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Abstract

This article investigates the security problems that may ap-
pear with the use of meta-programming extensions to the
Java language and also how meta-programming may help
in expressing and implementing security policies. Depend-
ing on the moment when the shift from the base-level to
the meta-level is performed, we present different security
problems and their consequences. We also raise a num-
ber of issues related to security and metaprogramming that
we hope will result in fruitful discussions within the meta-
programming community.

1 Introduction

In this article we present some early thoughts and remarks
about how meta-programming in Java and the new security
architecture of Java [10] relate to each other.

It is actually quite remarkable that Java is the first main-
stream programming language to take security into account
from scratch and at the same time gave birth to such a large
number of meta-programming extensions. This is why we
think it is interesting to have a closer look at how these two
seamingly uncorelated concerns interact with each other.

The organisation of the paper is as follows. In section
2 we explain why Java is an attractive platform for devel-
oping metacomputing extensions and present the standard
reflective features available in the language. In section 3, we
investigate what it means for a meta-object protocol (MOP)
[13] to be secure by reviewing a few MOPs for Java and
describing their strengths and weaknesses with respect to
security. In section 4 we look at the problem from an op-
posite angle: assuming that MOPs are secure, how can we
put them to good use in order to implement security policies
? We conclude with a few hints at what we think may be
valuable research issues in the field of meta-programming
and security.

2 Java and Meta-Programming: a good match

Since its first public release in 1995, Java! has become an im-
plementation platform of choice for researchers in the field of
meta-programming with object-oriented languages. A sig-
nificant number of systems have been proposed and imple-
mented, which cover a broad range of implementation tech-

1by Java, we mean the whole Java Platform, which encompasses
the Java Virtual Machine [15] (JVM), the Java Language [11] itself
and all the Java Core APIs.

niques, from compile-time and load-time MOPs to run-time
MOPs. Let us now quickly present what we think are the
three main reasons why Java became such an appealing plat-
form for implementing meta-programming systems.

First, Java is an interpreted language and interpreters
are a popular model for thinking about and implementing
reflective features into programming languages [7]. Inter-
preters provide a natural separation between an application
written in a given language (like Java) and the description of
how this language is executed (how the JVM is implemented
in C, for example). Interpreters allow to alter the execution
of a program simply by modifying the interpreter without
having to modify the program itself. It is the approach taken
by such runtime-MOPs as MetaXa? and Guarana.

Second, the Java language itself contains a set of lim-
ited reflective features which designers of meta-programming
systems can use as basic building blocks. The role of
these features is to make things that belong to the execu-
tion environment available to Java programs as standard
Java objects. Classes such as ClassLoader 9], Reference®,
SecurityManager and AccessController clearly are re-
flected elements of the runtime environment, which a Java
programmer can customise using standard Java code. It
is always arguable which features should be reflected and
which should not. Java does not provide, for example,
reflected views of the garbage collection algorithm or the
thread scheduler, which a Java programmer may like to cus-
tomise as well.

The best-known reflective feature of Java is the Reflec-
tion API [17]. It was introduced with JDK 1.1 and pro-
vides introspection features: a Java program can discover at
runtime what are the types (primitive types, arrays, classes
and interfaces) that exist inside the JVM and enquire about
their constructors, methods and variables. The Refection
APT also provides a limited possibility to dynamically invoke
those reflected members but never comes close to behavioural
reflection [7], which is a completely different story.

A third reason why Java is an interesting platform
for implementing meta-programming systems is that Java
classes are loaded and linked on demand at runtime. The
class-loading mechanism is reflected through objects of type
ClassLoader, which provides the indispensable hook for im-
plementing load-time MOPs. This category of MOPs usu-
ally modify the bytecode representation of a class at load-

2formerly known as MetaJava

3The abstract class java.lang.ref.Reference was introduced with
Java 2 and is the superclass of a number of classes that provide a
limited degree of interaction with the garbage-collector.



time so as to add hooks to the bytecode that implement
shifts from the base-level to the meta-level on the occurence
of specific events.

Now that we’ve seen why Java is an attractive platform
for meta-programming, let us have a closer look at some of
the existing metaprogramming extensions for Java and more
specifically at how they do or do not fit with the security
architecture of Java 2.

3 MOPs and the Security Architecture of Java

The question we address in this section is the following: does
using a MOP for writing Java programs weaken or perhaps
completely invalidate the security architecture of Java 7

The answer to the question depends heavily on when and
how the shifts from the base-level to the meta-level (known
as reification points) are introduced in the program. With
respect to when the shift to the meta-level happens, MOPs
can be broadly sorted out into three categories.

Compile-time MOPs reflect language constructs avail-
able at compile-time such as classes, methods, loops, state-
ments,... and are usually implemented through some kind
of source code preprocessor. Load-time MOPs reflect on the
bytecode and make use of a modified class loaded in order
to modify the bytecode at the moment it is loaded into the
JVM. Run-time MOPs often make use of a modified version
of the JVM in order to intercept things that only exist at
runtime such as method invocations and field accesses. It
is important to note that both compile-time and load-time
mops work on a per-class basis while run-time MOPs have
the ability to work an a per-object basis.

A somehow corelated issue is to decide what to make
available at the meta-level, i.e. what to reify. Reify-
ing method invocation is the most popular feature among
MOPs, with reification points at the moment a method is
entered of returned from. Reifying method invocations is a
very desirable feature because many non-functional aspects
can be efficiently implemented this way, like transparent
distribution, persistence, access control or pre- and post-
conditions on method calls. Reifying access to variables is
also found, although it is less common than reifying method
invocation, both because directly accessing other objects’
variables somehow goes against sound object-oriented soft-
ware engineering practice and because it is harder to imple-
ment without relying on a modified virtual machine.

Let us now present a number of examples in order to
identify the issues raised by implementing MOPs in Java.
We will see a compile-time MOP (OpenJava), a load-time
MOP (Dalang which later evolved into Kava) and two run-
time MOPs (MetaXa and Guarana).

3.1 OpenJava

OpenJava [5, 21] is a compile-time MOP for Java that inher-
its most of the design philosophy of its direct ancestor Open
C++ Version 2 [4]. It can be seen as an “advanced macro
processor” that performs a source-to-source translation of a
set of classes written in a possibly extended version of Java
into a set of classes written in standard Java.

The translation to be applied to a base class is described
in a metaclass associated with the base class. The meta-
class is written in standard Java using a class library that
extends the Java Reflection API with new classes that reflect
language constructs such as assignments, conditional expres-
sions, field accesses, method calls, variables, type casts, etc...

As a result, writing a translation is quite easy and natural
because of the object-oriented design of the library, which
contrasts with the approach taken in Open C++ where the
sole abstraction made available to the meta-level program-
mer is bare abstract syntax trees.

The use of OpenJava does not break the security model
of Java in any way: OpenJava outputs standard Java classes
that compile and run within the standard Java environ-
ment and are subject to the same security restrictions as
any Java class. Moreover, since OpenJava requires access
to the source code of the classes it translates, we can as-
sume that the translation is performed by the same person
or organisation (in security terms, the same principal4) who
wrote the source code for the base class, as opposed to load-
time or run-time MOPs which can be used, for example, to
add a distributed or persistent behavior to a Commercial-
Off-The-Shelf (COTS) component [22], without the original
implementor of the componenent having a word to say.

Nevertheless, there is still a little concern that does not
introduce any breach of security as such but weakens the
protection one might expect from Java 2 security architec-
ture because it goes against the principle of least privilege
[12]. The principle states that a piece of code "should oper-
ate using the least set of privileges necessary to complete the
job”. This principle is important for both computer security
and software engineering since it limits the damage that can
result from a security attack conducted by a malevolent at-
tacker and it also protects a program from the consequences
of a bug unwantingly introduced by a benevolent program-
mer.

In Java 2’s security architecture, classes are grouped to-
gether into protection domains, which can be considered as a
set of classes (usually a package) to which some permissions
are granted through a policy file. The problem is that Open-
Java allows a translation associated with a given base class
to affect other classes that may belong to different protec-
tion domains than the protection domain of the base class,
which blurs the fine-grained protection policy available in
Java 2.

OpenJava restricts the scope of the translation expressed
in the metaclass associated with a base class according to the
following rule: a translation can only affect the base class
itself (callee-side translation) and the classes that perform
method calls to the base class (caller-side translation)®.

As a consequence, a caller-side translation may introduce
into all the client classes code that may require additional
permissions in order to run. The user will then have to mod-
ify the policy file in order to grant new permissions to the
protection domains that contain the client classes, because it
is quite likely that the client classes belong to different pro-
tection domains than the class the translation if performed
on. This clearly goes against the principle of least privilege.

OpenJava does not seem to raise any major security
problem but is not perfectly in line with the security archi-
tecture of Java 2 though. It is difficult to say whether this
results from OpenJava being too permisive or the security
architecture of Java being too restrictive.

4A principal is a person or organisation on behalf of whom an
operation is executed and who is responsible and accountable for the
consequences of the operation.

SPerforming caller-side translation implies that all the client
classes of the base class on which the translation is performed are
known at the time of the translation.



3.2 Dalang and Kava

Dalang [24] is a load-time MOP that makes use of class
wrappers (also known as prozy objects [8]) in order to inter-
cept method invocations. The idea behind load-time MOPs
is to modify the bytecode of a class at load-time in order to
introduce hooks that implement a shift from the base-level
to the meta-level at some specific reification points in the
code, usually on entering or leaving a method or on reading
or writing a field.

Dalang evolved into Kava [23], which solved a lot of the
security problems identified in Dalang. Nevertheless, it is
interesting to present these problems here since they are
certainly common to many load-time MOPs.

Since load-time MOPs work on the bytecode representa-
tion of a Java class (i.e. what is contained in a .class file),
it is possible that the result of the translation of a class is a
piece of bytecode that could not have been produced as the
result of the compilation of a valid Java class.

Apart from permissions and protection domains, a large
part of the security architecture of Java relies on the type
system and access modifiers. Name space separation, for
example, entirely relies on the soundness of the type sys-
tem and is a crucial issue for Java applets. Allowing a class
to modify its position in the inheritance tree by means of
bytecode modification at load-time may completely under-
mine security. Even without any modification of the in-
heritance relationship between classes, simply changing the
access modifier of an object variable is a serious security
threat.

For example, changing the access modifier of the object
variable that points to the private key of a cryptographic
key pair from protected to public may allow a rogue class
to leak the private key to an external party.

Kava’s answer to this problem is to let the user have
control over which transformation is applied to which class.
This is done through a meta configuration file whose usage
is similar to the policy file for security. Nevertheless, this
is an all-or-nothing solution: the user cannot express fine-
grained constraints on what the meta-level class is allowed
to do. We would like, for example, to allow a metaclass
to only perform translations of bytecode that respect the
structure of a class (its name, position in the inheritance
tree and method signatures), because, for example, this is
all we need for intercepting method invocations.

Although load-time MOPs work on a per-class basis, it
is possible to transform the bytecode in such a way that
the reification mechanisms can be switched on and off on
demand on a per-object basis without the resulting object
suffering heavy runtime penalties.

It seems unlikely that load-time MOPs suffer from the
same problem as compile-time MOPs (when a translation
performed on a class also affect its client classes), since load-
time MOPs work on a class-by-class basis. This means that
the problem with permissions and caller-side translations
presented in 3.1 does not exist here but a new problem re-
lated to the policy file appears.

The problem has to do with digital signatures. Java’s se-
curity architecture relies on digital signatures to ensure the
integrity of classes and the authentication of their authors.
Of course, a secure class loader can be used to check the sig-
nature of the base class, but how do we handle the compound
class that is the result of the translation of the base class
according to its meta-level class ? If the user’s policy file
grants some permissions to the base class, should we grant

the same permission to the compound class 7 And even if
both the base class and the meta class are trusted, how do we
know that the resulting class won't perform harmful actions
because of an unforeseen consequence of the translation 7

From a more general point of view, the problem raised
here is one of compoung principal: who is to be held re-
sponsible for the actions taken by a class that is created
as the composition of a base-level behaviour and a meta-
level behaviour, each of which is under the responsibility of
a different principal 7 We can at least identify three prin-
cipals: the author of the base-level code, the author or the
meta-level code and the author of the MOP that binds that
base-level and meta-level code together. Further research is
needed in order to understand the security implications of
developing programs with the use of MOPs.

Nevertheless, we think that load-time MOPs are proba-
bly the best compromise because they do not go against the
load-time binding model of Java (as opposed to compile-time
MOPs) and do not require a modified version of the virtual
machine (as opposed to run-time MOPs) and introduce a
reasonable performance penalty.

3.3 MetaXa and Guarana

MetaXa [14] and Guaran [18] are two examples of run-time
MOPs. They both rely on a modified version of the Java
virtual machine. Guarané is implemented using a modi-
fied version of the freely-available Kaffe virtual machine and
MetaXa extends the virtual machine with a collection of na-
tive methods put together in a dynamic library.

The very fact that these MOPs rely on a modified ver-
sion of the JVM is not necessarily a security problem. It is
not the implementation of the MOP that creates a security
threat (the modified virtual machines can be trusted because
their implementors are clearly identified persons) but what
the MOP enables a user class to do.

The problem is actually with controlling the enormous
power unleashed by letting metaclasses access the inner
workings of the Java Virtual Machine. For example, what
happens if it becomes possible to mofify the state of the
execution stack of a thread, which is central to the decision-
making algorith of Java 2’s security model ?

A possible solution is to control the power of run-time
MOPs through a trusted kernel that would restrict access
to potentially dangerous meta-level operations to a reduced
set of classes.

3.4 Other MOPs in Java

The MOPs for Java that we've presented so far are the
best-known and most representative meta-programming ar-
chitectures for Java. Nevertheless, there exist other MOPs
for Java, such as RJava [6], a wrapper-based runtime-MOP,
Reflective Java [26], a compile-time MOP for intercepting
method invocation, or ProActive [3], a run-time MOP that
generates type-compatible wrappers at runtime for reifying
method invocation without relying on a modified virtual ma-
chine.

4 Using MOPs for implementing security policies

The idea of using MOPs for expressing and implementing
security policies is not a new one. The security aspect of an
application has long been recognized as fairly orthogonal to
functional code.



A metaobject that intercepts method invocations for an
object that represents a resource to be secured is the ideal
place for implementing an access control checks without hav-
ing to mix functional code with security-related code. In a
model based on capabilities, a metaobject attached to a ref-
erence can control the propagation of the capability across
protection domains. Riechmann [19], for example, proposes
a model in which metaobjects attached to the boundary of
a component control how references to objects that live in-
side the component are transmitted to other components,
dynamically attaching security metaobjects to these refer-
ences according to the level of trust of the component the
reference is transmitted to.

A similar idea was developed with the concept of Channel
Reification [16, 1]. This model enhances the message reifica-
tion model with the notion of history (or state). The model
was implemented in Java as part of a history-dependent ac-
cess control mechanism [2] that goes beyond the well known
access matrix model, which is essentially a stateless access
control mechanism. The Channel Reification model is also
claimed to be superior to the meta-object model where a
single metaobject monitors all access to a resource because
it works with method-level granularity and can be used for
implementing role-based access models [20] which are partic-
ularly well-suited to distributed object-oriented computing.

Another instance of using MOPs for implementing se-
curity policy is presented in [25]. The idea here is to use
the load-time MOP Kava (see 3.2) in order to adapt third-
party components to meet real-world security requirements.
The authors contrast their approach with the wrapper-based
approach adopted by the Enterprise Java Beans framework
and argue that load-time MOPs provide a cleaner implemen-
tation of meta-level security policies. In addition, having a
separate meta-level for the security policy attached to a com-
ponent eases the expression of any kind of high-level security
mechanisms, while the wrapper-based approach seems less
expressive and is in fact only appropriate for enforcing access
control on resources.

These experiments proved the feasability of using MOPs
for implementing security policies. Another issue is to know
if this approach is worthwhile, i.e. if the expression of a se-
curity policy at the metalevel is orthogonal enough to func-
tional code for this approach to become really workable in
real-world applications.

In the context of Java, the very fact that the declara-
tion of which permissions are granted to which piece of code
(the policy file) is separated from the source code might be
interpreted as a proof that functional code and the declara-
tion of security policies are orthogonal. However, there is at
least one hint that functional code and security are not that
orthogonal. In practice, the security policy as described in
the policy file is unworkable if the code does not make use
of the doPrivileged call for bypassing part of the security
mechanism.

5 Future Work

We now would like to list a number of points that we think
are interesting research issues in the field of security and
meta-programming.

e Is the expression of security policies really orthogonal
to functional code so as to allow all security-related
code to belong to the meta level 7 Or, as security is

a growing concern in today’s applications, will it be-
come more and more difficult to draw a line between
functionnal code and security-related code ?

o Is the use of MOPs for security really a new idea ?
Or is it only the reformulation of decades-old security
techniques in terms of meta-programming ?

e Which security policy should we apply to compound
classes (like the classes generated by load-time MOPs
such as Kava) that mix base-level and meta-level code
? What happens when the principals for the base-level
and the meta-level code have different and possibly con-
flicting interests 7 How is this issue related to the prob-
lem of security in open systems and mobile code sys-
tems 7

e How do we handle meta-level translations of base-leve
classes whose effects cross protection domains (like for
OpenJava) ?

6 Conclusion

This paper presents our remarks and thoughts on security
issues with metaprogramming in Java and highlights possi-
ble weaknesses in today’s MOPs. We also identify possible
uses of MOPs for expressing security policies.

We hope that the few issues we provide as hints for fu-
ture research will provide a useful starting point for fruitful
discussions within the meta-programming community.
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