp project

The GridComp project [GC] is a Specific Targeted Research Project supported by the
Information Society Technologies of the European Commission. It gathers academics
(INRIA, Tsinghua University in Beijing, University of Melbourne among others) and in-
dustrials (Atos Origin, IBM, GridSystems) with the main objective of designing and im-
plementing a component-based framework suitable for the development of efficient Grid
applications. The framework will implement the invisible Grid concept, i.e. it will ab-
stract away related implementation details (hardware, OS, authorization and security,
load, failure etc...) that usually require considerable programming effort to be dealt
with.

The GridCOMP project also has the following objectives:

• Be able to interoperate with existing standards, such as Web Services, WS-RF,
Unicore, EGEE gLite.

• Become a "de facto" standard for big industry and SMEs specifying and implement-
ing all the features usually expected from an actual grid programming framework.

• Address both scientific computing and enterprise computing.

• Reach a world wide audience thanks to the involvement of non European partners
from South America, Australia and China.

GridCOMP will take the Grid Component Model (to which the models and proposals
of this thesis contribute) as a first specification, and use the ProActive implementation
(i.e. the implementation described in this thesis) as a starting point. Use cases proposed
by industrial partners will be implemented, generating valuable feedback on the model
and implementation.

Chapter 8

Conclusion

The inherent distributed, complex, and heterogeneous nature of Grids, combined with
the willingness to take the best advantage of the resources of Grids, emphasize the need
for new programming models that take into account the specificities of Grids.

We proposed a component model and a framework addressing the specificities of Grid
computing, particularly the latency, the heterogeneity, the complexity, and the scalabil-
ity. Our model is based on the Fractal component model and the active object model,
augmented with extensions for collective interactions.

Our contributions may be listed as follows:

• Thanks to an analysis of existing programming models for Grid computing, we
identified:

– component-based programming as the most suitable programming model, be-
cause it encompasses the other programming models for Grid computing,

– the shortcomings of existing component models, that are either not designed
for parallelism, scalability, or not suitable for heterogeneous environments.

• Proceeding from this study, we verified the adequacy for Grid computing of Fractal,
reported as the most general and extensible component model.

• We proposed a component model specific to Grid computing based on the Fractal
model and on the active object model, augmented with:

– a deployment model based on the virtualization of the infrastructure,

– a specification of collective interfaces, that enable effective multiway commu-
nications, parallelism, and synchronization between multiple components.

• We developed an implementation of the component model we defined, based on the
ProActive Grid middleware

• We assessed the validity of the proposed component-based approach for program-
ming Grid applications through several experiments. We showed that the compo-
nent framework does not induce any significant overhead compared to object-based
versions of the same application. We also verified the scalability of our framework
by deploying these applications on various Grid configurations and more than 300
nodes.

• We proposed a novel approach for SPMD programming with components, where
synchronization code is not entangled with functional code.

133

134 Chapter 8. Conclusion

We did not address all the scenarios of Grid computing in the experiments we per-
formed, and we did not exploit all the features of our component model. In [SNA 03],
Grid applications are classified in four categories: loosely-coupled, pipelined, tightly-
synchronized, and widely distributed. The applications we experimented belong to the
“tightly synchronized” category, and we aim at enlarging the scope of our experiments
by developing more diverse applications. Some features of our component model such as
customizability, hierarchical structuration, adaptation and dynamicity could therefore
be fully exploited.

In order to diversify the scope of possible applications, and to exploit more features of
our component model, we plan to implement the NAS-Grid benchmarks, introduced in
section 3.2.6.1, which represent reference Grid applications. For these applications, we
will take advantage of the hierarchical structuration of our components (figure 3.1), and
address loose-coupling through workflow structuration. The GridCOMP project will also
bring new scenarios to investigate, particularly in the context of industrial applications.

In conclusion, we successfully extended the Fractal component model in order to ad-
dress requirements specific to Grid computing, opening many exciting perspectives. A
summary of the extensions defined in ProActive/Fractal is given in table 11.1 for the
general properties, and in table 11.2 for the Grid-specific properties. We specifically ad-
dressed deployment problematics, collective communications, and provided a basis for
MxN coupling and interoperability (exposing components as grid services). As partic-
ipants to the elaboration of the CoreGrid’s Grid Component Model (GCM), which is a
more comprehensive specification including notably adaptivity, legacy code and interop-
erability, we aim at providing a reference implementation of the GCM (ProActive/GCM),
that will have all required properties described in tables 11.1 and 11.2.

135

Requirements of component
models Fractal ProActive/Fractal ProActive/GCM

Lightweight

Extensible

Hierarchical

Std composition description

Non-functional adaptivity

Reflective

API

Dynamic reconfiguration

Sharing -1 ?

Packaging / repository ? ?

1 sharing is not yet implemented

no yes ? Unspecified or unknown

Table 8.1: A comparison of the general features of Fractal, ProActive/Fractal and ProAc-
tive/GCM

Requirements of Grid
computing Fractal ProActive/Fractal ProActive/GCM

Deployment framework ?

Multiple deployment protocols ?

Heterogeneity1

Interoperability ?

Legacy software ? ?

HPC2 -

Collective communications 3 -

MxN facilities -

Scalability4 -

1 hardware and operating system
2 targets high performance computing applications
3direct and non broker-based
4 capability to handle a large number of distributed entities

Table 8.2: A comparison of how Grid requirements are addressed in Fractal, ProActive/Fractal
and ProActive/GCM

136 Chapter 8. Conclusion

Part II

Résumé étendu en français
(Extended french abstract)

137

Chapter 9

Introduction

La performance des processeurs croît en suivant la loi de Moore, les capacités de stock-
age augmentent également de manière exponentielle, l’accès aux ordinateurs et aux
équipements électroniques s’est généralisé dans les pays les plus avancés industrielle-
ment, et Internet et les technologies sans fil fournissent une interconnexion mondiale
et omniprésente. Par conséquent, nous sommes entourés par des capacités croissantes
de calcul et de transmission d’information. La quantité et la puissance des ressources
disponibles ouvrent de nouvelles opportunités, aux scientifiques pour résoudre de nou-
velles catégories de problèmes, aux industriels pour développer de nouveaux modèles
économiques, et aux chercheurs en informatique pour étudier comment pouvoir utiliser
ces ressources.

Utiliser au mieux ces ressources informatiques implique de les fédérer, ce qui repré-
sente une tâche difficile. Le terme Grid computing, ou grilles de calcul, ou encore Grid ou
grilles, a été introduit dans les années 90 pour désigner cette tâche, et le Grid computing
a été popularisé grâce au livre “The Grid: Blueprint for a New Computing Infrastruc-
ture” [FOS 98]. Le concept de Grid a depuis évolué et peut aujourd’hui être défini ainsi:

Une grille en phase de production est une infrastructure informatique
partagée constituée de machines, de logiciels et de bases de données, qui au-
torise le partage coordonné des ressources et la résolution de problèmes au
sein d’organisation dynamiques et multi-institutionnelles, afin de permet-
tre des collaborations scientifiques et industrielles internationales et sophis-
tiquées [LAS 05].

9.1 Problématique

Le Grid computing a des besoins spécifiques inhérents liés à sa nature distribuée et
héterogène. Les efforts de recherche ont d’abord porté sur l’accès aux ressources physiques
en fournissant les outils pour la recherche, la réservation et l’allocation des ressources,
et pour la construction d’organisations virtuelles. L’accès à l’infrastructure de la grille
est la première étape nécessaire pour profiter des ressources de la grille, et la seconde
étape est d’offrir les modèles et des environnements de développement adéquats. Un
nouveau domaine de recherche a donc émergé, centré sur les modèles et outils de pro-
grammation permettant de développer efficacement les applications pour les grilles de
calcul. Comme mentionné dans [FOS 98], es environnements Grid nécessiteront de
repenser les modèles de programmation existants et, probablement, d’inventer de nou-

139

140 Chapter 9. Introduction

veaux modèles plus adaptés aux caractéristiques spécifiques des applications et des en-
vironnements Grid.

Les besoins du Grid computing qui doivent être pris en compte par les environ-
nements de programmation peuvent être listés ainsi:

• Distribution: les ressources peuvent être physiquement distantes les unes des
autres, avec pour conséquence une latence du réseau et une réduction de la bande
passante qui peuvent être significatives et non prévisibles.

• Déploiement: le déploiement d’une application sur une grille est une tâche com-
plexe en termes de configuration et de connexion aux ressources distantes. Les
sites utilisés lors du déploiement peuvent être spécifiés à l’avance, ou automa-
tiquement découverts et sélectionnés en fonction de contraintes de déploiement.

• Domaines administratifs multiples: les ressources peuvent être dispersées sur des
réseaux différents, chacun avec sa propre politique de sécurité et de gestion des
utilisateurs.

• Scalabilité: les applications Grid utilisent un grand nombre de ressources, et le
framework doit être en mesure de gérer un grand nombre d’entités, notamment en
gérant la latence et en offrant des capacités de parallélisme.

• Hétérogénéité: contrairement au cluster computing (calcul sur grappes), pour lequel
les ressources sont homogènes, les grilles de calcul rassemblent des machines
provenant de multiples constructeurs, mettant en oeuvre divers systèmes d’exploitation,
et utilisant divers protocoles réseaux pour communiquer.

• Interoperabilité et code patrimoine: afin de pouvoir réutiliser des logiciels exis-
tants et optimisés, le code patrimoine doit pouvoir être encapsulé, ce qui permet
une intégration avancée dans des systèmes plus larges, et l’interopérabilité avec
des applications tierces doit être possible.

• Haute performance: les frameworks de programmation doivent être conçus avec
des objectifs d’efficacité, notamment en offrant des facilités de programmation
d’applications parallèles, car l’un des objectifs du Grid computing est de résoudre
des problèmes nécessitant d’importantes puissances de calcul.

• Complexité: les applications Grid peuvent être des logiciels complexes car elles
combinent la complexité de briques logicielles très spécialisées avec des problèmes
d’intégration, de configuration et d’interopérabilité.

• Dynamicité: une application est susceptible d’évoluer au cours de son exécution
(structurellement et fonctionnellement), à cause de changements environnemen-
taux (afin de garantir une performance optimale, ou dans le cas de dysfonction-
nements), ou par l’addition ou la suppression de ressources alors que l’application
est en cours d’exécution (une grille est intrinsèquement dynamique).

9.2 Objectifs et contributions

Ce travail appartient au second domaine de recherche précédemment cité, à savoir,
l’étude de modèle et outils de programmation pour le développement et l’exécution
d’applications pour les grilles. Notre principal objectif est de définir un modèle de pro-
grammation et un framework d’exécution qui réponde aux besoins du Grid computing.

Section 9.3. Plan 141

Nous considérons que certains des besoins du Grid computing doivent être pris en
charge par la couche middleware, comme la distribution, la gestion de domaines admin-
istratifs multiples et l’interoperabilité. Les autres besoins doivent être pris en charge
par le modèle de programmation. Dans le modèle de programmation que nous pro-
posons, nous cherchons à simplifier la conception des applications Grid et nous cher-
chons à founir des abstractions de haut niveau pour la conception des interactions entre
multiples entités distribuées.

Notre approche est basée sur un modèle de composants hiérachique reposant sur le
concept d’objets actifs et complémenté par des communications collectives.

Les principales contributions de cette thèse sont:

• une analyse de l’adéquation des modèles de programmation existants, et en par-
ticulier des modèles de programmation par composants, en regard des besoins du
Grid computing,

• une proposition d’un modèle de composants destiné à répondre spécifiquement à
ces besoins, grâce à la composition hiérarchique, et à un modèle de déploiement
adapté au Grid computing,

• une specification d’interfaces collectives, en tant que moyen pour concevoir des
interactions multiples entre composants distribués, le parallélisme et la synchro-
nisation entre composants

• un framework de composants qui implante le modèle de composants proposé et la
spécification des interfaces collectives.

9.3 Plan

Ce document est organisé de la manière suivante:

• Dans le chapitre 2, nous situons notre travail dans le contexte de l’architecture
logicielle du Grid computing. Nous présentons les modèles de programmation ex-
istant pour le Grid computing afin de justifier notre approche, et nous évaluons les
différentes possibilités permettant des communications collectives. Nous exposons
comment les besoins du Grid computing sont traités dans les modèles et frame-
works existants; cela nous permet de mettre en évidence ce qui doit être amélioré.
Enfin, nous presentons le modèle des objets actifs et le middleware ProActive qui
servent de base à notre travail.

• Dans le chapitre 3, nous proposons un modèle de composants pour le Grid comput-
ing qui étend le modèle de composants Fractal.

• Dans le chapitre 4, nous ajoutons à notre modèle de composants une spécification
d’interfaces collectives, en tant que moyen de gérer les interactions multiples au
niveau des interfaces des composants. Nous montrons comment les interfaces col-
lectives peuvent être avantageusement utilisées pour des applications couplées.

• Le chapitre 5 décrit notre framework de composants qui implante le modèle de
composants spécifié aux chapitres 3 et 4.

• Le chapitre 6 rapporte les expériences réalisées à l’aide de notre framework de
composants: nous démontrons son intérêt pour le Grid computing, sa capacité de
passage à l’échelle, et nous montrons comment il peut être utilisé pour des appli-
cations SPMD. Nous présentons également une méthodologie pour passer d’une

142 Chapter 9. Introduction

application conçue avec des objets distribués, vers une application conçue avec des
composants distribués, et nous soulignons certains problèmes liés au déploiement
d’applications couplées dans un environnement Grid.

• Au chapitre 7 nous proposons un aperçu de nos travaux en cours et des améliora-
tions que nous envisageons, et nous soulignons le potentiel de notre model dans
les contextes académiques et industriels.

• Le chapitre 8 conclue et résume les principales réalisations de cette thèse.

Chapter 10

Résumé

10.1 Etat de l’art

Dans ce chapitre, nous justifions notre choix d’un modèle de composants hiérarchique
basé sur le concept d’objets actifs et étendu par des communications collectives, en éval-
uant les modèles de programmation existants pour le Grid computing, en évaluant les
approches possibles pour offrir des communications collectives, et en mettant en évi-
dence quels besoins ne sont pas pris en charge par les modèles et frameworks existants.

10.1.1 Positionnement

L’un des objectifs fondamentaux des grilles est de fournir un accès aisé voire transparent
à des ressources de calcul hétérogènes et réparties sur des domaines administratifs dif-
férents. Ceci est également dénommé “virtualisation des ressources”. Notre objectif est
d’offrir à la fois un environnement d’exécution réalisant la virtualisation, et un modèle
de programmation permettant de développer de manière optimale en vue de déployer
sur l’environnement d’exécution.

Une représentation classique de l’architecture logicielle des grilles est une représen-
tation en quatre couches.

• La couche la plus basse (Grid fabric) permet la virtualisation des ressources en
fournissant un accès aux ressources et aux systèmes par l’intermédiaire de sched-
ulers pour clusters, de protocoles réseaux et de systèmes d’exploitation.

• Au dessus, la couche Grid middleware englobe l’ensemble des services permettant
de gérer les ressources fédérées et la manière de les partager au sein d’une grille.

• La troisième couche fournit les outils et les modèles qui permettent de programmer
les applications pour les grilles.

• Enfin, la couche la plus haute rassemble portails d’applications, Problem Solving
Environments et applications clientes de la grille en général.

Notre travail contribue à la troisième couche, modèles et outils pour la grille, car
nous proposons à la fois un modèle de programmation et un framework permettant de
déployer et exécuter les applications Grid.

Considérons maintenant le positionnement de notre travail au sein des modèles de
programmation. Divers modèles de programmation ont été étudié et mis en oeuvre afin
de faciliter le développement d’applications pour les grilles. Nous avons noté que la plu-
part présentent des avantages pour certains types d’applications, mais qu’en général ils

143

144 Chapter 10. Résumé

ne permettent pas de programmer efficacement l’ensemble des applications envisage-
ables pour les grilles.

Parmi ces modèles, les architectures à services se distinguent par leur capacité à
gérer des applications à gros grain et faiblement couplées, et leur nature interopérable,
au détriment néanmoins de la performance.

Les modèles à passage de messages (extensions de MPI utilisant des middlewares de
Grid pour l’accès aux ressources virtualisées) permettent de s’affranchir des contraintes
liées à la latence, offrent de bonnes performances pour les communications et proposent
des opérations collectives, cependant ils n’offrent pas les abstractions nécessaires au
Grid computing, en particulier l’hétérogénéité, l’interopérabilité, l’adaptativité ou la dy-
namicité.

Les modèles à squelettes, comme ASSIST ou HOC-SA, permettent de concevoir des
applications clairement et efficacement structurées, peuvent permettre d’optimiser le
parallélisme, et sont interfaçables avec infrastructures de grilles grâce aux middlewares
comme Globus. L’utilisation des squelettes reste cependant une facilité algorithmique
et n’est pas forcément idéale dans le cadre d’applications dynamiques et faiblement
couplées.

Les modèles de type “serveur en réseau” (Network-Enabled Servers) et les modèles
GridRPC desquels ils proviennet conviennent à des traitements par lots, pour lesquels
les tâches de calcul sont isolées et fournie à une entité “serveur”, qui se charge de dis-
tribuer les lots de calcul sur l’infrastructure de manière optimale.

Les modèles à objets distribués sont également utilisés et bénéficient de leur popular-
ité dans le monde industriel, mais imposent une spécification explicite des dépendances
entre objets applicatifs, et en général manque de modularité, de description externe des
systèmes et de facilitités de paquetage.

Finalement, nous considérons que les modèles à composants sont les plus à même de
répondre à l’ensemble des besoins des grilles, notamment l’utilisabilité, car ils sont plus
généraux et peuvent encapsuler les fonctionnalités offertes par les autres modèles.

10.1.2 Modèles à composants pour le Grid computing

Les modèles de programmation par composants sont largement répandus dans le monde
industriel et académique. Ils proposent un niveau d’abstraction supérieur à celui des
modèles objets et reposent sur les trois principes fondamentaux d’encapsulation (boíte
noire), de composition (entités encapsulée connectables) et de description (description
du logiciel séparée du code applicatif).

Pour le Grid computing, les modèles de composants les plus communs ne sont pas
adaptés, car ils ne prennent pas en compte les notions de parallélisme et de distribution
à large échelle. Par conséquent, de nouveaux modèles de composants ont été étudiés afin
de bénéficier des avantages des modèles à composants dans le cadre du Grid computing.
Nous décrivons notamment CCA, Iceni et GridCCM.

10.1.3 Communications collectives

Les communications collectives sont un outil fondamental pour gérér le parallélisme,
la synchronisation entre un grand nombre d’entités distribuées, et le couplage de code.
Nous présentons les stratégies et mécanismes classiques de communications collectives
pour ces types de problèmes en excluant les mécanismes de publication.

En conclusion de notre étude sur les modèles de programmation pour la grille, nous
présentons une classification des modèles de composants en considérant à la fois leurs

Section 10.2. Un modèle à composants pour le Grid computing 145

propriétés générales et leur capacité à répondre aux besoins des grilles, et nous mon-
trons que Fractal est le candidat le plus prometteur.

10.1.4 Contexte: objets actifs avec ProActive

Ce travail constitue une extension de la bibliothèque ProActive, une bibliothèque de
programmation et de déploiement d’applications Grid. Le modèle de programmation
de ProActive repose sur la notion d’objets actifs, qui sont des entités indépendantes,
distribuables, monothreadées, et qui interagissent de manière asynchrone. ProActive
est un logiciel proposant de nombreuses facitilités spécifiques aux grilles et grâce à son
architecture extensible, représente une base riche pour implanter un framework de com-
posants.

10.2 Un modèle à composants pour le Grid computing

10.2.1 Adéquation du modèle Fractal pour le Grid computing

Afin de répondre aux besoins du Grid computing, décrits dans l’introduction, nous véri-
fions l’adéquation avec les besoins de la grille du modèle Fractal, qui est le modèle de
composants que nous avons distingué comme le plus général et le plus extensible parmi
ceux étudiés.

Nous remarquons que certains aspects du modèle Fractal doivent être étendus afin
de répondre aux besoins des grilles, en particulier concernant le déploiement et les com-
munications collectives.

10.2.2 Un modèle à composants basé sur le modèle d’objets actifs

Nous proposons donc un modèle de composants basé sur le modèle Fractal et sur le
modèle d’objets actifs, ce qui permet de bénéficier des avantages des deux modèles ainsi
que d’une bibliothèque de programmation existante et extensible (ProActive).

Dans ce modèle, un composant est un objet actif et peut être distribué, et les commu-
nications entre composants sont asynchrones. Le déploiement est basé sur une virtual-
isation de l’infrastructure sous forme de noeuds virtuels, et la description d’un système
de composants peut prendre avantage de cette virtualisation afin de contrôler la coallo-
cation éventuelle de composants couplés.

Certains problèmes rencontrés concernant la dynamicité des configurations sont
isolés et étudiés; ils sont liés à la combinaison de compositions hiérarchiques et de com-
posants actifs et monothreadés.

10.3 Interfaces collectives

Les interfaces collectives permettent de contrôler les interactions multiples entre com-
posants, c’est à dire 1 à n, n à 1 ou n à m, en particulier le parallélisme et la synchroni-
sation.

10.3.1 Motivations

Nous montrons d’abord que les cardinalités actuelles des interfaces dans le modèle Frac-
tal ne permettent pas les communications 1 vers n ou n vers 1 sans l’utilisation de com-
posants intermédiaires, et nous considérons, pour des raisons de simplicité, d’utilisabilité

146 Chapter 10. Résumé

et d’encapsulation, que la sémantique des communications collectives doit être specifiée
au niveau des interfaces.

10.3.1.1 Proposition

Nous proposons une spécification d’interfaces collectives pour le modèle Fractal, et nous
presentons deux types d’interfaces: multicast et gathercast.

Les interfaces multicast permettent de gérer les interactions de type 1 vers n. Une
interface multicast transforme une invocation en une liste d’invocations. La distribu-
tion des paramètres des méthodes est configurable et s’effectue soit par copie simple,
soit par extraction et distribution des parametres contenus dans une liste, auquel cas
la signature des méthodes varie entre l’interface multicast et les interfaces serveuses
connectées.

Les interfaces gathercast permettent de gérer les interactions de type n vers 1.
Une interface gathercast transforme une liste d’invocation en une seule invocation.
Les paramètres des méthodes sont par défaut aggrégés au sein d’une liste, et peuvent
éventuellement faire l’objet d’une réduction ou d’une sélection. La signature des méth-
odes varie entre une interface gathercast et les interfaces clientes qui lui sont connec-
tées.

Si le language utilisé le permet, comme Java par exemple, il est possible de préciser
la configuration des interfaces collectives à l’aide d’annotations.

10.3.1.2 Couplage d’applications

Un domaine d’application des interfaces gathercast et multicast est le couplage d’appli-
cations. Le couplage d’applications prend avantage des propriétés de synchronisation
et de parallélisme, et de la séparation entre la logique de synchronisation et de paral-
lélisme, et la logique applicative.

Deux types d’applications sont concernées par les capacités de couplage offertes par
les interfaces collectives: la programmation SPMD (Programme Unique Données Mul-
tiples) et le couplage de composants parallèles.

La programmation SPMD peut être appliquée aux composants en considérant des
instances du même composant comme des programmes identiques, et en définissant les
interactions multiples entre ces composants par l’intermédiaire d’interfaces gathercast
et multicast. Le résultat est analogue à l’utilisation des communications collectives en
MPI, mais dans notre cas, il n’y a pas d’intrusion dans le code applicatif.

Le problème MxN désigne le problème de communiquer et échanger des données
entre des programmes parallèles, depuis un programme parallèle contenant M proces-
sus, vers un programme contenant N processus. Les programmes parallèles peuvent
être conçus à l’aide de composants composants de même types, et ces composants peu-
vent être encapsulés au sein d’un composant composite, que l’on peut désigner comme
composant “parallèle”. Les interfaces multicast et gathercast permettent de gérer la
parallélisation des accès aux composants au niveau du composite englobant. Le cou-
plage entre composants parallèles revient donc à effectuer de la manière la plus efficace
la liaison entre deux composites “parallèles”. Nous pensons qu’une implantation opti-
male et automatisable de cette liaison peut être réalisée à l’aide des interfaces multicast
et gathercast, localement au niveau des composants similaires contenus dans les com-
posites “parallèles”.

Section 10.4. Un framework à composants basé sur les objets actifs 147

10.4 Un framework à composants basé sur les objets actifs

Afin de proposer une plate-forme d’expérimentation, de validation, et de mise en appli-
cation de nos concepts, nous avons implanté le modèle de composants proposé, sous la
forme d’une extension de la bibliothèque ProActive.

Nous avons réalisé cette implantation avec comme objectifs:

• De baser l’implantation sur le concept d’objets actifs déjà offert par ProActive.

• D’enrichir la bibliothèque ProActive en offrant un nouveau modèle de program-
mation par composants, compatible avec les fonctionnalités classiques de la biblio-
thèque.

• De fournir un framework qui soit réponde aux besoins du Grid computing, en com-
binant les fonctionnalités de distribution et de déploiement de ProActive, avec les
propriétés offertes par notre modèle de composants.

• D’offrir un framework adaptable et configurable.

• D’implanter notre spécification d’interfaces collectives.

L’architecture de notre framework à composants repose sur l’architecture à méta-
objets de ProActive. Nous avons ajouté un ensemble de méta-objets permettant de gérer
les aspects composants, et nous avons adapté la représentation des objets actifs afin
de pouvoir représenter des instances de composants, et non simplement des instances
de classes. Les contrôleurs, permettant de gérer les aspects non-fonctionnels des com-
posants, et d’intercepter les invocations, sont entièrement configurables et nous pro-
posons un ensemble minimum de contrôleurs. La gestion du cycle de vie des composants
est également configurable et est compatible avec la redéfinition de l’activité des objets
actifs.

Nous avons également implanté les notions d’interfaces collectives introduits dans le
chapitre 4. La configuration des interfaces collectives s’effectue par le biais d’annotations
Java au niveau des interfaces, et la vérification de la compatibilité de typage des liaisons
s’effectue à l’exécution, lors du processus de liaison.

10.5 Méthodologie et benchmarks

Ce chapitre rapporte les expériences que nous avons réalisées afin d’évaluer le fonction-
nement, l’utilisabilité et les performances de notre modèle et de son implantation.

Nous décrivons trois expériences principales: C3D est une simple application collab-
orative existante refactorée grâce aux composants, Jem3D est une application de calcul
numérique déployable sur grilles, que nous avons refactorée sous forme de composants,
et nous avons également développé une version de la méthode de Jacobi pour la résolu-
tion de systèmes linéaires, sous formes de composants SPMD reliés par des interfaces
collectives.

L’application C3D nous a permis de valider notre approche, de vérifier son applicabil-
ité pour des applications distribuées et relativement simple, et d’obtenir une première
évaluation du travail requis pour un passage d’objets à composants.

L’application Jem3D nous a permis de définir un méthodologie de transformation
d’un code objet en un code composants, ce qui est utile pour pouvoir apporter facilement
les avantages d’une structuration en composants à des codes objets existants. Nous
avons également pu vérifier avec Jem3D la capacité de passage à l’échelle de notre

148 Chapter 10. Résumé

framework (déploiement sur plus de 300 noeuds et 4 clusters) et nous avons mesuré
que le framework de composants n’induit pas de baisse de performance significative par
rapport à une application objets.

L’application Jacobi est l’implantation d’une méthode de résolution de systèmes linéaires
matriciels. Le calcul peut être facilement découpé et les entités de calcul peuvent être
implantées sous formes de composants échangeant des résultats de calcul avec leur
voisins. Cette expérience nous a permis de mettre en oeuvre les interfaces gathercast
et multicast et de comparer le résultat avec une version existante sous forme d’objets
SPMD. Les interactions collectives sont définies par l’assemblage des interfaces collec-
tives des composants. Nous avons pu vérifier le comportement normal du calcul et les
performances intéressantes. Nous en concluons que méthode de calcul SPMD utilisant
les interfaces collective est une méthode efficace et non-intrusive.

10.6 Travaux en cours et perspectives

10.6.1 GCM, le modèle de composants de CoreGrid’s

Notre travail contribue à l’élaboration du modèle de programmation par composants
pour la grille proposé par le réseau d’excellence académique CoreGrid, le GCM (Mod-
èle de Composants pour la Grille). Le GCM a adopté Fractal comme modèle de base et
les travaux de cette thèse contribuent au GCM par la définition d’extensions au mod-
èle Fractal, en particulier la specification d’interfaces collectives ayant une sémantique
claire, en proposant un modèle de déploiement prenant avantage de la virtualisation de
l’infrastructure pour contrôler le déploiement, et en identifiant des difficultés de recon-
figuration liées à l’API Fractal.

10.6.2 Patrons de déploiement

Nous proposons de faciliter l’assemblage et le déploiement d’applications Grid par la
définition de patrons d’assemblages configurables et composables, qui permettront de
créer facilement des systèmes à base de composants suivant des patrons de configura-
tions communément utilisés. Pipe, master-slaves, grilles 2D et 3D sont des exemples
classiques de tels patrons.

10.6.3 Outils graphiques

Les outils graphique sont utiles pour la conception, l’assemblage et le contrôle à l’exécution
des systèmes de composants. Au même titre que les environnements de dévelopement
pour les languages classiques, les outils graphique permettent de fournir des outils de
haut niveau pour la définition et l’analyse de systèmes de composants. De plus, dans
le cadre des grilles, les outils de contrôle à l’exécution permettent de vérifier le bon
comportement d’une application distribuée.

La spécification statique d’applications composants à l’aide de descripteurs d’architectures
(ADL) permet de proposer facilement des outils graphiques pour concevoir et manipuler
ces assemblages. Dans le cadre des grilles, nous remarquons cependant que de nouvelles
abstractions doivent être introduites afin de prendre en compte le nombre d’instances
potentiellement important, et de fournir non seulement une représentation structurelle,
mais également une représentation distribuée des systèmes à composants.

Section 10.6. Travaux en cours et perspectives 149

10.6.4 Dispatch et réduction pour les interfaces collectives

Notre implantation actuelle des interfaces collectives n’offre pas l’ensemble des fonc-
tionalités présente dans notre spécification, en particulier concernant la réduction et la
sélection de paramètres et de résultats. Nous souhaitons donc étendre notre framework
afin de proposer égalemetn ces fonctionnalités.

10.6.5 Adaptativité

L’un des challenges du Grid computing est de gérer les changements dynamiques de
l’environnement d’exécution, liés à la charge de la machine, au réseau, ou encore, à la
restructuration dynamique des applications.

Une approche pour répondre à ce challenge est l’informatique autonomique (auto-
nomic computing), qui propose de rendre auto-adaptables les entités logicielles. Dans
le cadre du projet européen Bionets, notre équipe délivrera un plate-forme de simula-
tion sur grille capable de gérer des composants autonomiques. Pour cela, nous étudions
des techniques de composition des aspects non-fonctionnels intra et inter composants,
notamment par l’utilisation d’un framework de composants léger au sein de notre frame-
work de composants à plus gros grain.

10.6.6 Dissémination industrielle

Le projet GridComp est un projet européen appuyé par la commission européenne. Il
rassemble des académiques (INRIA, Tsinghua University à Beijing, University of Mel-
bourne entre autres) et des industriels (IBM, Atos Origin, GridSystems), dans l’objectif
de concevoir et d’implanter un framework standardisé de composants pour le développe-
ment d’applications Grid. GridComp utilisera le GCM proposé par CoreGrid comme
première spécification et ProActive/Fractal (que nous avons développé au cours de cette
thèse) comme support d’exécution, et les cas d’utilisation proposés par les partenaires
industriels permettront d’affiner le modèle et l’implantation ProActive/Fractal.

150 Chapter 10. Résumé

Chapter 11

Conclusion

La nature distribuée, complexe et hétérogène des grilles, et la volonté de bénéficier des
ressources des grilles, mettent en évidence le besoin de nouveaux modèles de program-
mation qui prennent en compte les besoins des grilles.

Nous proposons un modèle de programmation par composants et un framework qui
prennent en considération les spécificité du Grid computing, en particulier la latence,
l’hétérogénéité, la complexité, et le passage à l’échelle. Notre modèle est basé sur le
modèle d’objets actifs et sur le modèle de composants Fractal, étendu pour gérer les
interactions collectives.

Nos contributions peuvent être résumées de la manière suivante:

• Grâce à une analyse des modèles de programmation existants pour le Grid com-
puting, nous avons identifié:

– la programmation par composants comme le paradigme le plus adapté, car il
englobe les autres paradigmes de programmation

– les limitations des modèles de composants existants, qui ne sont: pas conçus
pour le parallélisme, ou pour le passage à l’échelle, ou pour des environ-
nements hétérogènes.

• A partir de cette étude, nous avons vérifié l’adéquation de Fractal pour le Grid com-
puting, notre étude mettant en évidence Fractal comme le modèle le plus général
et le plus extensible.

• Nous proposons un modèle de composants spécifique au Grid computing basé sur
le modèle Fractal et sur le modèle d’objets actifs, étendus par:

– un modèle de déploiement basé sur une virtualisation de l’infrastructure,

– une spécification des interfaces collectives, qui permet : des communications
multi-entités efficaces, le parallélisme, et la synchronisation entre multiples
composants.

• Nous avons développé une implantation du modèle de composants que nous avons
défini. Cette implantation est basée sur ProActive, un middleware de Grid.

• Nous avons vérifié, par plusieurs expériences, la validité de l’approche par com-
posants proposée pour la programmation d’applications Grid. Nous avons montré
que le framework de composants n’introduit pas de baisse de performance signi-
ficative, en comparaison avec les versions “objets” des mêmes applications. Nous
avons également vérifié la capacité de passage à l’échelle de notre framework en

151

152 Chapter 11. Conclusion

déployant ces applications sur diverses configurations de grilles et sur plus de 300
noeuds de calcul.

• Nous avons proposé une nouvelle approche pour la programmation SPMD par com-
posants, dans laquelle le code de synchronisation n’est pas imbriqué dans le code
fonctionnel de l’application.

Nous n’avons pas pris en compte l’intégralité des scenarios possibles de Grid com-
puting dans nos expériences, et nous n’avons pas exploité toutes les fonctionnalités de
notre modèle de composants. Dans [SNA 03], les applications Grid sont classées en qua-
tre catégories: faiblement couplées, pipelinées, fortement couplées, et largement dis-
tribuées. Les applications que nous avons utilisées appartiennent à la catégorie “forte-
ment couplées”, et nous souhaitons élargir le domaine de nos expériences en dévelop-
pant des applications plus variées. Certaines des fonctionnalités de notre modèle de
composants n’ont pas été entièrement exploitées alors que notre framework implante
ces fonctionnalités, telles la customisation, la structuration hiérarchique, l’adaptation
et la dynamicité.

Afin de diversifier le champ de nos applications potentielles, et afin d’exploiter l’ensemble
des fonctionnalités de notre modèle de composants, nous prévoyons d’implanter les NAS-
Grid benchmarks, présentés en section 3.2.6.1 et qui constituent des applications Grid
de référence. Pour ces applications, nous mettrons à profit la structuration hiérarchique
de nos composants (figure 3.1), et nous prendrons en charge le couplage faible grâce à
une structuration en workflow.

En conclusion, nous avons étendu avec succès le modèle de composants Fractal afin
de prendre en charge les besoins spécifiques du Grid computing, ce qui nous permet
d’entrevoir un grand nombre de perspectives passionnantes. Un résumé des extensions
définies dans le framework ProActive/Fractal est fourni en table 11.1 pour les propriétés
générales, et en table 11.2 pour les propriétés spécifiques à la grille. Nous avons spé-
cifiquement considéré les problématiques de déploiement, de communications collec-
tives, et nous avons fourni une base pour le couplage MxN et pour l’interoperabilité
(en exposant les composants en tant que services web). En tant que participants à
l’élaboration due modèle de composants de CoreGrid (le GCM, qui est une spécifica-
tion plus exhaustive incluant notamment l’adaptativité, la gestion de code patrimoine
et l’interopérabilité complète), nous souhaitons fournir une implantation de référence
du GCM (ProActive/GCM), qui présentera l’ensemble des propriétés décrites tables 11.1
et 11.2.

153

Requirements of component
models Fractal ProActive/Fractal ProActive/GCM

Lightweight

Extensible

Hierarchical

Std composition description

Non-functional adaptivity

Reflective

API

Dynamic reconfiguration

Sharing -1 ?

Packaging / repository ? ?

1 sharing is not yet implemented

no yes ? Unspecified or unknown

Table 11.1: Compaison des propriétés générales entre Fractal, ProActive/Fractal et ProAc-
tive/GCM

Requirements of Grid
computing Fractal ProActive/Fractal ProActive/GCM

Deployment framework ?

Multiple deployment protocols ?

Heterogeneity1

Interoperability ?

Legacy software ? ?

HPC2 -

Collective communications 3 -

MxN facilities -

Scalability4 -

1 hardware and operating system
2 targets high performance computing applications
3direct and non broker-based
4 capability to handle a large number of distributed entities

Table 11.2: Comparaison de la prise en charge des besoins des grilles entre Fractal, ProAc-
tive/Fractal et ProActive/GCM

154 Chapter 11. Conclusion

Bibliography

[ABR 95] DAVID ABRAMSON, ROK SOSIC, J. GIDDY, and B. HALL. “ Nimrod: a tool
for performing parametrised simulations using distributed workstations ”.
In Proceedings of the Fourth IEEE International Symposium on High Perfor-
mance Distributed Computing, 1995.

[ALD 06] MARCO ALDINUCCI, MASSIMO COPPOLA, MARCO DANELUTTO, MARCO
VANNESCHI, and CORRADO ZOCCOLO. “ Grid Computing: Software envi-
ronments and Tools ”, chapter ASSIST as a research framework for high-
performance Grid programming environments. Springer Verlag, 2006.

[ALL 02] BENJAMIN A. ALLAN, ROBERT C. ARMSTRONG, ALICIA P. WOLFE,
JAIDEEP RAY, DAVID E. BERNHOLDT, and JAMES A. KOHL. The CCA core
specification in a distributed memory SPMD framework. Concurrency and
Computation: Practice and Experience, 14:323–345, 2002.

[ALL 03] GABRIELLE ALLEN, KELLY DAVIS, KONSTANTINOS N. DOLKAS, NIKO-
LAOS D. DOULAMIS, TOM GOODALE, THILO KIELMANN, ANDRE MERZKY,
JAREK NABRZYSKI, JULIUSZ PUKACKI, THOMAS RADKE, MICHAEL RUS-
SELL, ED SEIDEL, JOHN SHALF, and IAN TAYLOR. Enabling Applications
on the Grid - A GridLab Overview. International Journal on High Perfor-
mance Computing Applications, 17(4):449–466, 2003.

[ALL 05] GABRIELLE ALLEN, KELLY DAVIS, TOM GOODALE, ANDREI HUTANU,
HARTMUT KAISER, THILO KIELMANN, ANDRE MERZKY, ROB V. VAN
NIEUWPOORT, ALEXANDER REINEFELD, FLORIAN SCHINTKE, THORSTEN
SCHOTT, ED SEIDEL, and BRYGG ULLMER. “ The Grid Application Toolkit:
Towards Generic and Easy Application Programming Interfaces for the
Grid ”. In Proceedings of the IEEE, volume 93, pages 534–550, March 2005.

[ALT 02] MARTIN ALT, HOLGER BISCHOF, and SERGEI GORLATCH. Program Devel-
opment for Computational Grids Using Skeletons and Performance Predic-
tion. Parallel Processing Letters, 12(2):157–174, 2002.

[AND 04] DAVID P. ANDERSON. “ BOINC: a system for public-resource computing and
storage ”. In 5th IEEE/ACM International Workshop on Grid Computing.
IEEE Press, November 2004.

[ANT 05] GABRIEL ANTONIU, LUC BOUGÉ, and MATHIEU JAN. JuxMem: An Adap-
tive Supportive Platform for Data Sharing on the Grid. Scalable Computing:
Practice and Experience, 6(3):45–55, September 2005.

[ARM 99] ROB ARMSTRONG, DENNIS GANNON, AL GEIST, KATARZYNA KEAHEY,
SCOTT KOHN, LOIS MCINNES, STEVE PARKER, and BRENT SMOLINSKI.
“ Toward a Common Component Architecture for High-Performance Scien-

155

156 BIBLIOGRAPHY

tific Computing ”. In Proceedings of the 1999 Conference on High Perfor-
mance Distributed Computing, 1999. http://www-unix.mcs.anl.gov/ curf-
man/cca/web/cca_paper.html.

[ATT 05] ISABELLE ATTALI, DENIS CAROMEL, and ARNAUD CONTES. “ Deployment-
Based Security for Grid Applications ”. In The International Conference
on Computational Science (ICCS 2005), Atlanta, USA, May 22-25, LNCS.
Springer Verlag, 2005.

[BAD 00] B. R. BADRINATH, and PRADEEP SUDAME. “ Gathercast: The design and
implementation of a programmable aggregation mechanism for the Inter-
net ”. In Proceedings of IEEE International Conference on Computer Com-
munications and Networks (ICCCN), 2000.

[BAD 02] LAURENT BADUEL, FRANÇOISE BAUDE, and DENIS CAROMEL. “ Efficient,
Flexible, and Typed Group Communications in Java ”. In joint ACM Java
Grande - ISCOPE 2002 Conference, pages 28–36. ACM Press, 2002. ISBN
1-58113-559-8.

[BAD 03] ROSA M. BADIA, JESÚS LABARTA, RAÚL SIRVENT, JOSEP M. PÉREZ,
JOSÉ M. CELA, and ROGELI GRIMA. Programming Grid Applications with
GRID Superscalar. Journal of Grid Computing, 1(2):151–170, 2003.

[BAD 05a] LAURENT BADUEL. “ Typed Groups for the Grid ”. PhD thesis, University of
Nice Sophia-Antipolis, July 2005.

[BAD 05b] LAURENT BADUEL, FRANÇOISE BAUDE, and DENIS CAROMEL. “ Object-
Oriented SPMD ”. In Proceedings of Cluster Computing and Grid, Cardiff,
United Kingdom, May 2005.

[BAD 05c] LAURENT BADUEL, FRANÇOISE BAUDE, NADIA RANALDO, and EUGENIO
ZIMEO. “ Effective and Efficient Communication in Grid Computing with
an Extension of ProActive Groups ”. In JPDC, 7th International Worshop on
Java for Parallel and Distributed Computing at IPDPS, Denver, Colorado,
USA, April 2005.

[BAK 99] MARK BAKER, BRYAN CARPENTER, GEOFFREY FOX, SUNG HOON KO, and
SANG LIM. “ mpiJava: An Object-Oriented Java interface to MPI ”. In In-
ternational Workshop on Java for Parallel and Distributed Computing, IPP-
S/SPDP, San Juan, Puerto Rico, April 1999.

[BAR 05] TOMAS BARROS. “ Formal specification and verification of distributed com-
ponent systems ”. PhD thesis, Université de Nice - Sophia Antipolis, 2005.

[BAU 00] FRANÇOISE BAUDE, DENIS CAROMEL, FABRICE HUET, and JULIEN
VAYSSIÈRE. “ Communicating Mobile Active Objects in Java ”. In Proceed-
ings of HPCN Europe 2000, volume 1823 de LNCS, pages 633–643. Springer,
May 2000.

[BAU 02] FRANÇOISE BAUDE, DENIS CAROMEL, LIONEL MESTRE, FABRICE HUET,
and JULIEN VAYSSIÈRE. “ Interactive and Descriptor-based Deployment of
Object-Oriented Grid Applications ”. In Proceedings of the 11th IEEE In-
ternational Symposium on High Performance Distributed Computing, pages
93–102, Edinburgh, Scotland, July 2002. IEEE Computer Society.

[BAU 05] FRANÇOISE BAUDE, DENIS CAROMEL, CHRISTIAN DELBÉ, and LUDOVIC
HENRIO. “ A Hybrid Message Logging-CIC Protocol for Constrained Check-

BIBLIOGRAPHY 157

pointability ”. In Proceedings of EuroPar2005, LNCS, pages 644–653, Lis-
bon, Portugal, August-September 2005. Springer.

[BAU 06] FRANÇOISE BAUDE, DENIS CAROMEL, MARIO LEYTON, and ROMAIN
QUILICI. “ Grid File Transfer during Deployment, Execution, and Re-
trieval ”. In Proceeedings of On the Move to Meaningful Internet Systems
2006, Montpellier, France, 2006.

[BER 01] FRANCINE BERMAN, ANDREW CHIEN, KEITH COOPER, JACK DONGARRA,
IAN FOSTER, DENNIS GANNON, LENNART JOHNSSON, KEN KENNEDY,
CARL KESSELMAN, JOHN MELLOR-CRUMMEY, DAN REED, LINDA TOR-
CZON, and RICH WOLSKI. The GrADS Project: Software Support for High-
Level Grid Application Development. The International Journal of High
Performance Computing Applications, 15(4):327–344, 2001.

[BER 04] FELIPE BERTRAND, and RANDALL BRAMLEY. “ DCA: A distributed CCA
framework based on MPI ”. In Proceedings of HIPS 2004, 9th In- ternational
Workshop on High-Level Parallel Programming Models and Supportive En-
vironments, Santa Fe, NM, 2004.

[BER 05] FELIPE BERTRAND, RANDALL BRAMLEY, KOSTADIN B. DAMEVSKI,
JAMES A. KOHL, DAVID E. BERNHOLDT, JAY W. LARSON, and ALAN SUSS-
MAN. “ Data Redistribution and Remote Method Invocation in Parallel Com-
ponent Architectures ”. In Proceedings of the 19th International Parallel and
Distributed Processing Symposium: IPDPS, 2005.

[BIO] Bionets Project. http://www.bionets.eu.

[BLO] STEVENS LE BLOND, ANA-MARIA OPRESCU, and CHEN ZHANG. “ Early
Application Experience with the Grid Application Toolkit (GAT) ”.

[BLO 05] STEVENS LE BLOND, ANA-MARIA OPRESCU, and CHEN ZHANG. Early Ap-
plication Experience with the Grid Application Toolkit. Global Grid Forum
Information Document, from the Workshop on Grid Applications: from Early
Adopters to Mainstream Users, June 2005.

[BOU 06] HINDE LILIA BOUZIANE, CHRISTIAN PÉ REZ, and THIERRY PRIOL.
“ Modeling and executing Master-Worker applications in component mod-
els ”. In 11th International Workshop on High-Level Parallel Programming
Models and Supportive Environments (HIPS), Rhodes Island, Greece, 25
April 2006.

[BRU 02] ÉRIC BRUNETON, THIERRY COUPAYE, and JEAN-BERNARD STEFANI.
“ Recursive and Dynamic Software Composition with Sharing ”. In Proceed-
ings of the 7th ECOOP International Workshop on Component-Oriented Pro-
gramming (WCOP’02), Malaga (Spain), June 10th-14th 2002.

[BRU 04a] ERIC BRUNETON, THIERRY COUPAYE, MATHIEU LECLERCQ, VIVIEN
QUÉMA, and JEAN-BERNARD STEFANI. “ An Open Component Model and
Its Support in Java ”. In LNCS, teur, Seventh International Symposium on
Component-Based Software Engineering (CBSE-7), volume 3054, pages 7–
22, May 2004.

[BRU 04b] ERIC BRUNETON, THIERRY COUPAYE, and JEAN-BERNARD STEFANI. The
fractal component model specification, 2004.

158 BIBLIOGRAPHY

[BUL 03] J. M. BULL, L. A. SMITH, C. BALL, L. POTTAGE, and R. FREEMAN. Bench-
marking Java against C and Fortran for scientific applications. Concurrency
and Computation: Practice and Experience, 15:417–430, 2003.

[BUY 04] RAJKUMAR BUYYA, and SRIKUMAR VENUGOPAL. “ The Gridbus Toolkit for
Service Oriented Grid and Utility Computing: An Overview and Status Re-
port ”. In Proceedings of the First IEEE International Workshop on Grid Eco-
nomics and Business Models (GECON 2004, April 23, 2004, Seoul, Korea),
pages 19–36. IEEE Press, 2004.

[CAP 05] FRANCK CAPPELLO, FRÉDÉRIC DESPREZ, MICHEL DAYDE, EMMANUEL
JEANNOT, YVON JÉGOU, STÉPHANE LANTERI, NOUREDINE MELAB, RAY-
MOND NAMYST, PASCALE PRIMET, OLIVIER RICHARD, EDDY CARON,
JULIEN LEDUC, and GUILLAUME MORNET. “ Grid’5000: A Large Scale, Re-
configurable, Controlable and Monitorable Grid Platform ”. In Proceedings of
the 6th IEEE/ACM International Workshop on Grid Computing, Grid’2005,
November 13-14, 2005, Seattle, Washington, USA, November 2005.

[CAR] DENIS CAROMEL, CHRISTIAN DELBÉ, LUDOVIC HENRIO, and ROMAIN
QUILICI. Dispositifs et procé dé s asynchrones et automatiques de transmis-
sion de ré sultats entre objets communicants (asynchronous and automatic
continuations of results between communicating objects). French patent
FR03 13876 - US Patent Pending.

[CAR 93] DENIS CAROMEL. Toward a method of object-oriented concurrent program-
ming. Communications of the ACM, 36(9):90–102, 1993.

[CAR 00] BRIAN CARPENTER, VLADIMIR GETOV, GLENN JUDD, ANTHONY SKJEL-
LUM, and GEOFFREY FOX. MPJ: MPI-like Message Passing for Java. Con-
currency: Practice and Experience, 12:1019–1038, 2000.

[CAR 04] DENIS CAROMEL, LUDOVIC HENRIO, and BERNARD SERPETTE. Asyn-
chronous and Deterministic Objects. pages 123–134, 2004.

[CAR 05] DENIS CAROMEL, and LUDOVIC HENRIO. “ A Theory of Distributed Ob-
jects ”. Springer-Verlag, 2005.

[CAR 06] DENIS CAROMEL, ALEXANDRE DI COSTANZO, CHRISTIAN DELBÉ, and
MATTHIEU MOREL. “ Dynamically-Fulfilled Application Constraints
through Technical Services - Towards Flexible Component Deployments ”.
In Proceedings of HPC-GECO/CompFrame 2006, HPC Grid programming
Environments and COmponents - Component and Framework Technology
in High-Performance and Scientific Computing, Paris, France, June 2006.
IEEE.

[CCA] CCA Forum homepage. http://www.cca-forum.org/.

[CHI 02] KENNETH CHIU, MADHUSUDHAN GOVINDARAJU, and RANDALL BRAM-
LEY. “ Investigating the limits of soap performance for scientific computing ”.
volume 00, page 246, Los Alamitos, CA, USA, 2002. IEEE Computer Society.

[CLA 01] MICHAEL CLARKE, GEOFF COULSON, GORDON BLAIR, and NIKOS PARLA-
VANTZAS. “ An Efficient Component Model for the Construction of Adaptive
Middleware ”. In Proceedings of Middleware 2001, 2001.

[COL 89] MURRAY COLE. “ Algorithmic Skeletons: Structured Management of Parallel
Computation ”. MIT Press, 1989.

BIBLIOGRAPHY 159

[COP] MASSIMO COPPOLA, MARCO DANELUTTO, SÉBASTIEN LACOUR, CHRIS-
TIAN PÉREZ, THIERRY PRIOL, NICOLA TONELLOTTO, , and CORRADO ZOC-
COLO. “ Towards a common deployment model for Grid systems ”. To appear
in Springer CoreGRID series.

[COR] CoreGrid Network of Excellence. http://www.coregrid.net.

[COR 04] IBM CORPORATION. An architectural blueprint for autonomic computing.
http://www-128.ibm.com/developerworks/autonomic/library/ac-summary/ac-
blue.html, october 2004.

[DAM 03] KOSTADIN DAMEVSKI. Parallel RMI and M-by-N data redistribution using
an IDL compiler. Master’s thesis, The University of Utah, 2003.

[DAN 05] MARCO DANELUTTO, MARCO VANNESCHI, CORRADO ZOCCOLO, NICOLA
TONELLOTTO, SALVATORE ORLANDO, RANIERI BARAGLIA, TIZIANO
FAGNI, DOMENICO LAFORENZA, , and ALESSANDRO PACCOSI. “ Future
Generation Grids, CoreGRID series ”, chapter HPC Application Execution
on Grids, page 26382. Springer-Verlag, 2005.

[DAV 06] PIERRE-CHARLES DAVID, and THOMAS LEDOUX. “ Safe Dynamic Reconfig-
urations of Fractal Architectures with FScript ”. In Proceedings of the 5th
Fractal Workshop at ECOOP 2006, Nantes, France, July 2006.

[DEN 04] ALEXANDRE DENIS, CHRISTIAN PÉREZ, THIERRY PRIOL, and ANDRÉ
RIBES. “ Bringing high performance to the CORBA component model ”. In
SIAM Conference on Parallel Processing for Scientific Computing, 2004.

[DES 04] FRÉDÉRIC DESPREZ. “ DIET: Building Problem Solving Environments for
the Grid ”. In HiPC, page 4, 2004.

[DUM 06] C. DUMITRESCU, DICK H. J. EPEMA, JAN DUNNWEBER, and SERGEI GOR-
LATCH. “ Reusable Cost-based Scheduling of Grid Workflows Operating on
Higher-Order Components ”. Technical report TR-0044, Institute on Re-
source Management and Scheduling, CoreGRID - Network of Excellence,
July 2006.

[DUN 04] JAN DUNNWEBER, and SERGEI GORLATCH. “ HOC-SA: A Grid Service Ar-
chitecture for Higher-Order Components ”. pages 288–294, Los Alamitos,
CA, USA, 2004. IEEE Computer Society.

[ECL] Eclipse IDE Project. http://www.eclipse.org.

[EER 03] P. EEROLA, B. KONYA, O. SMIRNOVA, T. EKELOF, M. ELLERT, J. R.
HANSEN, J. L.NIELSEN, A. WAANANEN, A. KONSTANTINOV, J. HERRALA,
M. TUISKU, T. MYKLEBUST, F. OULD-SAADA, and B. VINTER. “ The Nor-
duGrid production Grid infrastructure, status and plans ”. In Proceeding of
the 4th International Workshop on Grid Computing (GRID’03). IEEE, 2003.

[FAS 02] JEAN-PHILIPPE FASSINO, JEAN-BERNARD STEFANI, JULIA LAWALL, and
GILLES MULLER. “ Think: A software framework for component-based op-
erating system kernels ”. In Proceedings of the Usenix Annual Technical
Conference, June 2002.

[FEL 96] PASCAL FELBER, BENOÎT GARBINATO, and RACHID GUERRAOUI. “ The De-
sign of a CORBA Group Communication Service ”. In Symposium on Reliable
Distributed Systems, pages 150–159. IEEE Computer Society, October 1996.

160 BIBLIOGRAPHY

[FOS 98] IAN FOSTER, and CARL KESSELMAN, teurs. “ The Grid: Blueprint for a New
Computing Infrastructure ”. Morgan Kaufmann Publishers, 1998.

[FOS 01] IAN FOSTER, CARL KESSELMAN, and STEVEN TUECKE. The Anatomy of
the Grid: Enabling Scalable Virtual Organizations. International Journal of
High Performance Computing Applications, 15, 2001.

[FOS 02] IAN FOSTER, CARL KESSELMAN, JEFFREY NICK, and STEVE TUECKE. The
Physiology of the Grid: An Open Grid Services Architecture for Distributed
Systems Integration. www.globus.org/research/papers/ogsa.pdf., 2002.

[FOS 05a] IAN FOSTER. “ Globus Toolkit Version 4: Software for Service-Oriented Sys-
tems ”. In IFIP International Conference on Network and Parallel Comput-
ing, number 3779 in LNCS. Springer-Verlag, 2005.

[FOS 05b] IAN FOSTER. Service-Oriented Science. Science, 308, 2005.

[FOX 03] GEOFFREY FOX, MARLON PIERCE, DENNIS GANNON, and MARY THOMAS.
“ Overview of Grid Computing Environments ”. Technical report, Global Grid
Forum document, 2003. http://www.ggf.org/documents/final.htm.

[FRAa] Fractal specification. http://fractal.objectweb.org/specification/index.html.

[FRAb] Fractal tutorial. http://fractal.objectweb.org/tutorial/index.html.

[FRAc] ECOOP’06 Fractal Workshop. http://fractal.objectweb.org/doc/ecoop06/index.html.

[FRA06] Discussion on Fractal ADL from the Fractal mailing list.
http://www.objectweb.org/wws/arc/fractal/2006-05/, May 2006.

[FRU 01a] MICHAEL FRUMKIN, and ROB F. VAN DER WIJNGAART. “ NAS Grid Bench-
marks: A Tool for Grid Space Exploration ”. In Proceedeing of the 10th
IEEE International Symposium on High Performance Distributed Comput-
ing (HPDC-10 ’01). IEEE Computer Society, 2001.

[FRU 01b] MICHAEL FRUMKIN, and ROB F. VAN DER WIJNGAART. “ NAS Grid Bench-
marks: A Tool for Grid Space Exploration ”. In Proceedings of the 10th
IEEE International Symposium on High Performance Distributed Comput-
ing (HPDC ’01), volume 00, page 0315, Los Alamitos, CA, USA, 2001. IEEE
Computer Society.

[GAN 02] DENNIS GANNON, RANDALL BRAMLEY, GEOFFREY FOX, SHAVA SMALLEN,
AL ROSSI, RACHANA ANANTHAKRISHNAN, FELIPE BERTRAND, KEN CHIU,
MATT FARRELLEE, MADHU GOVINDARAJU, SRIRAM KRISHNAN, LAVANYA
RAMAKRISHNAN, YOGESH SIMMHAN, ALEK SLOMINSKI, YU MA, CARO-
LINE OLARIU, and NICOLAS REY-CENVAZ. Programming the Grid: Dis-
tributed Software Components, P2P and Grid Web Services for Scientific
Applications. Cluster Computing, 5(3), 2002.

[GC] GridComp project. http://gridcomp.ercim.org/.

[GEI 94] AL GEIST, ADAM BEGUELIN, JACK DONGARRA, WEICHENG JIANG,
ROBERT MANCHEK, and VAIDYALINGAM S. SUNDERAM. “ PVM: Parallel
Virtual Machine ”. MIT Press, 1994.

[GEI 97] G. A. GEIST, JAMES A. KOHL, and PHILIP M. PAPADOPOULOS. CUMULVS:
Providing fault tolerance, visualization and steering of parallel applications.
The International Journal of High Performance Computing Applications,
11(3):224–236, 1997.

http://www.ggf.org/documents/final.htm

BIBLIOGRAPHY 161

[GGF04] Global Grid Forum, Available: http://forge.gridforum.org/projects/saga-rg/.
“ Simple API for Grid Applications Research Group ”, 2004.

[GOO] TOM GOODALE, SHANTENU JHA, HARTMUT KAISER, THILO KIEL-
MANN, PASCAL KLEIJER, GREGOR VON LASZEWSKI, CRAIG LEE, AN-
DRE MERZKY, HRABRI RAJIC, and JOHN SHALF. SAGA: A Simple API
for Grid Applications, High-Level Application Programming on the Grid.
http://www.cs.vu.nl/ kielmann/papers/saga-sc05.pdf. submitted for publica-
tion.

[GOR 04] SERGEI GORLATCH. Send-Receive Considered Harmful: Myths and Real-
ities of Message Passing. ACM Transactions on Programming Languages
and Systems, 26(1):47–56, January 2004.

[GPT] 2nd Grid Plugtests. http://www.etsi.org/plugtests/History/2005GRID.htm.

[GPT05] Grid Plugtest: Interoperability on the Grid. Grid Today online, January
2005.

[GRA 04] PAUL GRACE, GEOFF COULSON, GORDON BLAIR, LAURENT MATHY,
WAI KIT YEUNG, WEI CAI, DAVID DUCE, and CHRIS COOPER. “ GRIDKIT:
Pluggable Overlay Networks for Grid Computing ”. 2004.

[GRO] OBJECT MANAGEMENT GROUP. Corba Component Model Specification.
http://www.omg.org/technology/documents/formal/components.htm.

[GRO 03] OBJECT MANAGEMENT GROUP. Data Parallel CORBA Specification. OMG
Specification, January 2003.

[HER 00] PETER HERZUM, and OLIVER SIMS. “ Business Components Factory: A Com-
prehensive Overview of Component-Based Development for the Enterprise ”.
John Wiley & Sons, Inc., New York, NY, USA, 2000.

[HUA 03] YAN HUANG, IAN TAYLOR, DAVID W. WALKER, and ROBERT DAVIES.
“ Wrapping Legacy Codes for Grid-Based Applications ”. In 17th Interna-
tional Parallel and Distributed Processing Symposium: IPDPS, page 139.
IEEE Computer Society, 2003.

[HUE 04] FABRICE HUET, DENIS CAROMEL, and HENRI E. BAL. “ A High Perfor-
mance Java Middleware with a Real Application ”. In Proceedings of the
Supercomputing conference, Pittsburgh, Pensylvania, USA, November 2004.

[IBI] Ibis Project. http://www.cs.vu.nl/ibis/index.html.

[ISO 95] ISO/IEC. Open Distributed Processing- Reference Model - Part 1: Overview.
International Standard 10746-1 Itu-T Recommendation X.901, 1995.

[JIN 04] HAI JIN. “ ChinaGrid: Making Grid Computing a Reality ”. In 7th Interna-
tional Conference on Asian Digital Libraries, ICADL 2004, Shanghai, China,
December 13-17, 2004, number 3334 in LNCS. Springer, 2004.

[JUG 04] ALEXANDRU JUGRAVU, and THOMAS FAHRINGER. “ JavaSymphony, a Pro-
gramming Model for the Grid ”. In International Conference on Computa-
tional Science, pages 18–25, 2004.

[JXT] JXTA Project. http://www.jxta.org/.

[KAR 03] NICHOLAS KARONIS, BRIAN TOONEN, and IAN FOSTER. MPICH-G2: A
Grid-Enabled Implementation of the Message Passing Interface, journal =

162 BIBLIOGRAPHY

Journal of Parallel and Distributed Computing (JPDC). 63(5):551–563, May
2003.

[KEA 97] KATARZYNA KEAHEY, and DENNIS GANNON. “ PARDIS: A Parallel Ap-
proach to CORBA ”. In Proceedings of the 6th IEEE International Sympo-
sium on High Performance Distributed Computing (HPDC), 1997.

[KEA 01] K. KEAHEY, P. FASEL, and S. MNISZEWSKI. “ PAWS: Collective interactions
and data transfers ”. In Proceedings of the High Performance Distributed
Computing Conference, 2001.

[KEL 03] RAINER KELLER, BETTINA KRAMMER, MATTHIAS S. MUELLER,
MICHAEL M. RESCH, and EDGAR GABRIEL. Towards efficient execu-
tion of MPI applications on the Grid: porting and optimization issues.
Journal of Grid Computing, 1(2):133–149, 2003.

[KIE 99] THILO KIELMANN, RUTGER F. H. HOFMAN, HENRI E. BAL, ASKE PLAAT,
and RAOUL A. F. BHOEDJANG. “ MagPIe: MPI’s collective communication
operations for clustered wide area systems ”. In PPoPP ’99: Proceedings of
the seventh ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 131–140, New York, NY, USA, 1999. ACM Press.

[KOH 01] SCOTT KOHN, GARY KUMFERT, JEFF PAINTER, , and CAL RIBBENS.
“ Divorcing Language Dependencies from a Scientific Software Library ”. In
10th SIAM Conference on Parallel Processing, 2001.

[KRI 04] SRIRAM KRISHNAN, and DENNIS GANNON. “ XCAT3: A Framework for CCA
Components as OGSA Services ”. In 9th International Workshop on High-
Level Parallel Programming Models and Supportive Environments (HIPS),
2004.

[KUM 06] GARY KUMFERT, DAVID E. BERNHOLDT, THOMAS EPPERLY, JAMES KOHL,
LOIS CURFMAN MCINNES, STEVEN PARKER, , and JAIDEEP RAY. “ How
the Common Component Architecture Advances Computational Science ”.
In Proceedings of Scientific Discovery through Advanced Computing (Sci-
DAC’06), 2006.

[LAC 04a] SÉBASTIEN LACOUR, CHRISTIAN PÉREZ, and THIERRY PRIOL. A Software
Architecture for Automatic Deployment of CORBA Components Using Grid
Technologies, 2004.

[LAC 04b] SÉBASTIEN LACOUR, CHRISTIAN PÉREZ, and THIERRY PRIOL. “ Deploying
corba components on a computational grid: General principles and early
experiments using the globus toolkit ”. In WOLFGANG EMMERICH, and
ALEXANDER L. WOLF, teurs, 2nd International Working Conference on Com-
ponent Deployment (CD 2004), LNCS. Springer-Verlag, 2004.

[LAF 02] DOMENICO LAFORENZA. Grid programming: some indications where we
are headed. Parallel Computing, 28:1733–1752, 2002.

[LAN] SEAN LANDIS, and SILVANO MAFFEIS. Building Reliable Distributed Sys-
tems with CORBA. Theory and Practice of Object Systems, 3(1):1997.

[LAS 01] GREGOR VON LASZEWSKI, IAN FOSTER, JAREK GAWOR, and PETER LANE.
A Java Commodity Grid Kit. Concurrency and Computation: Practice and
Experience, 13:643–662, 2001.

BIBLIOGRAPHY 163

[LAS 05] GREGOR VON LASZEWSKI. The Grid-Idea and Its Evolution. Journal of
Information Technology, 47(6):319–329, 2005.

[LAU 04] PHILIPPE LAUMAY. “ Configuration et déploiement d’intergiciel asynchrone
sur système hétérogène à grande échelle ”. PhD thesis, Institut National Poly-
technique de Grenoble, March 2004. in french.

[LAY 04] OUSSAMA LAYAIDA, SLIM BEN ATALLAH, and DANIEL HAGIMONT. A
Framework for Dynamically Configurable and Reconfigurable Network-
based Multimedia Adaptations. Journal of Internet Technology, Special Issue
on "Real time media delivery over the Internet", October 2004.

[LEC 04] MATTHIEU LECLERCQ, VIVIEN QUÉMA, and JEAN-BERNARD STEFANI.
“ DREAM: a Component Framework for the Construction of Resource-
Aware, Reconfigurable MOMs ”. In Proceedings of the 3rd Workshop on
Reflective and Adaptive Middleware (RM’2004), Toronto, Canada, October
2004.

[LEE 01] C. LEE, S. MATSUOKA, D. TALIA, A. SUSSMAN, N. KARONIS, G. ALLEN,
and M. THOMAS. A Grid Programming Primer. Draft 2.4 of the Program-
ming Models Working Group presented at the Global Grid Forum 1, March
2001.

[LEE 03] CRAIG LEE, and DOMENICO TALIA. Grid programming models: Current
tools, issues and directions, 2003.

[MAA 02] JASON MAASSEN, THILO KIELMANN, and HENRI E. BAL. “ GMI: Flexi-
ble and Efficient Group Method Invocation for Parallel Programming ”. In
Sixth Workshop on Languages, Compilers, and Run-time Systems for Scal-
able Computers (LCR’02), Washington D.C., USA, March 2002.

[MAL 05] MACIEJ MALAWSKI, DAWID KURZYNIEC, and VAIDY S. SUNDERAM.
“ MOCCA - Towards a Distributed CCA Framework for Metacomputing ”.
In Proceedings of the 19th International Parallel and Distributed Processing
Symposium (IPDPS 2005). IEEE Computer Society, 2005.

[MAY 03] ANTHONY MAYER, STEVE MCGOUGH, NATHALIE FURMENTO, WILLIAM
LEE, STEVEN NEWHOUSE, and JOHN DARLINGTON. ICENI Dataflow and
Workflow: Composition and Scheduling in Space and Time. UK e-Science
All Hands Meeting, p. 627–634, Nottingham, UK, Sep. 2003, 2003.

[MCG] S. MCGOUGH, W. LEE, and J. DARLINGTON. ICENI II Architecture. In UK
e-Science All Hands Meeting, Nottingham, UK, sep 2005.

[MEN 05] VLADIMIR MENCL, and TOMAS BURES. “ Microcomponent-Based Compo-
nent Controllers: A Foundation for Component Aspects ”. In Proceedings
of 12th Asia-Pacific Software Engineering Conference (APSEC 2005), pages
729–737. IEEE Computer Society Press, December 2005.

[MIC a] MICROSOFT. COM Framework. http://www.microsoft.com/com/.

[MIC b] MICROSOFT. .Net Framework. http://www.microsoft.com/net/.

[MIC c] SUN MICROSYSTEMS. Enterprise Java Beans.
http://java.sun.com/products/ejb/.

[MIC d] SUN MICROSYSTEMS. Java Community Process.
http://jcp.org/en/home/index.

164 BIBLIOGRAPHY

[MIN 97] SAVA MINTCHEV, and VLADIMIR GETOV. “ Towards Portable Message Pass-
ing in Java: Binding MPI ”. In Proceedings of the 4th European PVM/MPI
Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and
Message Passing Interface, pages 135–142, London, UK, 1997. Springer-
Verlag.

[MPI94] “ MPI: A Message-Passing Interface Standard ”. Technical report, MPI Fo-
rum, University of Tennessee, Knoxville, Tennessee, June 1994.

[NAR] “ The Naregi project ”. http://www.naregi.org/index_e.html.

[NEL 01] ARNOLD NELISSE, THILO KIELMANN, HENRI E. BAL, and JASON
MAASSEN. “ Object-based Collective Communication in Java ”. In Joint ACM
Java Grande - ISCOPE Conference, pages 11–20, Palo Alto, California, USA,
June 2001. ACM Press. ISBN 1-58113-359-6.

[NIE 02] ROB V. VAN NIEUWPOORT, JASON MAASSEN, RUTGER HOFMAN, THILO
KIELMANN, and HENRI E. BAL. “ Ibis: an efficient Java-based grid program-
ming environment ”. In Joint ACM Java Grande - ISCOPE 2002 Conference,
pages 18–27, Seattle, Washington, USA, November 2002.

[NIE 05] ROB V. VAN NIEUWPOORT, JASON MAASSEN, THILO KIELMANN, and
HENRI E. BAL. Satin: Simple and Efficient Java-based Grid Programming.
Scalable Computing: Practice and Experience, 6(3):19–32, September 2005.

[PAR 93] CRAIG PARTRIDGE, TREVOR MENDEZ, and WALTER MILLIKEN. Host any-
casting service. RFC 1546, 1993.

[PAR 98] S.G. PARKER, and C.R. JOHNSON. “ An integrated problem solving environ-
ment: The SCIRun computational steering system ”. In 31st Hawaii Inter-
national Conference on System Sciences, volume 7, pages 147–156, 1998.

[PAR 05] MANISH PARASHAR, and JAMES .C. BROWNE. “ Conceptual and Implemen-
tation Models for the Grid ”. In Proceedings of the IEEE, Special Issue on
Grid Computing, volume 93, page 653 668. IEEE Press, March 2005.

[PÉR 03] CHRISTIAN PÉREZ, THIERRY PRIOL, and ANDRÉ RIBES. A Parallel CORBA
Component Model for Numerical Code Coupling. The International Jour-
nal of High Performance Computing Applications (IJHPCA), 17(4):417–429,
2003.

[PÉR 04] CHRISTIAN PÉREZ, THIERRY PRIOL, and ANDRÉ RIBES. “ PACO++: A Par-
allel Object Model for High Performance Distributed Systems ”. In Pro-
ceedings of the 37th Hawaii International Conference on System Sciences
(HICCS’04), 2004.

[PLA 98] FRANTISEK PLASIL, DUSAN BALEK, and RADOVAN JANECEK.
“ SOFA/DCUP: Architecture for Component Trading and Dynamic Up-
dating ”. In IEEE CS PRESS, teur, Proceedings of ICCDS’98, 1998.
Annapolis, Maryland, USA.

[PRI 98] THIERRY PRIOL, and CHRISTOPHE RENÉ. “ Cobra: A CORBA-compliant
Programming Environment for High-Performance Computing ”. In LNCS,
teur, Proceedings of Euro-Par’98 Conference, number 1470, pages 1114–
1122. Springer-Verlag, September 1998.

[PRO] “ ProActive web site ”. http://proactive.objectweb.org.

BIBLIOGRAPHY 165

[RAM 98] RAJESH RAMAN, MIRON LIVNY, and MARVIN H. SOLOMON.
“ Matchmaking: Distributed Resource Management for High Through-
put Computing ”. In Proceedings of the Seventh IEEE International
Symposium on High Performance Distributed Computing, pages 140–, July
1998.

[REN 99] CHRISTOPHE RENÉ, and THIERRY PRIOL. “ MPI Code Encapsulation us-
ing Parallel CORBA Object ”. In Proceedings of the 8th IEEE International
Symposium on High Performance Distributed Computing, pages 3–10, 1999.

[RIB 04] ANDRÉ RIBES. “ Contribution à la conception d’un modèle de programmation
parallèle et distribué et sa mise en oeuvre au sein de plates-formes orientées
objet et composant ”. PhD thesis, IRISA, Université de Rennes 1, 2004. in
french.

[ROU 06] ROMAIN ROUVOY, and NICOLAS PESSEMIER. Fr-
aclet Annotation Framework Documentation.
http://fractal.objectweb.org/tutorials/fraclet/index.html, June 2006.

[SCA] Service Component Architecture Specification. http://www-
128.ibm.com/developerworks/library/specification/ws-sca/.

[SEI 06] LIONEL SEINTURIER, NICOLAS PESSEMIER, LAURENCE DUCHIEN, and
THIERRY COUPAYE. “ A Component Model Engineered with Components
and Aspects ”. In Proceedings of the 9th International SIGSOFT Symposium
on Component-Based Software Engineering, 2006.

[SEK 96] S. SEKIGUCHI, M. SATO, H. NAKADA, S. MATSUOKA, and U. NA-
GASHIMA. “ Ninf: Network-based information library for globally high per-
formance computing ”. In Parallel Object-Oriented Methods and Applications
(POOMA), pages 39–48, 1996. http://ninf.etl.go.jp.

[SEY 02] KEITH SEYMOUR, HIDEMOTO NAKADA, SATOSHI MATSUOKA, JACK DON-
GARRA, CRAIG A. LEE, and HENRI CASANOVA. “ Overview of GridRPC: A
Remote Procedure Call API for Grid Computing ”. In GRID, pages 274–278,
2002.

[SEY 05] KEITH SEYMOUR, ASIM YARKHAN, SUDESH AGRAWAL, and JACK DON-
GARRA. “ NetSolve: Grid Enabling Scientific Computing Environments ”. In
L. GRANDINETTI, teur, Grid Computing and New Frontiers of High Perfor-
mance Processing. Elsevier, 2005.

[SHA 93] MARY SHAW. “ Procedure Calls Are the Assembly Language of Software
Interconnection: Connectors Deserve First-Class Status ”. In SPRINGER-
VERLAG 1994 LECTURE NOTES IN COMPUTER SCIENCE, teur, Proceedings
of Workshop on Studies of Software Design, 1993.

[SLO 06] ALEKSANDER SLOMINSKI. On using BPEL extensibility to implement OGSI
and WSRF Grid workflows. Concurrency and Computation: Practice & Ex-
perience, 18(10):1229 – 1241, August 2006.

[SNA 03] ALLAN SNAVELY, GREG CHUN, HENRI CASANOVA, ROB F. VAN DER WI-
JNGAART, and MICHAEL A. FRUMKIN. Benchmarks for grid computing:
a review of ongoing efforts and future directions. SIGMETRICS Perform.
Eval. Rev., 30(4):27–32, 2003.

http://ninf.etl.go.jp

166 BIBLIOGRAPHY

[SQU 96] JEFFREY M. SQUYRES, BRIAN C. MCCANDLESS, and ANDREW LUMS-
DAINE. “ Object Oriented MPI: A Class Library for the Message Passing
Interface ”. In Parallel Object-Oriented Methods and Applications (POOMA
’96), Santa Fe, 1996.

[SRI 05] LATHA SRINIVASAN, and JEM TREADWELL. An Overview of Service-
oriented Architecture, Web Services and Grid Computing. Hewlett-Packard
White Paper, 2005.

[SUN 02] VAIDY SUNDERAM, and DAWID KURZYNIEC. “ Lightweight self-organizing
frameworks for metacomputing ”. In Proceedings of the 11th International
Symposium on High Performance Distributed Computing (HPDC). IEEE
Computer Society, 2002.

[SZY 96] CLEMENS SZYPERSKI, and UNO. PFISTER. WCOP’96 Workshop Report.
Worskshop Reader ECOOP’96, p127-130, june 1996.

[SZY 02] CLEMENT SZYPERSKI. “ Component Software : Beyond Object-Oriented Pro-
gramming ”. Addison-Wesely, 2002.

[TAN 03] YOSHIO TANAKA, HIDEMOTO NAKADA, SATOSHI SEKIGUCHI, TOYOTARO
SUZUMURA, and SATOSHI MATSUOKA. Ninf-G: A Reference Implementa-
tion of RPC-based Programming Middleware for Grid Computing. Journal
of Grid Computing, 1:41–51, 2003.

[TAY 05] IAN TAYLOR, MATTHEW SHIELDS, IAN WANG, and ANDREW HARRISON.
Visual Grid Workflow in Triana. Journal of Grid Computing, 3(3-4):153–
169, September 2005.

[TER] TeraGrid project. http://www.teragrid.org.

[THA 05] DOUGLAS THAIN, TODD TANNENBAUM, and MIRON LIVNY. Distributed
computing in practice: the Condor experience. Concurrency - Practice and
Experience, 17(2-4):323–356, 2005.

[UNI] Unicore Forum. http://www.unicore.org.

[VOG06] A conversation with Werner Vogels: Learning from the Amazon technology
platform. ACM Queue, vol 4, no 4, May 2006.

[WAL 94] JIM WALDO, GEOFF WYANT, ANN WOLLRATH, and SAM KENDALL. “ A Note
on Distributed Computing ”. Technical report TR-94-29, Sun Microsystems
Laboratories, Inc., 1994.

[WSR04] WS-Resource Framework. http://www.globus.org/wsrf/, 2004.

[YOU 03] LAURIE YOUNG, STEPHEN MCGOUGH, STEVEN NEWHOUSE, and JOHN
DARLINGTON. “ Scheduling Architecture and Algorithms within the ICENI
Grid Middleware ”. In UK e-Science All Hands Meeting, pages 5–12, Septem-
ber 2003.

[YU 05] JIA YU, and RAJKUMAR BUYYA. A taxonomy of scientific workflow systems
for grid computing. SIGMOD Record, 34(3):44–49, 2005.

[ZHA 04] KEMING ZHANG, KOSTADIN DAMEVSKI, VENKATANAND VENKATACHALA-
PATHY, and STEVEN G. PARKER. “ SCIRun2: A CCA Framework for High
Performance Computing ”. In Proceedings of the Ninth International Work-
shop on High-Level Parallel Programming Models and Supportive Environ-
ments (HIPS’04), 2004.

BIBLIOGRAPHY 167

[ZHA 06] LI ZHANG, and MANISH PARASHAR. Seine: A Dynamic Geometry-based
Shared Space Interaction Framework for Parallel Scientific Applications.
Concurrency and Computations: Practice and Experience, 2006.

168 BIBLIOGRAPHY

COMPONENTS FOR GRID COMPUTING

Abstract

This thesis aims at facilitating the design and deployment of distributed applications
on Grids, using a component-based programming approach.

The specific issues in Grid computing addressed by the proposal of this thesis are:
complexity of design, deployment, flexibility and high performance. We propose and
justify a component model and an implementation framework. Our component model
grounds on the Fractal component model and the active object model, It takes advan-
tage of, first, the hierarchical model, well defined semantics and extensibility of the
Fractal model, and second, the identification of components as configurable activities.
We define a deployment model based on the concept of virtual architectures, and we
propose primitives for collective communications through the specification of collective
interfaces. Collective interfaces handle data distribution, parallelism and synchroniza-
tion of invocations. They establish a basis for defining complex interactions between
multiple components.

We realized an implementation of this model on top of the ProActive Grid middle-
ware, therefore benefiting from underlying features of ProActive. We demonstrate the
scalability and efficiency of the framework by developing and deploying on several hun-
dred nodes a compute and communication-intensive application, and we take advantage
of the collective interfaces to develop a component-based SPMD application with bench-
marks.

Keywords : Component-Based Programming, Grid Computing, Collective Commu-
nications

COMPOSANTS POUR LA GRILLE

Résumé

L’objectif de cette thèse est de faciliter la conception et le déploiement d’applications
distribuées sur la Grille, en utilisant une approche orientée composants.

Les problématiques du calcul sur grilles abordées dans notre proposition sont: la
complexité de conception, le déploiement, la flexibilité et la performance. Nous pro-
posons et justifions un modèle de composants et son implantation. Le modèle proposé
repose sur le modèle de composants Fractal et sur le modèle des objets actifs. Il bénéfi-
cie d’une part, de la structure hiérarchique et de la définition précise du modèle Fractal,
et d’autre part, de l’identification des composants comme activités configurables. Nous
proposons un modèle de déploiement et nous spécifions un ensemble de primitives pour
les communications collectives, grâce à la définition d’interfaces collectives. Les inter-
faces collectives permettent de gérer la distribution des données, le parallélisme et la
synchronisation des invocations.

Nous avons développé une implantation du modèle proposé avec l’intergiciel de grille
ProActive. Le framework de composants bénéficie ainsi des fonctionnalités sous-jacentes
offertes par l’intergiciel ProActive. Nous démontrons la capacité de passage à l’échelle
et l’efficacité de notre framework en déployant sur plusieurs centaines de machines des
applications intensives en termes de calcul et de communications. Nous mettons à profit
les interfaces collectives pour développer une application SPMD à base de composants,
dont nous évaluons les performances.

Mots-clefs : Programmation par Composants, Grilles de Calcul, Communications
Collectives

	Acknowledgements
	List of Figures
	List of Tables
	Glossary
	I Thesis
	Introduction
	Problematics
	Objectives and Contributions
	Overview

	Positioning and State of the Art
	Positioning
	Positioning with respect to general Grid architecture
	Positioning with respect to existing programming models for the Grid
	Message passing
	Distributed objects
	Skeletons
	Remote Procedure Calls for Grids
	Service Oriented Architectures and workflows
	Component-based programming

	Component-based programming models and frameworks
	Component-based programming
	Industrial component models
	EJBs
	COM and .NET
	CCM

	Academic research in component models
	ODP
	OpenCOM
	SOFA
	Fractal

	Component models for Grid computing
	CCA
	ICENI
	HOC-SA
	GridCCM

	Collective communications
	Rationale
	Common models and frameworks for collective communications
	Message-based collective communications
	Invocation-based collective communications

	Collective communications in component models
	Connection-oriented programming
	ODP
	ICENI
	CCA
	GridCCM

	Discussion
	Context: a model based on active objects
	Active objects model
	The ProActive library: principles, architecture and usages
	Implementation language
	Implementation techniques
	Semantics of communications
	Features of the library
	Deployment framework
	Large scale experiments and usages

	Conclusion

	A Component Model for Programming Grid Applications
	Requirements for the component model
	Adequacy of the Fractal model for the Grid
	Distribution
	Deployment
	Heterogeneity
	Interoperability and legacy software
	High performance
	Complexity
	Hierarchical composition
	Sharing
	Parallelism

	Dynamicity
	Conclusion and role of the underlying middleware

	A component model based on the active object model
	A component is an active object
	Communication paradigm
	Asynchronous and synchronous communications
	Optimizations

	Deployment model: a virtualization of the infrastructure
	General model
	Cardinality of virtual nodes
	Controlled deployment through the composition of virtual nodes
	Collective operations for deployment

	Dynamic configuration
	Locking issues in synchronous systems
	Locking issues with active components

	Conclusion

	Collective Interfaces
	Motivations
	On the current cardinalities of component interfaces in the Fractal model
	Rationale for collective interfaces

	Proposal for collective interfaces
	Multicast interfaces
	Definitions
	Multicast client interfaces vs multicast server interfaces
	Signatures of methods
	Invocation forwarding
	Distribution of invocation parameters
	Distribution of invocations
	Management of results
	Programming example
	Application to the master-worker pattern

	Gathercast interfaces
	Definition
	Gathercast client interfaces vs gathercast server interfaces
	Bindings to gathercast interfaces
	Synchronization operations
	Data operations
	Implications on dynamicity
	Programming example

	SPMD-based component programming
	SPMD programming concepts
	From message-based SPMD to component-based SPMD
	Component based SPMD with gathercast and multicast interfaces
	Principles
	Usage and benefits

	Towards automatic MxN redistributions
	Conclusion

	A Component Framework Based on Active Objects
	Design goals
	Architecture
	An architecture based on ProActive's Meta-Object Protocol
	Component instance
	Configuration of controllers

	Lifecycle
	Interception mechanism
	Communications

	Implementation of collective interfaces
	Adaptation of the signatures of methods
	Multicast interfaces
	Principles
	Configuration

	Gathercast interfaces
	Principles
	Asynchronism and management of futures
	Timeout

	Deployment
	Conclusion

	Methodology and Benchmarks
	C3D
	Methodology
	Design
	Observations

	Jem3D
	The Jem3D application
	Problem statement
	Methodology
	Evaluation of the new design
	Benchmarks and analysis
	Comparison between object-based and component-based versions
	Grid scalability
	Discussion

	Component based SPMD : benchmarks and analysis
	Applicative example: Jacobi computation
	Design
	Typing
	Borders reception and synchronization
	Borders sending
	Deployment and assembly

	Benchmarks
	Analysis

	Conclusions

	Ongoing Work and Perspectives
	CoreGrid's Grid Component Model
	Pattern-based deployment
	Graphical tools
	Dispatch and reduction strategies for collective interfaces
	Adaptivity
	Autonomic computing
	Towards autonomic ProActive/GCM components

	Industrial dissemination with the GridComp project

	Conclusion

	II Résumé étendu en français (Extended french abstract)
	Introduction
	Problématique
	Objectifs et contributions
	Plan

	Résumé
	Etat de l'art
	Positionnement
	Modèles à composants pour le Grid computing
	Communications collectives
	Contexte: objets actifs avec ProActive

	Un modèle à composants pour le Grid computing
	Adéquation du modèle Fractal pour le Grid computing
	Un modèle à composants basé sur le modèle d'objets actifs

	Interfaces collectives
	Motivations
	Proposition
	Couplage d'applications

	Un framework à composants basé sur les objets actifs
	Méthodologie et benchmarks
	Travaux en cours et perspectives
	GCM, le modèle de composants de CoreGrid's
	Patrons de déploiement
	Outils graphiques
	Dispatch et réduction pour les interfaces collectives
	Adaptativité
	Dissémination industrielle

	Conclusion
	Bibliography
	Abstract & Résumé

