
Collective Interfaces for Distributed Components

Françoise Baude, Denis Caromel, Ludovic Henrio and Matthieu Morel
INRIA - I3S - CNRS - Université de Nice Sophia Antipolis

Email: First.Last@sophia.inria.fr

Abstract

We propose to address collective communications in dis-
tributed components through collective interfaces. Col-
lective interfaces handle data distribution, parallelism and
synchronization, and they expose collective behaviors in the
definition of components. We show, as an illustration, that
collective interfaces allow the encoding of SPMD program-
ming in a better structured and less error prone way. We
verify the scalability and performance of collective inter-
faces in an experiment on up to 100 machines.

1 Introduction

Collective communications provide facilities to manage
interactions between distributed entities. They define one-
to-many, many-to-one and many-to-many interactions.

Many algorithms in distributed computation require col-
lective communications, for instance: master-slave, divide-
and-conquer or SPMD models. In this work, we focus on
the data distribution, parallelism, and synchronization prop-
erties offered by collective communications. These proper-
ties are fundamental in distributed and Grid computing.

In the component programming paradigm, software
components are defined as independent units of composi-
tion and deployment. Interactions with other components
only occur through strictly defined interfaces.

Our objective is to address the specification of collective
interactions in order to: simplify the programming model,
simplify the assembly of complex component systems, pro-
vide a comprehensive description of off-the-shelf compo-
nents. We propose to expose collective behaviors in the
specification of the components, at the level of compo-
nent interfaces, by introducing collective interfaces. Thanks
to collective interfaces, component systems designers can
specify parallelism, synchronization and data distribution,
with a high-level view, and components exhibit their collec-
tive behavior.

In this paper, we propose a definition of collective in-
terfaces in component models. Our proposal clarifies the

exchange of data thanks to strongly typed collections. Our
proposal also enforces separation of functional and non-
functional concerns by separating parallelization, synchro-
nization and data distribution code from the business code
of components.

Our work is based on the Fractal component model [7],
a simple and extensible model that enforces a strict separa-
tion between functional and non-functional concerns. Frac-
tal is the basis of the Grid Component Model (GCM) cur-
rently being defined within the CoreGRID european project
[9]. We introduce multicast and gathercast interfaces, that
respectively define one-to-many and many-to-one interac-
tions. We show how collective interfaces can advanta-
geously facilitate code coupling, notably SPMD program-
ming and the coupling of parallel codes. We demonstrate
some of the advantages of collective interfaces in a simple
SPMD application that uses both multicast and gathercast
interfaces. We also evaluate the performance of our imple-
mentation of collective interfaces, based on an implementa-
tion of the GCM with the ProActive library, by performing
measurements of our SPMD application on a cluster.

2 Context

Our proposal for collective interfaces specifically ad-
dresses multipoint interactions. We concretely defined an
extension of the Fractal component model, integrated in the
GCM specification, and we implemented collective inter-
faces in the ProActive library.

2.1 Collective Communications

Collective communications designate multipoint interac-
tions between software entities: senders hold references on
receivers. We are interested in the distribution of data, as
well as in the parallelism and synchronization features of-
fered by collective communications, therefore communica-
tion paradigms such as publish-subscribe or event-reaction
are out of the scope of our proposal. Such features are usu-
ally implemented by a tier broker and can be easily inte-
grated in component models by defining send and receive



interfaces.
Collective operations provide a higher and more sophis-

ticated programming abstraction than sets of single invoca-
tions or send-receive operations. They allow a better struc-
turation of communications, by notably bringing simplicity,
programmability and expressiveness to programs [12].

2.2 The Fractal Component Model

Our proposal for collective interfaces is defined as an ex-
tension of the Fractal component model, but the concepts
introduced are not restricted to this model, and can be ap-
plied to other component models as well.

Fractal is a modular and extensible component model
proposed by INRIA and France Telecom, that can be used
with various programming languages to design, implement,
deploy and reconfigure various systems and applications,
from operating systems to middleware platforms or graphi-
cal user interfaces. The first version, specified in 2002, in-
cludes an API in Java.

The main features of the model are: hierarchical com-
ponents, separation of concerns, reflection and openness.
Fractal enforces separation of concerns between functional
and non-functional features, by distinguishing functional
and non-functional (control) access points to components.

Components communicate through their interfaces;
client and server interfaces are bound to define communi-
cation paths. The binding mechanism uses an inversion of
control pattern to inject dependencies between components.
Fractal supports primitive bindings and composite bind-
ings. A primitive binding is a binding between one client
interface and one server interface of compatible types. A
composite binding is a communication path between an
arbitrary number of component interfaces, and it consists of
an assembly of primitive bindings and binding components
(binding components are convenient for modeling stubs,
skeletons, adapters, etc.).

The GCM is an extension of the Fractal model geared
at Grid computing being defined by the CoreGrid European
project. By defining the GCM, the objective of the Core-
Grid community is to design a standardized and effective
component model for the Grid.

2.3 ProActive/GCM

The ProActive library is a middleware for Grid com-
puting. It is based on the concept of active object. An
active object is a remotely accessible object, with its own
thread for managing its activity. Active objects communi-
cate through asynchronous invocations and have no shared
memory. ProActive features transparent distribution and
parallel invocations. It offers middleware services such as

load balancing, fault tolerance and migration. It also pro-
vides a deployment framework interfaced with most com-
mon distributed and Grid protocols, notably schedulers (e.g,
LSF, GRAM).

The ProActive library has an extensible design. It is
based on a meta-object protocol that deals with remote ref-
erences to active objects, and reifies method invocations.
Meta-objects enable non-functional features such as asyn-
chronism or fault-tolerance. The meta-object architecture
was enhanced to implement the Fractal component model.
It is now being extended to support the GCM model, result-
ing in the ProActive/GCM framework.

We already used a prototype of the ProActive/GCM to
build and deploy a numerical computation application for
electromagnetism, on 4 clusters and more than 300 proces-
sors [19]. Although this prototype did not use collective
interfaces, this experimentation allowed us to show the scal-
ability of the model.

2.4 Related Work

There are two main approaches for collective communi-
cations: message-based, and invocation-based.

Message-based collective communications are com-
monly used in SPMD programming, and provided by
frameworks such as MPI [17]. MPI provides collec-
tive communication operations, with the operations scat-
ter, broadcast, gather, reduce, and barrier. Message-
based communication with MPI however remains a low-
level paradigm, complex to code and hard to debug.

Collective communications can also be performed using
group method invocations: this allows a high-level design
of collective communications, and parallelism can be pro-
vided by the implementations. A group method invocation
consists in the invocation of the same method on a group of
objects. This requires the identification of the group, and the
specification of the distribution of parameters. The CORBA
middleware was used for several experiments on group in-
vocations [10, 21, 13]. Other frameworks are based on a
strongly typed language such a Java: GMI [15] requires ex-
plicit management by the programmer, whereas ProActive
Typed Groups [2] provide transparent asynchronous group
invocations, but distribution strategies are not easily con-
figurable. Those strategies can be set [4] but the code is
tangled into the functional code. Moreover, to our knowl-
edge, frameworks for multipoint collective communications
based on invocations only provide one-to-n communica-
tions, and do not provide n-to-one or n-to-n communica-
tions.

Few component models explicitly define semantics of
collective communications. They use messages or invoca-
tions, and most rely on intermediate components. ICENI
[16] proposes a range of dispatch modes, including scat-



ter, gather, dispatch and reduce, but they are only applica-
ble to arrays and require XML data. Several CCA frame-
works [6] propose collective communications in order to
provide efficient and modular code coupling, usually using
intermediate components, and also through group method
invocations. GridCCM [20] extends the Corba Component
Model in order to efficiently couple parallel components.
The Dream project [14] also defines a set of binding com-
ponents for Fractal, for message-based communications.

3 Proposal

Problems of relying on intermediate entities are that: de-
sign is complexified; functional components cannot be used
directly off-the-shelf because they not themselves specify
nor implement collective behaviors. As an alternative, we
argue that it is possible to define some of the semantics asso-
ciated with multiway bindings at the level of the interfaces
themselves, through the definition of collective interfaces.

In the type system of the Fractal model, the type of a
component is defined by the types of the interfaces of this
component. The type of an interface is defined by its name,
its signature (in Java, the fully qualified named of a Java in-
terface), its role (client or server), its contingency (optional
or mandatory) and its cardinality. The Fractal model only
defines two kinds of cardinalities: singleton and collection.
They both only enable one-to-one bindings; the difference
is that singleton interfaces (Figs. 1.a. and 1.b.) are unique
and exist at runtime, whereas collection interfaces (Figs.
1.c. and 1.d) dynamically create instances of the specified
interface type at binding time.

Figure 1. Singleton and collection interfaces
in the Fractal model

The cardinalities of interfaces in the Fractal model only
allow one-to-one communications between component in-
terfaces. It is possible to introduce binding components
that act as brokers and may handle different communica-
tion modes, allowing multiway communications. Unfortu-
nately, binding components are separated from the defini-

tion of the business components that use it. This impedes
the expression of a collective behavior in the specification
of a business component, and may prevent communication
optimizations.

In the context of the GCM, we proposed to introduce col-
lective interfaces as a means to express the collective nature
and behavior of component interfaces. Relatively to Fractal,
the GCM adds new cardinalities in the specification of the
type of a component interfaces, namely multicast and gath-
ercast. A multicast or gathercast interface gives the possi-
bility to manage a group of interfaces as a single entity, and
it exposes the collective nature of the interface. The role and
usage of multicast and gathercast interfaces are complemen-
tary: multicast interfaces are used for parallel invocations,
parameter dispatch and result gathering, whereas gathercast
interfaces are used for synchronization, parameter gathering
and result dispatch.

3.1 Definitions

3.1.1 Multicast interfaces

Multicast interfaces provide abstractions for one-to-many
communications, and are defined as follows:

A multicast interface transforms a single in-
vocation into a list of invocations (Fig. 2.a).

When a single invocation is transformed into a list of
invocations, these generated invocations are forwarded to
connected server interfaces (Fig. 2.a). The semantics of
the propagation of the invocation and of the distribution of
the invocation parameters are customizable, and the result
of an invocation on a multicast interface is a list of results,
or a reduction of it. Invocations forwarded to the connected
server interfaces may occur in parallel, which is one of the
main reasons for defining this kind of interface: it enables
parallel invocations.

Figure 2. Multicast and gathercast interfaces

3.1.2 Gathercast interfaces

Gathercast interfaces provide abstractions for many-to-one
communications:



A gathercast interface transforms a list of in-
vocations into a single invocation (Fig. 2.b).

A gathercast interface coordinates incoming invocations be-
fore continuing the invocation flow: it can define synchro-
nization barriers and gather incoming data. Invocation re-
turn values are automatically redistributed to the invoking
components.

Synchronization barriers and gathering operations are
customizable, as well as redistribution policies for invoca-
tions return values.

3.2 Semantics

The semantics define the management of invocations and
data.

3.2.1 Invocations

Multicast interfaces generate invocations and forward them
to connected interfaces; gathercast interfaces gather invoca-
tions and generate a single invocation forwarded to a con-
nected interface.

An invocation on a multicast interface is transformed
into a list of invocations. These invocations are executed
on the components that are connected to a client multicast
interface. A multicast invocation is a one-to-all or one-to-
some communication. The communications can be syn-
chronous or asynchronous and can be performed in parallel.

A gathercast interface gathers lists of invocations from
connected components. Invocations on a gathercast inter-
face are subject to a transparent synchronization, in order
to collect data and create a new invocation.

3.2.2 Distribution of data

Collective interfaces transfer both invocation parameters
and invocation results. In strongly typed languages, such
as Java, data parameters are conveniently aggregated in pa-
rameterized lists; indeed, strong typing for collective in-
teractions helps understanding data flows. For instance,
List<A> designates a list of elements of type A.

Regarding the distribution of parameters: in multicast in-
terfaces, it can follow two distinct modes: broadcast, or
scatter. A broadcasted parameter is copied and sent to all
connected components (Fig. 3.a). A scattered parameter is
split and distributed across connected components, accord-
ing to customizable rules (Fig. 3.c). For instance, block
(one-to-one) or round-robin distributions may be proposed.

In gathercast interfaces, invocation parameters are aggre-
gated as lists (Figs. 3.b and 3.d), or according to reduction
rules (Fig. 3.f). Reduction rules define transformation oper-
ations on invocation parameters, e.g, it can consist in simply
selecting a single parameter among invocation parameters

from client interfaces, or in performing an election among
those parameters.

Regarding the distribution of results, in multicast inter-
faces, results of invocations on connected interfaces are ag-
gregated as lists (Figs. 3.a and 3.c), or reduced (Fig. 3.e). In
gathercast interfaces, the result of an invocation on a gath-
ercast interface is a list; this list may be either copied and
sent to each connected interface (Fig. 3.c), or dispatched to
connected interfaces, in a customizable manner (Fig. 3.d).

Figure 3 shows the symmetry between the multicast and
gathercast interfaces regarding data distribution.

The ability to perform various schemes of data distribu-
tion has an incidence on the signatures of methods, as il-
lustrated in Fig. 3: interfaces may be bound only if they
are type-compatible, and the type compatibility is deduced
from by the distribution mode (scatter, broadcast, reduc-
tion). Type compatibility for initial component designs may
be checked statically. Because the Fractal component model
is dynamic, bindings may change during execution, there-
fore type compatibility must also be checked at runtime.

Figure 3. Data distribution and signatures
compatibility



3.3 Configuration

Invocation forwarding and data transfer follow distribu-
tion functions, that can be formally specified, and that can
be configured at the level of the interface.

The proposed model is open: it is possible to define var-
ious modes of synchronization, parallelism and data distri-
bution, provided they are compatible with the semantics of
collective interfaces.

The configuration of collective interfaces may be per-
formed through dedicated component controllers. More
simply, we propose to take advantage of attribute-based pro-
gramming techniques, such as annotations in Java, in order
to specify the distribution behaviors at the level of the in-
terfaces themselves (we can annotate interfaces, methods or
parameters).

The following snippet illustrates the configuration of a
multicast interface. It uses a distribution mode that we
propose in our framework (one-to-one); as the distribution
mode is defined at the level of the interface element, it is
applied to all parameters of all methods of the interface.
Therefore, each element of type B contained in lb will be
distributed to one connected interface. Elements of type
C are not affected because the distribution function is only
applied to declared parameterized lists: they are copied to
each connected interface.

@ClassDispatchMetadata(
mode=@ParamDispatchMetadata(mode=

ParamDispatchMode.ONE_TO_ONE))
public interface MyInterface {
public List<A> foo(List<B> lb, C c);

}

3.4 Implementation

We propose an implementation of collective interfaces,
available as open source in the ProActive framework. It of-
fers a configurable framework for multicast and gathercast
interfaces. It offers respectively one-to-all and all-to-one
modes, and gathering occurs by aggregation into lists. Re-
duction is being developed.

4 Component-based SPMD programming

The objective of this section is to show how gather-
cast and multicast may be combined in order to design
component-based applications in a SPMD programming
style.

4.1 SPMD Programming Concepts

SPMD is a programming model for parallel computing,
and arguably the most widely used pattern in High Perfor-

mance Computing. It stands for Single Program Multiple
Data, as each task executes the same program but works
on different data. Each copy of the program runs indepen-
dently, on different data, and synchronization is provided
through explicit messages.

The SPMD model maps easily and efficiently on dis-
tributed and parallel applications and distributed memory
computing. It is the paradigm of choice for scientific par-
allel computing, with popular programming environments
available for developers such as MPI.

Collective operations in the design of SPMD programs
are a higher and more sophisticated programming abstrac-
tion than simple operations or send-receive operations.
They allow a better structuration of communications, by no-
tably bringing simplicity, programmability and expressive-
ness to programs [12].

4.2 From Message-Based SPMD to
Component-Based SPMD

The popularity of SPMD programming led researchers to
investigate ways to combine the SPMD paradigm with pop-
ular modern languages, in particular object-oriented lan-
guages. MPI 2 started by defining most of the library func-
tions as class member functions in C++, although at a fairly
low-level. Later, various approaches were undertaken, in-
cluding: wrapping of MPI primitives [5] and implementa-
tions of the MPI specification [8]. Some approaches tried to
adapt to the object-oriented paradigm by providing group
method invocations in place of MPI collective operations
[18]. In our research group, we experimented an exten-
sion of typed group communications with active objects:
Object-Oriented SPMD [3]. OOSPMD programming re-
lies on explicit synchronization barriers. Those barriers are
implemented thanks to synchronization facilities offered by
active objects.

In the context of Grid computing, the interaction be-
tween parallel codes, the deployment issues and the com-
plexity of coupled applications using SPMD codes led
to consider comprehensive programming models such as
component-based programming. Some approaches were
proposed in order to facilitate coupling of distributed par-
allel SPMD codes, notably CCAFFEINE [1] and GridCCM
[20]. These approaches however only address the coupling
of SPMD codes, not the design of SPMD application per se.

4.3 Component Based SPMD with Gath-
ercast and Multicast Interfaces

We propose a novel approach for bringing the SPMD
programming model into the component-based program-
ming paradigm. This approach relies on collective inter-
faces.



4.3.1 Principles

The basic requirements of the SPMD model may be listed
as:

1. Distributed replicated software entities.

2. Asynchronous communication between these entities

3. Collective communications: broadcast, scatter, gather.

4. Synchronization capabilities between selected dis-
tributed entities.

These requirements are answered as follows in the pro-
posed model:

1. ProActive/GCM components are inherently distributed
entities.

2. Components communicate through asynchronous
method invocations.

3. Collective communications are provided through mul-
ticast and gathercast interfaces.

4. Synchronization is provided by gathercast interfaces,
and the set of entities that must be synchronized is de-
fined by the component assembly.

4.3.2 Usage and Benefits

SPMD capabilities are easy to implement in our model,
however the design approach is a bit different from stan-
dard SPMD programming. Indeed, all SPMD features are
specified outside of the functional code, through the gath-
ercast and multicast interfaces. SPMD groups are defined
by the assembly of the components, following the inver-
sion of control pattern of Fractal binding mechanism. This
brings reusability and flexibility for SPMD programs: pro-
grams can be adapted by simply changing bindings, and can
be reused as the communication logic is separated from the
application logic.

There is neither any explicit loop nor any explicit bar-
rier: synchronization is automatic when invoking gather-
cast interfaces, and the computing process iterates by re-
cursion triggered by neighbors: gathercast interface triggers
the computation once the synchronization of incoming invo-
cations is completed, then results are sent to the neighbors.

The assembly using gathercast interfaces provides an au-
tomatic logical synchronization (in Lamport’s terms), there-
fore the global state of the application is always coherent at
the end of the computation, even though some components
may compute more rapidly than others.

In usual SPMD algorithms, the code of the application
needs to explicitly handle the synchronization. The number
of neighbors may vary and depends on the topology, for

instance in a 2D grid like in the Jacobi example presented
in Sect. 5, the entities may have 2, 3 or 4 neighbors. The
synchronization between neighbors requires tedious coding
efforts, through either a master entity, explicit barriers, or
explicit data buffering techniques.

In the approach we propose, the synchronization be-
tween components is automatically and transparently han-
dled, through a buffering mechanism provided by gathercast
interfaces. There is no need to write tedious synchroniza-
tions in the code of the SPMD entities. Besides, parallel
invocations and data distribution are automatically handled.
As a result, collective interfaces enforce a strict separation
between, on one hand, the code handling communication,
data transfer, and synchronization, and the other hand, the
code handling the applicative logic.

5 Experiment

We developed a classical and representative example in
order to demonstrate and evaluate the capabilities of mul-
ticast and gathercast interfaces, as well as the SPMD pro-
gramming possibilities provided by these interfaces.

For these purposes, we implemented a version of the Ja-
cobi method for solving linear matrix equations. The Jacobi
method is an algorithm in linear algebra for determining the
solutions of a system of linear matrix equations with largest
absolute values in each row and column dominated by the
diagonal element. Each diagonal element is solved for, and
an approximate value plugged in. The process is then iter-
ated until it converges. The original sequential version is
solved by initializing a large matrix, performing a compu-
tation on the matrix, then repeating this computation until
convergence. It can be easily refactored into a distributed
application by partitioning the original matrix. It is a simple
example, easily implementable in a SPMD fashion, thanks
to the decomposition into sub-matrixes, which compute lo-
cally their internal values and swap boundary values with
their neighbors, as shown in Fig. 4. Moreover, this program
already served as a use case for previous work on OOSPMD
programming, which was compared to MPI, and provides
us a reference.

For benchmarking purposes, we worked with a fixed
number of iterations and fixed matrix values, and we did
not wait for convergence.

The benchmarks are intended to answer three questions:

• Is a component-based approach usable and scalable for
solving SPMD-style problems?

• What is the performance of the component-based ap-
proach compared to an approach using explicit barriers
for synchronization?



• What is the performance of multicast communications
against sequential one-way invocations through collec-
tion interfaces?

5.1 Design

5.1.1 Typing

There is only one type of components in this application:
the sub-matrix type. It defines a mandatory gathercast
server interface, and optional multicast and collection in-
terfaces, depending whether borders data is sent using mul-
ticast (Fig. 4) or with successive invocations on a col-
lection interface. Border data values are encapsulated as
LineData objects.

5.1.2 Borders reception and synchronization

The server interface of cardinality gathercast is defined as
follows:

public interface GathercastDataReceiver {
public void exchangeData(List<

LineData> borders);
}

As we can see from the signature of the only method,
a list of LineData elements is expected from connected
client interfaces. Once all LineData elements are re-
ceived by the gathercast interface, they are gathered into
a list of LineData elements, and the method defined
by GathercastDataReceiver is invoked on the sub-
matrix component.

5.1.3 Borders sending

Sending border values can be performed in two manners,
and this is determined during the binding process: either
multicast or collection interfaces are used.

The multicast interface exhibits the following signature:

public interface MulticastDataSender {
@MethodDispatchMetadata(mode =

@ParamDispatchMetadata(mode=
ParamDispatchMode.ONE_TO_ONE))

public void exchangeData(List<
LineData> borders);

}

Figure 4. Jacobi computation: borders ex-
changes through multicast and gathercast
interfaces (communications are represented
only for component (1;0))

As we can see, a list of LineData elements is given
as a parameter to the exchangeData method. This list
is built from the values of the borders of the current ma-
trix. The distribution of the LineData elements among
the connected server interfaces is specified by the annota-
tion: a block distribution, which means that the server in-
terface of rank i automatically receives the LineData ele-
ment of rank i in the list.

This communication pattern is represented in Fig. 4.
We implement the Jacobi algorithm in one method,

that triggers the computation and the communication with
neighbors. There is no need for explicit synchronization
code:

public void exchangeData(List<LineData>
borders) {
replaceOldBordersWithNewData(borders);
// compute matrix including borders
matrixComputation();
// exchange new borders with neighbors
// (triggers next iteration)
neighbors.exchangeData(newBorders);

}

We also bench an alternative way of sending borders
data: sequential invocations on a collection of interfaces.
This allows a comparison between sequential invocations
and multicast invocations.

5.2 Benchmarks

For comparison purposes, the benchmarks are performed
on 3 versions of the Jacobi application: an OOSPMD ver-
sion (using explicit synchronization barriers), a component
version without multicast (using collection interfaces, and
gathercast interfaces), and a component version with multi-
cast (using multicast and gathercast interfaces).

The component based version uses the same computa-
tion algorithm than the reference OOSPMD version, the



only differences are a different process for object creation
and binding, and the absence of explicit synchronization
barriers.

We fix the size and content of the matrix, and measure
the execution time for a fixed number of iterations. The ap-
plication is deployed on the azur cluster of our lab, INRIA
Sophia Antipolis, which consists of 105 processors of type
AMD Opteron, CPU clock of 2GHz, and 2GB of RAM.
The Java runtime is Sun’s 1.5.0 04 version, configured with
a maximum heap size of 1.5GB.

The global matrix is decomposed into submatrixes, and
each distributed active object or component works with one
submatrix.

The parameters which vary are the number of machines
used for the computation and the version of the implemen-
tation. The results of these experiments are represented in
Fig. 5.

Figure 5. Jacobi computation benchmarks

5.3 Analysis

We draw three conclusions from this example, regarding
respectively the applicability of collective interface, the per-
formance, and the generalization of the SPMD approach.

First, this benchmark is an excellent proof on concept
of collective interfaces in the GCM component model: we
managed to deploy and run an SPMD application on up to
100 machines and collective communications were exten-
sively used.

Second, this benchmark demonstrates that our approach
for SPMD programming using components and collective
interfaces is valid, and even performant compared to the
existing OOSPMD-based implementation. The benchmark
results in Fig. 5 highlight three characteristics of the col-
lective interfaces. The first characteristic is an almost linear

performance speedup when increasing the number of pro-
cessors: a correct behavior for a clustered application. The
second characteristic is a faster execution for the compo-
nent based versions compared to the OOSPMD-based ver-
sion. We explain this behavior by the explicit synchroniza-
tion barriers used in the OOSPMD version: setting barriers
implies sending extra requests to the SPMD group mem-
bers; these additional requests harm performance because
sending a request requires a complex and costly reification
process, . On the contrary, there is no explicit barrier in the
component version, therefore no extra request. The third
characteristic is a slightly better performance when using
multicast interfaces than when making successive invoca-
tions on members of collection interfaces. We explain this
gain by the multithreading mechanisms involved when us-
ing multicast interfaces.

Third, from a qualitative point of view, this example is
much easier to implement than SPMD solutions with ex-
plicit synchronization barriers, for instance OOSPMD solu-
tions. By comparison, the equivalent MPI program for this
benchmark would require explicit and error-prone synchro-
nization, either through collective primitives or by matching
send-receive statements.

6 Conclusion

In this paper we presented a proposal for addressing
collective communications through collective interfaces of
software components. Collective interfaces offer the fol-
lowing advantages:

• they expose collective behaviors in the definition of
components;

• they provide automatic data distribution, parallelism,
and synchronization;

• they enforce a separation between the communication
logic and the business logic;

• they guarantee structured programming;

• no intermediate component is required.

We implemented collective interfaces in the ProActive
Grid middleware, and we demonstrated the performance
and applicability of two kinds of collective interfaces, mul-
ticast and gathercast interfaces. As an illustrative example,
we showed how collective interfaces enable SPMD pro-
gramming with components in a non-intrusive style with
respect to the applicative logic. However, the expressive-
ness and the capabilities of the collective interfaces are not
restricted to SPMD programming; they allow to express any
form of collective communication in a structured way.



We plan to apply collective interfaces for facilitating the
coupling of parallel codes (also referred to as the “MxN
problem” [6]). We intend to develop more complex and
varied applications, in particular the NAS Grid benchmarks
[11], for which we can take advantage of both the hierarchi-
cal nature of the Fractal component model and the collective
interfaces.

We are currently extending our implementation of col-
lective interfaces with dispatch and reduction capabilities
(cf 3.4). The model can be extended so that these capabil-
ities are generalized: aggregation can be extended to any
transformation from a list to any type of data; and dispatch
mode can be extended to take into account any way to split,
transform, and dispatch data. Finally, the component type
system can be extended to consider collective interfaces as
a subtype of simple interfaces. This allows a parallel com-
ponent to safely replace a sequential one, and thus improve
parallelization of an application without refactoring it.

Acknowledgements

This work was partially supported by France Telecom
under external research contract 46127879. The authors
also thank the CoreGRID community for its feedback since
the inception of this work.

References

[1] B. Allan, R. Armstrong, A. Wolfe, J. Ray, D. Bernholdt,
and J. Kohl. The CCA core specification in a distributed
memory SPMD framework. Concurrency and Computation:
Practice and Experience, 14:323–345, 2002.

[2] L. Baduel, F. Baude, and D. Caromel. Efficient, Flexible,
and Typed Group Communications in Java. In Joint ACM
Java Grande - ISCOPE Conference, pages 28–36. ACM
Press, 2002.

[3] L. Baduel, F. Baude, and D. Caromel. Object-Oriented
SPMD. In IEEE International Symposium on Cluster Com-
puting and Grid, CCGrid 2005, volume 2, pages 824– 831,
May 2005.

[4] L. Baduel, F. Baude, N. Ranaldo, and E. Zimeo. Effective
and Efficient Communication in Grid Computing with an
Extension of ProActive Groups. In JPDC, 7th International
Worshop on Java for Parallel and Distributed Computing at
IPDPS, Apr. 2005.

[5] M. Baker, B. Carpenter, G. Fox, S. H. Ko, and S. Lim. mpi-
Java: An Object-Oriented Java interface to MPI. In Interna-
tional Workshop on Java for Parallel and Distributed Com-
puting, IPPS/SPDP, San Juan, Puerto Rico, Apr. 1999.

[6] F. Bertrand, R. Bramley, K. B. Damevski, J. A. Kohl, D. E.
Bernholdt, J. W. Larson, and A. Sussman. Data Redistribu-
tion and Remote Method Invocation in Parallel Component
Architectures. In 19th International Parallel and Distributed
Processing Symposium: IPDPS, 2005.

[7] E. Bruneton, T. Coupaye, and J.-B. Stefani. The Fractal
Component Model Specification, 2004.

[8] B. Carpenter, V. Getov, G. Judd, A. Skjellum, and G. Fox.
MPJ: MPI-like Message Passing for Java. Concurrency:
Practice and Experience, 12:1019–1038, 2000.

[9] CoreGRID Network of Excellence. http://www.coregrid.net.
[10] P. Felber, B. Garbinato, and R. Guerraoui. The Design of a

CORBA Group Communication Service. In Symposium on
Reliable Distributed Systems, pages 150–159. IEEE Com-
puter Society, October 1996.

[11] M. Frumkin and R. F. V. der Wijngaart. NAS Grid Bench-
marks: A Tool for Grid Space Exploration. In 10th IEEE
International Symposium on High Performance Distributed
Computing (HPDC ’01), volume 00, page 0315. IEEE Com-
puter Society, 2001.

[12] S. Gorlatch. Send-Receive Considered Harmful: Myths and
Realities of Message Passing. ACM Transactions on Pro-
gramming Languages and Systems, 26(1):47–56, January
2004.

[13] K. Keahey and D. Gannon. PARDIS: A Parallel Approach
to CORBA. In 6th IEEE International Symposium on High
Performance Distributed Computing (HPDC), 1997.

[14] M. Leclercq, V. Quéma, and J.-B. Stefani. DREAM: a Com-
ponent Framework for the Construction of Resource-Aware,
Reconfigurable MOMs. In 3rd Workshop on Reflective and
Adaptive Middleware (RM’2004), Toronto, Canada, October
2004.

[15] J. Maassen, T. Kielmann, and H. E. Bal. GMI: Flexible and
Efficient Group Method Invocation for Parallel Program-
ming. In Sixth Workshop on Languages, Compilers, and
Run-time Systems for Scalable Computers (LCR’02), Mar.
2002.

[16] A. Mayer, S. Mcough, M. Gulamali, L. Young, J. Stanton,
S. Newhouse, and J. Darlington. Meaning and Behaviour in
Grid Oriented Components. In Third International Work-
shop on Grid Computing, GRID, volume 2536 of LNCS,
pages 100–111, 2002.

[17] MPI: A Message-Passing Interface Standard. Technical re-
port, MPI Forum, University of Tennessee, Knoxville, Ten-
nessee, June 1994.

[18] A. Nelisse, T. Kielmann, H. E. Bal, and J. Maassen. Object-
based Collective Communication in Java. In Joint ACM Java
Grande - ISCOPE Conference, pages 11–20, Palo Alto, Cal-
ifornia, USA, 2001. ACM Press.

[19] N. Parlavantzas, V. Getov, M. Morel, F. Baude, F. Huet, and
D. Caromel. Componentising a scientific application for the
grid. Technical Report TR-0031, Institute on Grid Systems,
Tools and Environments, CoreGRID, April 2006.

[20] C. Pérez, T. Priol, and A. Ribes. A Parallel CORBA Com-
ponent Model for Numerical Code Coupling. International
Journal of High Performance Computing Applications (IJH-
PCA), 17(4):417–429, 2003.

[21] C. René and T. Priol. MPI code encapsulating using parallel
CORBA object. Cluster Computing, 3(4):255–263, 2000.


