
From Distributed Objects to Hierarchical Grid

Components

Françoise Baude, Denis Caromel, and Matthieu Morel

INRIA Sophia Antipolis, CNRS - I3S - Univ. Nice Sophia-Antipolis
2004, Route des Lucioles, BP 93

F-06902 Sophia-Antipolis Cedex - France
First.Last@sophia.inria.fr

Abstract. We propose a parallel and distributed component framework
for building Grid applications, adapted to the hierarchical, highly dis-
tributed, highly heterogeneous nature of Grids. This framework is based
on ProActive, a middleware (programming model and environment) for
object oriented parallel, mobile, and distributed computing. We have
extended ProActive by implementing a hierarchical and dynamic com-
ponent model, named Fractal, so as to master the complexity of compo-
sition, deployment, re-usability, and efficiency of grid applications. This
defines a concept of Grid components, that can be parallel, made of sev-
eral activities, and distributed. These components communicate using
typed one-to-one or collective invocations.

Keywords: active objects, components, hierarchical components, grid
computing, deployment, dynamic configuration, group communications,
ADL

1 Introduction

In this article, we present a contribution to the problem of software reuse and in-
tegration for distributed and parallel object-oriented applications. We especially
target grid-computing. Our approach takes the form of a programming and de-
ployment framework featuring parallel, mobile and distributed components, so
our application domains also target mobile and ubiquitous distributed comput-
ing on the Internet (where high performance, high availability, ease of use, etc.,
are of importance).

For Grid applications development, there is indeed a need also to smoothly,
seamlessly and dynamically integrate and deploy autonomous software, and for
this provide a glue in the form of a software bus. In this sense, we essentially
address the second group of Grid programmers such as defined in [1]: first group
of users are end users who program pre-packaged Grid applications by using
a simple graphical or Web interface; the second group of grid programmers are
those that know how to build Grid applications by composing them from existing
application “components”; the third group consists of the researchers that build
the individual components.



We share the goal of providing a component-based high-performance com-
puting solution with several projects such as: CCA [1] with the CCAT/XCAT
toolkit [2] and Ccaffeine framework, Parallel CORBA objects [3] and GridCCM
[4]. But, to our knowledge, our contribution is the first framework featuring hier-

archical distributed components. This clearly helps in mastering the complexity
of composition, deployment, re-usability required when programming and run-
ning large-scale distributed applications.

We propose a parallel and distributed component framework for building
meta-computing applications, that we think is well adapted to the hierarchical,
highly distributed, highly heterogeneous nature of grid-computing. This frame-
work is based on ProActive, a Java-based middleware (programming model and
environment) for object oriented parallel, mobile and distributed computing.
ProActive has proven to be relevant for grid computing [5] especially due to its
deployment and monitoring aspects [6] and its efficient and typed collective com-
munications [7]. We have succeeded in defining a component model for ProAc-
tive, with the implementation of the Fractal component model [8, 9], mainly
taking advantage of its hierarchical approach to component programming.

Fractal is a general software composition model, implemented as a frame-
work that supports component-based programming, including hierarchical com-
ponents (type) definition, configuration, composition and administration. Fractal
is an appropriate basis for the construction of highly flexible, highly dynamic,
heterogeneous distributed environments. Indeed, a system administrator, a sys-
tem integrator or an application developer may need to dynamically construct a
system or service out of existing components, whether in response to failures, as
part of the continuous evolution of a running system, or just to introduce new
applications in a running system (a direct generalization of the dynamic bind-
ing used in standard distributed client-server applications). Nevertheless, the
requirements raised by distributed environments are not specifically addressed
by the Fractal model. Not because this is not an issue, but, because, according
to the Fractal specification, a primitive or hierarchical fractal component may

be a parallel and distributed software. So, our work also yields to a new imple-
mentation of the Fractal model that explicitly provides parallel and distributed
Fractal components.

The main achievement of this work is to design and implement a concept
of Grid Components. Grid components are recursively formed of either sequen-
tial, parallel and/or distributed sub-components, that may wrap legacy code if
needed, that may be deployed but further reconfigured and moved – for example
to tackle fault-tolerance, load-balancing, adaptability to changing environmental
conditions.

Below is a typical scenario illustrating the usefulness of our work. Assume
a complex grid software be formed of several services, say of other software
(a parallel and distributed solver, a graphical 3D renderer, etc). The design of
such a software is very much simplified if it can be considered as a hierarchical
composition (recursive assembly and binding): the solver is itself a component
composed of several components, each encompassing a piece of the computation;

2



the whole software is seen as a single component formed of the solver and the
renderer. From the outside, the usage of this software is as simple as invoking
a functional service of a component (e.g. call solve-and-render). Once deployed
and running on a grid, assume that due to load balancing purposes, this software
needs to be relocated. Some of the on-going computations may just be moved
(the solver for instance), alas others depending on specific peripherals that may
not be present at the new location (the renderer for instance) may be terminated
and replaced by a new instance adapted to the target environment and offering
the same service. As the solver is itself a hierarchical component formed of several
sub-components, each encompassing an activity, we trigger the migration of the
solver as a whole, without having to explicitly move each of its sub-components,
while references towards mobile components remain valid. And once the new
graphical renderer is launched, we re-bind the software, so as it now uses this
new instance.

This paper is organized as follows: after an introduction on parallel and dis-
tributed programming with ProActive, and on the Fractal component model, the
principles and design of the proposed parallel and distributed component model
are presented. The implementation and an example are described in section 4,
while section 5 makes a comparison with related work before concluding.

2 Context

2.1 Distribution, parallelism, mobility and deployment with

ProActive

The ProActive middleware is a 100% Java library (LGPL) [10] aiming to achieve
seamless programming for concurrent, parallel, distributed and mobile comput-
ing. The main features regarding the programming model are:

– a uniform active object programming pattern

– remotely accessible objects, via method invocation

– asynchronous communications with automatic synchronization (automatic
futures for results of remote method calls). Note that asynchronicity enables
to use one-way calls for transmitting events.

– group communications, which enable to trigger method calls on a distributed
group of active objects of the same compatible type, with a dynamic genera-
tion of groups of results. It has been shown in [7] that this group communica-
tion mechanism, plus a few synchronization operations (WaitAll, WaitOne,
etc), provides quite similar patterns for collective operations such as those
available in e.g. MPI, but in a language centric approach. Here is an example:

3



//Object ’a’ of class A is an active remote object

V v = a.foo(param);

// remotely calls foo on object a

v.bar();

// automatically blocks on v.bar()

// until the result in v gets available.

// ag is a group of active objects,

// of types compatible with A

V v = ag.foo(param);

// calls foo on each group member

// with some optimisation at serialization time

// V is automatically built as a group of results

v.bar();

// executes as soon as individual results

// of foo calls return

– migration (mobile computations): An active object with its pending requests
(method calls), its futures, its passive (mandatory non-shared) objects may
migrate from JVMs to JVMs. The migration may be initiated from outside
through any public method but it is the responsibility of the active object
to execute the migration (weak migration). Automatic, transparent (and
optimized) forwarding of requests and replies provide location transparency,
as remote references towards active mobile objects remain valid.

We are faced with the common difficulties in deployment regarding launching
a ProActive application in its environment. We succeed in completely avoid
scripting for configuration, getting computing resources, etc. ProActive provides,
as a key approach to the deployment problem, an abstraction from the source
code such as to gain in flexibility [6] as follows (see figure 8 for an example):

– XML Deployment Descriptors. Active objects are remotely created on JVMs,
but virtual nodes are manipulated inside the program, instead of URLs of
JVMs. The mapping of virtual nodes to effective JVMs is managed externally
through those descriptors. Descriptors also permit to define how to launch
JVMs.

– Interfaces with various protocols: rsh, ssh, LSF, Globus, Jini, RMIregistry
enable to effectively launch, register or discover JVMs according to the needs
specified in the descriptor.

– Graphical visualization and monitoring of any ongoing ProActive applica-
tion is possible through a ProActive application called IC2D (Interactive
Control and Debugging of Distribution). In particular, IC2D enables to mi-
grate executing tasks by a graphical drag-and-drop, and to create additional
JVMs.

2.2 The Fractal component model

The Fractal component model provides an homogeneous vision of software sys-
tems structure with a few but well defined concepts such as component, con-

4



troller, content, interface, binding. It also exhibits distinguishing features that
have proven useful for the present work: it is recursive – components structure
is auto-similar at any arbitrary level (hence the name ’Fractal’); it is completely
reflexive, i.e., it provides introspection and inter-cession capabilities on compo-
nents structure. These features allow for a uniform management of both the
so-called business and technical components (which is not the case in indus-
trial component frameworks such as EJB [11] or CCM [12] which only deal with
business components).

A Fractal component is formed out of two parts: a controller and a content.
The content of a component is composed of (a finite number of) other compo-
nents, which are under the control of the controller of the enclosing component.
This allows for hierarchic components, in the sense that components may be
nested at any arbitrary level. Fractal distinguishes primitive components (typi-
cally associated to a Java class implementing functional services) and composite

components that only serve to build hierarchies of components, but without
implementing themselves functional services.

A component can interact with its environment through operations at identi-
fied access points, called interfaces. As usual, interfaces can be of two sorts: client

and server. A server interface can receive operation invocations (and return op-
eration results of two-way operations), while a client interface emits operations.
A binding is a connection between components, and more precisely between a
client and a server interface. The Fractal model comprises bindings for compos-
ite and primitive components. Bindings on client ports of primitive components
are typically implemented as language-level bindings (e.g. through type compat-
ible variable affectations of interface references). The type of a binding might
be a collective one or a single one (as default). In case of a collective one, a
component may need, for achieving its functional work, to use (thus be bound
to) a collection of components, instead of to a single component, all offering the
needed interface.

A component controller embodies the control behavior associated with a
particular component. Of importance is the following control: suspend (stop)
and resume activities of the components in its content. Stopping then resuming
is mandatory in order to dynamically change the binding between components or
the inclusion of components. The important fact is that all such non-functional
calls (stopping, resuming, binding, etc) propagates recursively to each internal
component. This prevents the user manually triggering the same call on each
sub-sub-...-sub component.

3 From active objects to parallel, distributed,

hierarchical components

3.1 Evaluation of the needs

A component must be aware of parallelism and distribution as we aim at build-
ing a grid-enabled application by hierarchical composition; indeed, we need a

5



glue to couple codes that probably are parallel and distributed codes as they
require high performance computing resources. Thus components should be able
to encompass more than one activity and be deployed on parallel and distributed
infrastructures. Such requirements for a component are summarized by the con-
cept we have named Grid Component.

Fig. 1. The various basic architectures for a Grid component

Figure 1 summarizes the three different cases for the structure of a Grid
component. For a composite built up as a collection of components providing
common services, (fig. 1 c)) collective communications are essential, for ease of
programming and efficiency purposes.

As general requirements, because we target high performance grid computing,
it is very important to efficiently implement point-to-point and group method
invocations, manage the deployment complexity of those components distributed
all over the grid and possibly debug, monitor and reconfigure those running
components – across the world.

3.2 ProActive components

In the sequel, we describe the component framework we have designed and im-
plemented using both Fractal and ProActive. It enables to couple parallel and
distributed codes directly programmed using the Java ProActive library. A syn-
thetic definition of what is a ProActive component is given below.

6



Definition of a ProActive component:

• It is formed from one (or several) Active Objects,
executing on one (or several) JVM

• It provides a set of server ports (Java Interfaces)
• It possibly defines a set of client ports (Java at-

tributes if the component is primitive)
• It can be of three different types :

1. primitive : defined with Java code implement-
ing provided server interfaces, and specifying the
mechanism of client bindings.

2. composite : containing other components.
3. parallel : also a composite, but redispatching

calls to its external server interfaces towards its
inner components.

• It communicates with other components through 1-
to-1 or group communications.

ProActive components can be configured using:

• an XML descriptor (defining use/provide ports, con-
tainment and bindings in an Architecture Descrip-
tion Language style)

• the notion of virtual node, capturing the deployment
capacities and needs

Deployment of ProActive components Components are a way to globally ma-
nipulate distributed and running activities, and in this context, obviously, the
concept of virtual node is a very important abstraction. The additional need re-
garding the ones already solved by the deployment of active objects, is to be able
to compose virtual nodes: a composite component is defined through a number
of sub-components that already define their proper usage and mapping of virtual
nodes. What should the mapping of the composite be ? For instance on fig. 2,
when grouping two components in a new composite one, assume that each of
the two sub-components, named respectively A and B, requires to be deployed
respectively on VNa (further associated to 3 JVMs through the deployment de-
scriptor) and the same for VNb (3 other JVMs). The question is how to define
the mapping of the new composite ? Either distributed mapping is required (see
fig. 2 a)) meaning that VNa and VNb must respectively launch different JVMs
(a total of 6); or, a co-allocated mapping (see fig. 2 b)) where we try to co-locate
as much as possible one activity acting on behalf of sub-component A and one
activity acting on behalf of sub-component B within the composite C (on the
example, only 3 JVMs need to be used).

Composition of virtual nodes is thus a mean to control the distribution of
composite components.

7



Fig. 2. Components versus Activities and JVMs

4 Implementation and Example

Fractal, along with the specification of a component model, also defines an API
in Java. There is a reference implementation, called Julia, and we propose a new
implementation, based on ProActive (thus providing all services offered by the
Fractal library).

4.1 Meta-Object Protocol

ProActive is based on a Meta-Object Protocol (MOP)(Figure 3), that allows
to add many aspects on top of standard Java objects, such as asynchronism and
mobility. Active objects are referenced through stubs, and the communication
with them is done in the same manner, would they actually be remote or local.

The same idea is used to manage components: we just add a set of meta-
objects in charge of the component aspect (Figure 4). Of course, the standard
ProActive stub (that gives a representation of type A on the figure) is not used
here, as we manipulate components. In Fractal, a reference on a component is of
type ComponentIdentity, so we provide a new stub (that we call representative),
of type ComponentIdentity, that references the actual component. All standard
Fractal operations can then be performed on the component.

In our implementation, because we make use of the MOP’s facilities, all
components are constituted of one active object (at least), are they composite
or primitive. Of course, if the component is a composite, and if it contains other

8



Java objects ’b’ and ’a’ can be in different virtual
machines (the network being represented here between
the proxy and the body, though the call might be lo-
cal).Object ’b’ has a reference on active object ’a’ (of
type A) through a stub (of type A) and a proxy. When ’b’
invokes a method on ’stub a’,the call is forwarded though
the communication layer (possibly through a network) to
the body of the active object. At this point, the call can
be intercepted by the meta-objects, possibly leading to
some induced actions, and then the call is forwarded to
the base object ’a’.

Fig. 3. ProActive’s Meta-Object Protocol.

components, then we can say it is constituted of several active objects. Also,
if the component is primitive, but the programmer of this component has put
some code within it for creating new active objects, the component is again
constituted of several active objects.

4.2 Integration within ProActive

To integrate the component management operations into the ProActive library,
we just make use of the extensible architecture of the library. This way, com-
ponents stay fully compatible with standard active objects and as such, inherit
from the features active objects have: mobility, security, deployment, etc.

A particular point for the integration of Fractal and ProActive to succeed
is the management of component requests besides functional requests. Reified
method calls, when they arrive in the body, are directed towards the queue of
requests. We assume FIFO is the processing policy. The processing of the requests
in the queue is dependent on the nature of this request, and corresponds to the
following algorithm :

9



A new set of meta-objects, managing the component as-
pect (constituting the controller of the component, in
the Fractal terminology), is added to the active object
’a’, and ’b’ can manipulate the component based on ’a’
through a specific stub, called component representative,
of type ComponentIdentity. If the component is primi-
tive, ’a’ contains the functional code of the component.

Fig. 4. Component meta-objects and component representative.

loop

if componentLifeCycle.isStarted()

get next request

// all requests are served

else if componentLifeCycle.isStopped()

get next component controller request

// only component requests are served

;

if gotten request is a comp. life cycle request

if startFc --> set started = true ;

if stopFc --> set started = false ;

;

;

Note that, in the stopped state, only controller requests are served. This
means that a standard ProActive call, originating from a standard ProActive
stub, will not be processed in the ”stopped” state (but it will stay in the queue).

4.3 Collective ports, group communications and parallel

components

The implementation of collective ports is based on the ProActive groups API
(cf. [7]). According to the Fractal specification, this type of interfaces only has

10



sense on client interface, that would like to be bound to several server interfaces.
Besides, one server interface can always be accessed by several client interfaces,
the calls being processed sequentially. Specifying a server interface as ”collective”
wouldn’t change its behavior.

The ProActive groups API allowing group communication in a transparent
manner, the implementation of the collective interfaces slightly differs from the
Fractal specification: instead of creating one new interface with an extended
name for each member of the collection, we just use one interface (that is actually
a group). Collective bindings are then performed transparently as if they were
multiple sequential bindings on the same interface. Using a collective server
interface will then imply using the ProActive group API formalism, including
the possibility to choose between scattering and broadcasting of the calls [7]. A
feature is that unbinding operations on a collective interface will result in the
removal of all the bindings of the collection.

Furthermore, because we target largely distributed and parallel applications,
we introduce a new type of component : parallel components (Figure 1 c)). These
components are composite components, as they encapsulate other components.
Their specificity relies in the behavior of their external server interfaces. These
interfaces are connectable through a group proxy to the internal components’
interfaces of the same type. This means that a call to the parallel component will
be dispatched and forwarded to a set of internal components, that will process
the requests in a parallel manner (see figure 5 a)).

4.4 Example

We present hereby an example of a component system built using our component
model implementation.

Consider the following music diffusion system : a cd-player reads music files
from a cd, and transmits them to a set of speakers situated in different rooms.
Those speakers can convert music files into music we can listen to. They are
incorporated in a parallel component, thus providing a single access interface to
them (instead of connecting the cd player’s output to each of the speakers).

Figure 6 gives an overview of the system, and represents the component
model.

The system can be configured using the ADL (Architecture Description Lan-
guage) that we provide for the components (Figure 7, coupled with the deploy-
ment descriptor, describing the physical infrastructure (Figure 8)).

When using the ADL, the configuration of the components is read from the
descriptors, and the components are automatically instantiated, assembled and
bound. Figure 9 shows an example of code used to manipulate the components,
including instantiation, control and functional operations.

5 Related work

We compare with closest related work in spirit, i.e. high-performance computing
with composition of software components.

11



Fig. 5. Group communications allowing collective bindings and parallel components

CCA The Common Component Architecture [1] is an initiative to define min-
imal specification for scientific components, targeting parallel and distributed
infrastructures. Ideas are drawn from CCM for the sake of defining components
by provide/use ports, calls/events through the usage of a Scientific IDL (SIDL).
A toolkit of the CCA specification, called CCAT [2], provides a framework for
applications defined by binding CCA-enabled components, in which all services
(directory, registry, creation, connection, event) are themselves CCA components
(wrapping external services). An instance of this framework, XCAT, permits to
describe a component and its deployment using an XML document, which looks
very similar to what we have also defined and implemented for ProActive com-
ponents. In this XML-oriented implementation of CCA, the communication pro-
tocol used to implement the remote procedure call between a uses port method
invocation and the connected provides port remote objects is based on SOAP.
The main drawback of CCA is that the composition model is not related to any
specific underlying distributed object oriented model so that the user lacks a
clear and precise model of the composition (which is as important as having a
clear and precise programming model).

12



Fig. 6. A music diffusion system based on components

Corba Parallel Objects The Parallel Corba model [3] targets the coupling of
objects whose execution model is parallel (in practice, a parallel object is incar-
nated by a collection of sequential objects, and the execution model is SPMD;
thus invoking a method on a parallel object invokes the corresponding method
on all the objects of the collection, by scattering and redistributing arguments if
needed). An implementation, PaCO++, achieves portability through the usage
of standard CORBA IDL for object interactions. Notice that parallel and distri-
bution issues are separated, as CORBA is only used to couple distributed codes,
and parallel computations are usually managed with MPI. This is obviously an
obstacle to easy grid computing.

GridCCM GridCCM [4], a Parallel Corba component model, is a natural exten-
sion of PaCO++ motivated by the fact that a code coupling application can be
seen as an assembly of components; however, most software component models
(except PaCO++) only support sequential component. In order to have trans-
parency in the assembly of components, a design choice was to make effective
communications between parallel components be hidden to the application de-
signer, by introducing collective ports that look like to be ordinary single-point
ports. We propose the same sort of facility: ProActive components may also be
built as parallel components by providing and using collective interfaces.

None of those approaches define hierarchical components as we have pre-
sented here. Moreover, we can encompass both parallel components in an SPMD
style, or more generally parallel and distributed components following an MIMD

13



implementation = "CdPlayer"

COMPONENTS DESCRIPTOR

// name of the Java class with the functional code of the cd player
VN = Node−player //see deployment descriptor

Primitive−component "cd−player"

signature = soundssystem.Input
interface "input"

provides

// the parallel component is just a facade to the real speakers
VN = Node−speakers

Parallel−component "speakers"

// see deployment descriptor

signature = soundssystem.Output
interface "output"

requires
signature = soundssystem.PlayerFacade

interface "control"
provides

contains
primitive−component "speaker"

// the instances (thus their number)
// deployment descriptor will specify the location of
VN = Node−speaker (cyclic)
// functional code of the speaker
implementation = "Speaker"

bind "cd−player.output" to "speakers.input"
// between client and server interfaces of the components
Bindings

// components between server interfaces of the same name
// bindings to inner components are automatic for parallel
Bindings

signature = soundssystem.Input
interface "input"

provides

Fig. 7. Using the ADL to describe a component system (format is converted from
XML)

execution model. We emphasize that we provide a unique infrastructure for func-
tional and parallel calls and for component management, which is an alternative
to what is for instance done in GridCCM [4] (MPI, openMP, etc.,) for functional
and parallel codes, and Corba for component management – binding, deploy-
ment, life-cycle management, . . . ).

6 Conclusion and Perspectives

We have successfully defined and implemented a component framework for ProAc-
tive, by applying the Fractal component model, mainly taking advantage of its
hierarchical approach to component programming.

This defines a concept of what we have called Grid components. Grid com-
ponents are formed of parallel and distributed active objects, features mobil-
ity, typed one-to-one or collective service invocations and a flexible deployment
model. They also features flexibility and dynamicity at the component definition
level.

We are working on the design of generic wrappers written in ProActive whose
aim is to encaspulate legacy parallel code (usually Fortran-MPI or C-MPI codes).

We are also working on GUI-based tools to help the end-user to manipulate
grid component based applications. Those tools will extend the IC2D monitor,

14



Infrastructure
// how and where the JVMs specified above are created

process−definition "linuxJVM"

JVMProcess class=JVMNodeProcess
// this process creates a JVM on the current host

process−definition "rsh−computer1"

// and starts a JVM on the remote host
// (using the previously defined process "linuxJVM"

rshProcess class=RSHProcess host="computer1"
// computer1 could be in room1
processReference = "linuxJVM"

processReference = "linuxJVM"

rshProcess class=RSHProcess host="computer2"

// this process establishes an rsh connection

process−definition "rsh−computer2"

// computer2 could be in room2

process−definition "globus−computer1"
globusProcess class=GlobusGramProcess host="globus1"
// globus1 could be in a room abroad
processReference = "linuxJVM"

JVMs
JVM1 created by process "linuxJVM"
JVM2 created by process "rsh−computer1"
JVM3 created by process "rsh−computer2"
JVM4 created by process "globus−computer1"

Node−player −−> JVM1

// 1 VN can be mapped onto a set of JVMs
Node−speaker −−> {JVM2, JVM3, JVM4}
Node−speakers −−> JVM1

// correspondance between the names of the VNs and the JVMs

// what is behind the names of the virtual nodesDeployment
mapping

VirtualNode name = "Node−speaker" − cyclic
// cyclic: i.e. there will actually be several JVMs

VirtualNode name = "Node−speakers"
VirtualNode name = "Node−player"

DEPLOYMENT DESCRIPTOR
VirtualNodes // names of the virtual nodes

Fig. 8. Using the deployment descriptor to describe the physical infrastructure of a
component system (format is converted from XML)

which already helps in dynamically changing the deployment defined by deploy-
ment descriptors (cf. figure 8): acquire new JVMs, drag-and-drop active objects
on the grid. We will provide interactive dynamic manipulation and monitoring
of the components (besides what can be done by programming as exemplified by
figure 9). For instance, it might be useful to generate an ADL such as the one
on figure 7, and subsequently dynamically modify the description of the com-
ponent application. Such tools could be integrated with computing portals and
grid infrastructure middleware for resource brokering (ICENI [13], GridT [14],
etc.), such as to build dedicated Problem Solving Environments [15].

We also investigate the following optimization: have functional method calls
(either single or collective) bypass each inner composite component of a hier-
archical component, so as to directly reach target primitive components – that
are the only ones to serve functional service invocations. There is a non-trivial
coherency problem to solve due to the concurrency of component management
method calls (in particular, re-binding calls) towards encapsulating composite
components.

15



Fig. 9. Using the API to manipulate components

Acknowledgments: This work was supported by the Incentive Concerted Action
”GRID-RMI” (ACI GRID) of the French Ministry of Research and by the RNTL
Arcad project funded by the French government.

References

1. Gannon, D., Bramley, R., Fox, G., Smallen, S., Rossi, A., Ananthakrishnan, R.,
Bertrand, F., Chiu, K., Farrellee, M., Govindaraju, M., Krishnan, S., Ramakrish-
nan, L., Simmhan, Y., Slominski, A., Ma, Y., Olariu, C., Rey-Cenvaz, N.: Program-
ming the Grid: Distributed Software Components, P2P and Grid Web Services for
Scientific Applications. Cluster Computing 5 (2002)

2. Bramley, R., Chin, K., Gannon, D., Govindaraju, M., Mukhi, N., Temko, B.,
Yochuri, M.: A Component-Based Services Architecture for Building Distributed
Applications. In: 9th IEEE International Symposium on High Performance Dis-
tributed Computing Conference. (2000)

3. Denis, A., Pérez, C., Priol, T.: Achieving portable and efficient parallel corba ob-
jects. Concurrency and Computation: Practice and Experience (2003) To appear.

4. Denis, A., Prez, C., Priol, T., Ribes, A.: Padico: A component-based software
infrastructure for grid computing. In: 17th International Parallel and Distributed
Processing Symposium (IPDPS2003), Nice, France, IEEE Computer Society (2003)

5. Caromel, D., Klauser, W., Vayssiere, J.: Towards seamless computing and meta-
computing in java. Concurrency Practice and Experience 10 (1998) 1043–1061

16



6. Baude, F., Caromel, D., Huet, F., Mestre, L., Vayssière, J.: Interactive and
Descriptor-based Deployment of Object-Oriented Grid Applications. In: 11th IEEE
International Symposium on High Performance Distributed Computing. (2002) 93–
102

7. Baduel, L., Baude, F., Caromel, D.: Efficient, flexible, and typed group communi-
cations in java. In: Joint ACM Java Grande - ISCOPE 2002 Conference, Seattle,
ACM Press (2002) 28–36 ISBN 1-58113-559-8.

8. Bruneton, E., Coupaye, T., Stefani, J.: Recursive and dynamic software compo-
sition with sharing. Proceedings of the 7th ECOOP International Workshop on
Component-Oriented Programming (WCOP’02) (2002)

9. : Fractal. (http://fractal.objectweb.org)
10. : ProActive web site. (http://www.inria.fr/oasis/ProActive/)
11. Sun Microsystems: Enterprise Java Beans Specification 2.0 (1998) http://java.

sun.com/products/ejb/docs.html.
12. OMG: Corba 3.0 new components chapter (2001) Document ptc/2001-11-03.
13. Furmento, N., Mayer, A., McGough, S., Newhouse, S., Field, T., Darlington, J.:

ICENI: Optimisation of Component Applications within a Grid Environment. Par-
allel Computing 28 (2002)

14. Godakhale, A., Natarajan, B.: Composing and Deploying Grid Middleware Web
Services Using Model Driven Architecture. In: CoopIS/DOA/ODBASE. Number
2519 in LNCS (2002) 633–649

15. Rice, J., Boisvert, R.: From Scientific Libraries to Problem-Solving Environments.
IEEE Computational Science and Engineering (1996) 44–53

17


