
Interactive and Descriptor-based Deployment
of Object-Oriented Grid Applications

Françoise Baude, Denis Caromel, Fabrice Huet, Lionel Mestre, Julien Vayssière

INRIA Sophia Antipolis, CNRS - I3S - Univ. Nice Sophia Antipolis,

BP 93, 06902 Sophia Antipolis Cedex - France

First.Last@inria.fr

Abstract

Increasing complexity of distributed applications and
commodity of resources through grids are making the tasks
of deploying those applications harder. There is a clear
need for standard tools allowing versatile deployment and
analysis of distributed applications.

We present here a solution for the deployment and mon-
itoring of applications written using ProActive, an experi-
mental Java-based library for concurrent, distributed and
mobile computing. We describe the use of XML-based de-
scriptor for the deployment part of a distributed application
and the use of IC2D (Interactive Control and Debugging of
Distribution), for the monitoring and steering of the run-
ning application.

Those ideas, concepts, and experiments are a contribu-
tion towards the construction of integrated environments
for component-based grid programming.

1 Introduction

1.1 Presentation of the problem

If libraries for parallel and distributed application devel-
opment exist (RMI in Java, jmpi [6] for MPI programming,
etc.) there is no standard yet for the deployment of such
applications. The deployment is commonly done manually
through the use of remote shells for launching the various
virtual machines or daemons on remote computers, clusters
or grids. The commoditization of resources through grids
and the increasing complexity of applications are making
the task of deploying central and harder to perform.

Questions such as “are the distributed entities correctly
created?”, “do the communications among such entities ex-
ecute correctly?”, “where a given mobile entity is actually
located?”, etc. are usually left unanswered. Moreover, there

is usually no mean to dynamically modify the execution en-
vironment once the application is started.

Clearly said, the management of the mapping of pro-
cesses (such as JVMs, PVM or MPI daemons) onto hosts,
the deployment of activities onto those processes have
generally to be explicitly taken into account, in a static
way, sometimes inside the application, sometimes through
scripts. The application cannot be seamlessly deployed on
different runtime environments.

To solve those critical problems, classical and somehow
ideal solutions follow 3 steps:

1. abstract away from the hardware and software runtime
configuration by introducing and manipulating in the
program virtual processes where the activities of the
application will be subsequently deployed,

2. provide external information regarding all real pro-
cesses that must be launched and the way to do it (it can
be through remote shells or job submission to clusters
or grids), and define the mapping of virtual processes
onto real processes,

3. provide a mean to visualize, complete or modify the
deployment once the application has started.

1.2 Contribution

Taking into consideration this 3-steps approach, this
paper presents an integrated solution targeted to dis-
tributed object-oriented applications written using object-
oriented libraries and more specifically, using the ProAc-
tive library [5] (www.inria.fr/oasis/ProActive),
a Java based solution for seamless parallel and distributed
programming. The solution we have experimented is appli-
cable to other object-oriented programming environments.

We solve the two first steps by introducing XML-based
descriptors able to describe activities and their mapping
onto processes. We solve the third step by having a mon-
itoring application: IC2D . It is a graphical environment for



monitoring and steering distributed and ProActive applica-
tions.

The XML-based descriptor allows to describe: (1) vir-
tual nodes, which are logical entities representing contain-
ers of activities, (2) Java virtual machines and the way
to launch or find them, (3) the mapping of those virtual
nodes onto the JVMs. In the application, activities are
only mapped on virtual nodes allowing complete separa-
tion with the actual processes. As a consequence, a price
to pay is the engineering and the inclusion in the source
code of structured virtual nodes; the solution is not targeted
at legacy code, but rather geared towards new applications
and object-oriented design.

Once a ProActive application is running, IC2D enables
the user to graphically visualize fundamental distributed as-
pects such as topology and communications, and allows the
user to control and modify the execution (e.g. the mapping
of activities onto real processes, i.e. JVMs, either upon cre-
ation or migration) adding dynamicity in the configuration
and deployment.

2 Background on Distributed, Mobile, and
Active Objects with ProActive

ProActive is a 100% Java library for concurrent, dis-
tributed and mobile computing implemented on top of RMI
[16] as the transport layer. Besides RMI services, ProActive
features transparent remote active objects, asynchronous
two-way communications with transparent futures, high-
level synchronisation mechanisms, and migration of active
objects with pending calls. As ProActive is built on top of
standard Java APIs1, it does not require any modification to
the standard Java execution environment, nor does it make
use of a special compiler, preprocessor or modified virtual
machine. The model of distribution and activity that we
present in this section is part of a larger effort to improve
simplicity and reuse in the programming of distributed and
concurrent object systems [3, 4].

2.1 Base model

A distributed or concurrent application built using
ProActive is composed of a number of medium-grained en-
tities called active objects. Each active object has one dis-
tinguished element, the root, which is the only entry point
to the active object. Each active object has its own thread
of control and is granted the ability to decide in which order
to serve the incoming method calls that are automatically
stored in a queue of pending requests. Method calls (see fig-
ure 1) sent to active objects are always asynchronous with
transparent future objects and synchronization is handled by

1Java RMI [16], the Reflection API [15],...

a mechanism known as wait-by-necessity [3]. There is a
short rendez-vous at the beginning of each asynchronous re-
mote call, which blocks the caller until the call has reached
the context of the callee (on Figure 1, step 1 blocks un-
til step 2 has completed). The ProActive library provides a
way to migrate any active object from any JVM to any other
one through the migrateTo(...) primitive which can
either be called from the object itself or from another active
object through a public method call.

2.2 Mapping active objects to JVMs: Nodes

Another extra service provided by ProActive (compared
to RMI for instance) is the capability to remotely create re-
motely accessible objects. For that reason, there is a need
to identify JVMs, and to add them few services. Nodes pro-
vide those extra capabilities : a Node is an object defined
in ProActive whose aim is to gather several active objects
in a logical entity. It provides an abstraction for the physi-
cal location of a set of active objects. At any time, a JVM
hosts one or several nodes.The traditional way to name and
handle nodes in a simple manner is to associate them with
a symbolic name, that is a URL giving their location, for
instance: rmi://lo.inria.fr/Node1.

As an active object is actually cre-
ated on a Node we have instruction like
a = (A) ProActive.newActive("A", params,
"rmi://lo.inria.fr/Node1"). Note that an active
object can also be bound dynamically to a node as the result
of a migration.

As we identify earlier, the first step toward seamless de-
ployment is to abstract away from hardware and software
details. The next section will introduce the concept of Vir-
tual Node: a solution not to reference node by their URL in
the application.

3 Descriptor-based Mapping and Deploy-
ment

In order to solve the two first steps of the seamless de-
ployment problem, we introduced XML-based descriptors
as a way to define the logical entities the application needs
to run, the computing resources available and the mapping
of those logical entities onto those resources.

3.1 Principles

A first principle is to fully eliminate from the source code
the following elements:

� machine names,
� creation protocols,
� registry and lookup protocols,



3− A future object
is created and returned

1− Object A performs
a call to method foo

2− The request for foo
is appended to the queue

5− The body updates the future
with the result of the execution of foo

6− Object A can use the result
throught the future object

4− The thread of the body
executes method foo on object B

Object B

Proxy Body

Object A

Future

Result

Local node Remote node

Object BObject A

Figure 1. Execution of a remote method call

the goal being to deploy any application anywhere without
changing the source code. For instance, we must be able
to use various protocols, rsh, ssh, Globus, LSF,
etc., for the creation of the JVMs needed by the application.
In the same manner, the discovery of existing resources or
the registration of the ones created by the application can
be done with various protocols such as RMIregistry,
Jini, Globus, LDAP, UDDI, etc. Therefore, we
see that the creation, registration and discovery of resources
has to be done externally to the application.

A second key principle is the capability to abstractly de-
scribe an application, or part of it, in term of its concep-
tual activities. The description should indicate the various
parallel or distributed entities in the program or in the com-
ponent. As we are in a (object-oriented) message passing
model, to some extend, this description indicates the max-
imum number of address spaces. For instance, an applica-
tion that is designed to use three interactive visualization
nodes, a node to capture input from a physic experiment,
and a simulation engine designed to run on a cluster of ma-
chines should somewhere clearly advertise this information.

Now, one should note that the abstract description of an
application and the way to deploy it are not independent
piece of information. In the example just above, if there
is a simulation engine, it might register in a specific reg-
istry protocol, and if so, the other entities of the computa-
tion might have to use that lookup protocol to bind to the
engine. Moreover, one part of the program can just lookup
for the engine (assuming it is started independently), or ex-
plicitly create the engine itself.

To summarize, in order to abstract away the underly-
ing execution plate-form, and to allow a source-independent
deployment, a framework has to provide the following ele-
ments:

� an abstract description of the distributed entities of a
parallel program or component,

� an external mapping of those entities to real machines,
using actual creation, registry, and lookup protocols.

Component Name: C3D-Dispatcher-Renderer
Dependencies:

Provides: class C3DDispatcher
Needs: <none>
Use: class C3DUser

VirtualNodes:
Dispatcher RegisteredIn RMIregistry, Globus
Renderer1
Renderer2
Renderer3
Renderer4

Mapping:
Dispatcher --> DispatcherJVM
Renderer1 --> JVM1
Renderer2 --> JVM1
Renderer3 --> JVM2
Renderer4 --> JVM2

JVMs:
DispatcherJVM = Current // (the current JVM,

running the main),
JVM1 = //lo.inria.fr/ Protocol rsh
JVM2 = //ClusterSophia.inria.fr/ Protocol

LSF <1> VIA galere1JVM
galere1JVM = //galere1.inria.fr Protocol SSH

ARCHITECTURE:
...// How to launch a JVM on a given machine

// using for instance the same kind of
// information as shown on figure 6

Figure 2. Example of ProActive Descriptor file



3.2 Concepts and Definitions

Besides the principles above, we want to eliminate as
much as possible the use of scripting languages, that can
sometimes become even more complex than application
code. Instead, we are seeking a solution with XML descrip-
tors, XML editor tools, interactive ad-hoc environments to
produce, compose, and activate descriptors.

To reach that goal, the system relies on a specific notion,
Virtual Nodes (VNs):

- a VN is identified as a name (a simple string),
- a VN is used in a program source,
- a VN is defined and configured in a descriptor file
(XML),

- a VN, after activation, is mapped to one or to a set of
actual ProActive Nodes.

Of course, distributed entities (active objects), are created
on Nodes, not on Virtual Nodes (see example below, Sec-
tion 3.3). There is a strong need for both Nodes and Virtual
Nodes. Virtual Nodes are a much richer abstraction, as they
providemechanisms such as set or cyclic mapping. Another
key aspect is the capability to describe and trigger the map-
ping of a single VN that generates the allocation of several
JVMs. This is critical if we want to get at once machines
from a cluster of PCs managed through Globus or LSF, or
even more critical in a Grid application, the co-allocation of
machines from several clusters across several continents.

Moreover, a Virtual Node is a concept of a distributed
program or component, while a Node is actually a deploy-
ment concept: it is an object that lives in a JVM, hosting ac-
tive objects. There is of course a correspondence between
Virtual Nodes and Nodes: the function created by the de-
ployment, the mapping. This mapping can be specified in
an XML descriptor. By definition, the following operations
can be configured in such a descriptor:

- the mapping of VNs to Nodes and to JVMs,
- the way to create or to acquire JVMs,
- the way to register or to lookup VNs.

3.3 Examples

Figure 2 gives a simple example of a ProActive Descrip-
tor file (rendered to eliminate XML tags for the sake of
concision and readability). This descriptor declares 5 VNs
(Dispatcher, and Renderer 1 to 4) in the VirtualNodes
section. Further down, in the Mapping section, the 5
VNs are mapped on only three different JVMs (Dispatcher-
JVM, JVM1, JVM2), resulting in the co-allocation in the
same JVM of Renderer1 and Renderer2, and of Renderer3
and Renderer4. A dedicated section, JVMs, allows to ex-
plicitly state the creation of JVM, using various protocols.

Note that JVM2 cannot be created directly, due to security
limitation, and the descriptor specifies that another JVM
(galere1JVM)is used just for the sake of accessing the
cluster. Finally, as the Dispatcher VN needs to be lookup
from independently started clients, that VN name is regis-
tered in two systems (RMIregistry and Globus).

Within the source code, the programmer can man-
age the creation of active objects without relying on
machine names and protocols. For instance, the piece
of code given at Figure 3 will allow to create an ac-
tive object onto the Virtual Node Renderer1. The
JVMs associated in a descriptor file with a given VN
are started (or aquired) only upon activation of a VN
mapping (pad.activateMapping("Renderer1")
in the code above).

ProActiveDescriptor pad = ProActive.
getProActiveDescriptor("file:.ProActiveDescriptor");

VirtualNode vn = pad.activateMapping("Renderer1");
// "Renderer1" is the virtual node name described
// in the XML-descriptor. It triggers the
// JVM on which "Renderer1" is mapped to.

Node node = vn.getNode();
C3DRenderingEngine re = (C3DRenderingEngine)

fr.inria.proactive.ProActive.newActive(
"fr.inria.proactive.examples.c3d.C3DRenderingEngine",
param, node);

log("New engine " + "Renderer1" + "created at Node " +
node.name() + // also Renderer1 in that case
" on JVM " + node.JVM() + " on Host " + node.host());

...

Figure 3. Example of ProActive source code
for descriptor-based mapping

4 Graphical Visualisation and Control
within IC2D

IC2D is the graphical environment for the monitoring
of ProActive applications. It provides information about
the support of the ProActive computation, and about the
progress of the computation.

The communication flow that takes place between the
various components is one of the most significant features to
track in distributed applications. This is why IC2D tracks,
on demand, all events that relate to remote method calls be-
tween active objects.

4.1 Hosts, VMs, Nodes, and Active Objects

In Figure 4, one can visualize the layout of hosts, JVMs,
and ProActive nodes. In the Figure, each rectangle inside a
grey box is a JVM, which means that there are exactly two
VMs running on pf19 and galere8 and one on pf9. In



Figure 4. General view of what IC2D displays when an application is running

this example, a single node is running on each VM. Each
active object is uniquely identified by IC2D using the type
of the active object, and an index number managed glob-
ally for a world Panel (C3DRenderingEngine #1 for
instance).

4.2 Topology and message traffic

What is called topology is the set of references of ac-
tive objects. Only the method calls that actually occur build
up the drawn topology. The dot at each end of a grey line
depicts the target of the remote call. As the amount of traf-
fic generated by messages is a good indication of the way
the application is structured into its various components, it
is possible to display communication lines proportional to
traffic towards an active object (see on Figure 9 the width of
grey lines between communicating active objects).

4.3 Distributed events

The topology gives only quantitative information. An-
other view provides qualitative information and details all
monitored events occurring in the distributed application

(see Figure 5). The user can clicks on events, like for ex-
ample the event [C3DUser#4] set Pixels in the ac-
tive object numbered 5 (C3DDispatcher) (which corre-
sponds to a request send), the pair of events pertaining to the
same method call (for instance, request send and receive)
are displayed using exactly the same color (in yellow). A
given maximum (5 in fact) of events (and their matching
ones) that happened before (resp. after) on object 5 are dis-
played using a graduation of blue (resp. red). Pairs of events
are easily matched thanks to a sequence number attributed
to each call towards active objects, and to the fact that com-
munications between active objects are FIFO ordered (due
to the rendez-vous, see section 2.1).

Some events that occurred locally but are indirectly re-
lated to method calls towards active objects are also shown:
ObjectWaitByNecessity means that the reply of a
call has not yet arrived and that the caller has incurred a
blocking wait on it because it needed it in order to resume
its computation; ObjectWaitForRequest means that
the active object has incurred a wait because its queue of
pending requests was empty. This gives a good feedback on
the activity of the object and its workload.



Figure 5. Communication related events that IC2D displays when an application is running

4.4 Control

As the availability of computing resources varies over
time, especially in grid-based computing environments
where many users share hosts, there are strong needs for
easy-to-use deployment and control tools, even if they are
basic. Without any change to the existing application
IC2D addresses some of those needs by providing :

� A way to interactively create ProActive nodes on lo-
cal, remote or Globus-enabled hosts, which implies to
first launch corresponding JVMs (see Figure 6).

� Correspondingly, a way to discover or locate ProAc-
tive nodes that are already running on local or remote
hosts and that could serve as entry points within JVMs
for active objects.
IC2D can be launched even if ProActive applications
are already running. There is an easy way to moni-
tor those ongoing applications by asking IC2D to ac-
quire a specific or all ProActive nodes that already ex-
ecute on a given host. In the case of RMI, the registry
running on a host will be asked to return references to
ProActive nodes, that subsequently will be visualized
in the World Panel (see Figure 4). IC2D can also
use other facilities such as Jini or Globus to acquire
nodes.

� A way to interactively drag-and-drop any running
active object to move it to any ProActive node dis-
played by IC2D.
The effect of the drag-and-drop event is to dynamically
insert inside the target active object requests queue, a
migrateTo() request with the target node location
as parameter. Additional load metrics would be needed
to use such an interactive feature for load-balancing

purposes. Yet, it has proven to be very useful for de-
ployment purposes, for instance enabling the user to
carry with him, from desktops to desktops, an active
object acting as a graphical interface assuming he has
previously launched nodes on the desktops he will be
sitting in front of.

A complete listing of IC2D features is given by Figure 7.

Graphical Visualisation:
- Hosts, Java Virtual Machines, Nodes, Active Objects
- Topology: reference and communications
- Status of active objects (executing, waiting, etc.)
- Migration of activities

Textual Visualisation:
- Ordered list of messages
- Status: waiting for a request or for a data
- Causal dependencies between messages
- Related events (corresponding send and receive, etc.)

Control and Monitoring:
- Step by step execution
- Drag and Drop migration of executing tasks
- Creation of additional JVMs and nodes

Figure 7. The basic features of IC2D

4.5 Design and Implementation

The IC2D system is an external part of the core ProAc-
tive library. It is built according to the usual pattern for event
notification. IC2D is composed of a central monitor and a
spy on each ProActive observed JVM (there is for the mo-
ment no security considerations in order to limit acquisition



Figure 6. Interactive creation of a new JVM and associated node

of nodes that run on JVMs to authorized users). A spy is an
active object that receives events occurring on nodes or on
any active object attached to those nodes. Events are even-
tually sent back to the IC2D application owner of the spy
and displayed to the end-user by the monitor. The graphical
representation of those events could be chosen dynamically
from textual, hierarchical form for instance. At the present
time, only the view shown on Figure 4 is available.

IC2D does not require to instrument the application at
all, as long as it is built using the ProActive library. As the
library is built on top of a Meta-Object Protocol (MOP), all
information that pertains to monitoring or steering the dis-
tributed features are implemented at the meta-level: active
object creations or migrations, remote method calls are rei-
fied in the meta-level, where it is possible for each of those
operations to trigger a corresponding event (i.e. the notifi-
cation of this event to the spy acting as a listener).

For the sake of scalability and readability, the listening of
each of these events can be turned on and off on a per-active
object, per-node or per-host basis, or for all the currently
acquired nodes. Of course, the corresponding events are
not generated by the MOP, nor sent to spies if the listening
has been turned off. Figure 8 lists events that are notified
on demand to spies on every node, then displayed by the
monitor.

Activities:
- Creation of active objects
- Migration of active objects

Communication:
- Sending a Request
- Receiving a Request
- Sending a Reply
- Receiving a Reply

Waits:
- Waiting for a reply (wait-by-necessity)
- Waiting for a request

Figure 8. The basic events monitored by IC2D

5 Comparison with related work

5.1 Monitoring and Steering

On-line monitoring, visualising and debugging dis-
tributed applications is a very broad area and we only briefly
mention here some of the most relevant works, like for
example xpvm for assisting in debugging PVM applica-
tions [10] or ParaGraph, a performance visualisation tool



Figure 9. Visualisation of a ProActive application, executing on 2 LSF allocated clusters of PCs inter-
connected with 1Gbits/sec links.

for Paragon applications [13]. The aforementioned envi-
ronments target preferably parallel computers or clusters.
As IC2D plus ProActive can indifferently run on any sup-
port, we could execute it in on various kind of machines,
including ones not on the same administrative domain but
accessible through Globus. and also on clusters of PCs (see
Figure 9).

Interactive program steering pertains to the runtime ma-
nipulation of an application program and its execution en-
vironment. Usually, application developers themselves, not
library developers, create ’steerable’ applications by iden-
tifying components of the application to export to the end-
user, for instance with the Progress [18] (Program and Re-
source Steering System) toolkit, or in MOSS [7] introduc-
ing a mirroring level. Using IC2D, ProActive applications
are steerable, but in the limited sense of distribution-related

data and operations. But as a consequence, there is no need
for ProActive application developers to instrument their ap-
plication, as all objects are already mirrored in a sense,
through reification, at the meta level.

5.2 Grid-enabled programming environments

One major problem in the development of grids is to de-
fine adequate programming models and environments [12].
We will only discuss a few distributed object-oriented or
component-based programming environments, as they pro-
vide a better encapsulation and abstraction than any of the
lowest-level programming systems, such as for example
grid-enabled implementations of the Message Passing In-
terface or RPC systems [14]. Nevertheless, note that for
those programming tools, there is also a need to have so-
lutions to ease of set up, configuration and installation [1].



Note also that ProActive is not supposed to be a new object-
oriented middleware targeted as using the Internet as “the
computer”, like Globe [17], Legion [11], etc. Instead it
leverages a well-adopted platform, i.e. Java and some of
its standard libraries.

Moba/G [19] is a grid-based Java thread migration sys-
tem and as such shares some features with ProActive. But
it lacks, for instance, some of the features IC2D provides:
visualisation of the topology and objects, drag-and-dropmi-
gration, etc.

In CCA, a software component framework for build-
ing Grid applications [2], components define external in-
terfaces, as provides ports or uses ports and a mechanism
to interconnect both kinds of ports. In the XML-oriented
implementation of CCA (XCAT [9]), attached XML doc-
uments to components contain information about where a
component is installed, how an instance can be created, etc.
Scripts written for instance in Jython (Python in Java) or
embedded themselves into ”Application Manager” compo-
nents [9] interpret such XML documents in order to cre-
ate instances, connect to other components, etc. ProActive
descriptors provide the same kind of functionality targeted
to Java components. ProActive with its descriptors tries to
avoid as much as possible the use of scripting configuration
files as they can become even more complex than applica-
tion code itself. To further help in that purpose, IC2D acts
as both a front-end and a monitor.

6 Conclusion

Through the use of deployment descriptors and the mon-
itoring application IC2D we showed how to address the
difficult problem of seamless deployment and control of
distributed applications of various kinds: high-performance
collaborative distributed computations on clusters or grids,
mobile object systems, networkmanagement platforms, etc.
The main points are:

� There is no more reference to machine names, cre-
ation protocols, registry and lookup protocols within
the source code. Instead the application uses virtual
nodes that are logical entities on which the active com-
ponents of the application can be deployed.

� A descriptor maps the logical entities defined in the
application onto computers allowing total flexibility
of deployment and support of many different creation,
lookup and registration protocols.

� Without any change to the application it is possible to
monitor and control it using IC2D.

Deployment descriptors and IC2D are far from indepen-
dent; for instance they both need and use the capability

to launch JVMs (see Figures 2 and 6) with various proto-
cols (ssh, Globus, LSF, etc.), to discover computation from
many lookup protocols (Jini, Globus, UDDI), etc. Used in
combination, they allow to write a distributed application
focusing only on the logical computing entities it needs,
deploy it on various environment (machine, cluster, grid),
control and visualize the deployment graphically, and mod-
ify the deployment while the application is running.

If IC2D is already capable of reading a descriptor file
to monitor a given running distributed application, we fore-
see many other improvements in the integration of the two.
IC2D can be used to interactively deploy the components
of a distributed application and automatically generate the
descriptor, or at least an outline of it, based on the current
deployment.

Ultimately, we would like to define reusable distributed
components that can be hierarchically composed to build-up
an application. Each component would be associated with
its own descriptor trying here to converge towards a com-
plete description as WSDL does for Web Services. There
is here a central point of convergence as the current trend
is to reuse the work done for Web Services for the Grid as
in the emerging Open Grid Services Architecture [8]. The
ProActive components could be seen as services accessible
through a web-services based grid portal.

References

[1] M. Baker and G. Smith. Establishing a Reliable Jini
Infrastructure for Parallel Applications. Parallel Pro-
cessing Letters, 2001.

[2] R. Bramley, K. Chin, D. Gannon, M. Govindaraju,
N. Mukhi, B. Temko, and M. Yochuri. A Component-
Based Services Architecture for Building Distributed
Applications. In 9th IEEE International Symposium
on High Performance Distributed Computing Confer-
ence, 2000.

[3] D. Caromel. Towards a Method of Object-Oriented
Concurrent Programming. Communications of the
ACM, 36(9):90–102, September 1993.

[4] D. Caromel, F. Belloncle, and Y. Roudier. The C++//
Language. In Parallel Programming using C++,
pages 257–296.MIT Press, 1996. ISBN 0-262-73118-
5.

[5] D. Caromel, W. Klauser, and J. Vayssiere. Towards
seamless computing and metacomputing in java. Con-
currency Practice and Experience, 10(11–13):1043–
1061, November 1998.

[6] K. Dincer. Ubiquitous message passing interface im-
plementation in java: Jmpi. In Proc. 13th Int. Parallel



Processing Symp. and 10th Symp. on Parallel and Dis-
tributed Processing. IEEE.

[7] G. Eisenhauer and K. Schwan. An Object-Based In-
frastructure for Program Monitoring and Steering. In
2nd SIGMETRICS Symposium on Parallel and Dis-
tributed Tools (SPDT’98).

[8] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The
Physiology of the Grid. http://www.globus.
org/research/papers/ogsa.pdf.

[9] D. Gannon, R. Bramley, G. Fox, S. Smallen, A. Rossi,
R. Ananthakrishnan, F. Bertrand, K. Chiu, M. Far-
rellee, M. Govindaraju, S. Krishnan, L. Ramakrish-
nan, Y. Simmhan, A. Slominski, Y. Ma, C. Olariu, and
N. Rey-Cenvaz. Programming the Grid: Distributed
Software Components, P2P and GridWeb Services for
Scientific Applications. In Grid 2001. Submitted to the
Journal of Cluster Computing, 2002.

[10] A. Geist, A. Beguelin, J. Dongarra, W. Jiang,
R. Manchek, and V. Sunderam. PVM: Parallel Virtual
Machine. A Users’ Guide and Tutorial for Networked
Parallel Computing. MIT Press.

[11] A. Grimshaw andW. Wulf et al. The Legion Vision of
a World-wide Virtual Computer. Communications of
the ACM, 40(1), 1997.

[12] C. Lee, S. Matsuoka, D. Talia, A. Sussman, N. Ka-
ronis, G. Allen, and M. Thomas. A grid program-
ming primer. Draft 2.4 of the Programming Models
Working Group presented at the Global Grid Forum 1,
March 2001.

[13] B. Ries, R. Anderson, W. Auld, D. Breazeal,
K. Callaghan, E. Richards, andW. Smith. The Paragon
performancemonitoring environment. In Proc. Super-
computing ’93, pages 850–859. IEEE Computer Soci-
ety, 1993.

[14] S. Sekiguchi, M. Sato, H. Nakada, S. Matsuoka, and
U. Nagashima. Ninf: Network-based information li-
brary for globally high performance computing. In
Parallel Object-Oriented Methods and Applications
(POOMA), pages 39–48, 1996. http://ninf.
etl.go.jp.

[15] Sun Microsystems. Java core reflection, 1998.
http://java.sun.com/products/jdk/1.
2/docs/guide/reflection/.

[16] Sun Microsystems. Java remote method in-
vocation specification, October 1998. ftp:
//ftp.javasoft.com/docs/jdk1.2/
rmi-spec-JDK1.2.pdf.

[17] M. van Steen, P. Homburg, and A.S. Tanenbaum.
Globe: A Wide-Area Distributed System. IEEE Con-
currency, 7(1):70–78, 1999.

[18] J.S. Vetter and K. Schwan. Progress: a toolkit for in-
teractive program steering. In International Confer-
ence on Parallel Processing, 1995.

[19] G. von Laszewski, K. Shudo, and Y. Muraoka. Grid-
based asynchronous migration of execution context
in java virtual machines. In R. Wismller A. Bode,
T. Ludwig, editor, Euro-Par 2000 - Parallel Process-
ing, number 1900 in LNCS. Springer-Verlag.


